Papers for Euler Circle Ring Theory and Algebraic Geometry, Summer 2020 Session 1
Akash Dhiraj:
On Dedekind domains & the ideal class group
Alan Lee:
Quaternions and the four square theorem
Alex Perry:
Tropical algebra
Amol Rama and Nilay Mishra:
Automatic geometry theorem proving
Amulya Bhattaram:
Klein's quartic
Andrew Lee:
Homological algebra
Antarish Rautela:
Discriminants and resultants
Anuj Thakur:
Division rings and Wedderburn's theorem
Atticus Kuhn:
Real projective geometry
Bernie Luan:
Noncommutative rings
Darren Yao:
Dedekind domains and ideal class groups
Emma Cardwell and Katherine Taylor:
Representing error correcting codes as the ideals of rings
Heidi Lei:
Rational points on elliptic curves
Hrishabh Ayush:
Principal ideal domains and unique factorisation domains
Isha Sinha:
Invariant theory
Joey Huang:
Gröbner bases
Josh Zeitlin:
PIDs, EDs and UFDs
Junxuan Shen:
Riemann-Hurwitz theorem
Justin Hua:
Gerbaldi's theorem on quadratic forms
Kishan Jani:
Invariant theory and algorithms
Krishna Dhulipala:
An introduction to invariant theory
Lucas Perry:
Algebraic curves
Maggie Debelak:
27 lines on a cubic surface
Matthew Ho:
An introduction to Hilbert's finiteness theorem in invariant theory
Mehana Ellis:
Homological algebra
Merrick Hua:
Homological algebra
Neil Makur:
An introduction to modules
Rajeev Sharma:
Invariant theory
Sajid Rizvi:
Munshi's proof of Nullstellensatz
Samrit Grover:
Cayley-Hamilton theorem
Sanjay Gollapudi:
Klein quartic equation
Sarah Fujimori:
Modular curves
Shaunak Bhandarkar and Sidhart Krishnan:
Deck groups, Riemann surfaces, and a deep dive into the inverse Galois conundrum
Sriteja Vijapurapu:
Lefschetz hyperplane theorem
Tae Kyu Kim:
Tropical algebraic geometry
Tanvi Deshpande:
Grassmannians and flag varieties
Yvan Grinspan:
Computational algebraic geometry
Zeyu Wang:
Riemann-Hurwitz and Riemann-Roch