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Abstract. This paper is going to talk about the properties of Principal Ideal
Domains, Unique Factorisation Domains and other similar things which are related
to this topic such as Integral Domains, Euclidean domains, Field of fractions along
with some supported examples.

1. Introduction

Principal Ideal Domain is an integral domain where every proper ideal can be
generated by single element. Every Euclidean Ring is a PID, but not conversely.
Nevertheless, the notion of greatest common divisor which is obviously from the
Euclidean Algorithm can be extended to more general context of PID. Every PID
is a unique factorisation domain, but the converse is not true. Every polynomial
ring over a field is a UFD, but it’s a PID iff the number of indeterminates is one.

2. Principal Ideal Domain

We begin first by introducing Principal Ideal Domain and some of its useful
properties:

Definition 2.1. An integral domain D is called a principal ideal domain(PID) if
every ideal is principal.

Example. Z, k[x] are two such examples.

Recall. There some results which I will be using to explain the further results.

• For a ∈ D the principal ideal generated by a is (a) = {ra | where r ∈ D}.
• p ∈ D is said to be irreducible if when p = ab, when a or b is a unit.
• p ∈ D is said to be prime if when p | ab we have p | a or p | b.

Lemma 2.2. Let D be a PID, one has a | b if and only if (b) ⊆ (a). Elements a
and b are associates iff (a) = (b).

Proof. Suppose a | b then b = ar for some r ∈ D. Let x ∈ (b) then x = by for some
y ∈ DD. We can say that x = ary ∈ (a) which clearly states that (b) ⊆ (a). Now
suppose (b) ⊆ (a), so b ∈ (a) for some r ∈ D. So we proved a | b.

Now, let us prove for the part that a and b are associates and (a) = (b). Suppose
that a and b are associates ∃ a unit u ∈ D =⇒ a = bu =⇒ b | a, hence (a) ⊆ (b),
also au−1 = b, then a | b, hence (b) ⊆ (a) =⇒ b = ax and a = by, so combining
both of them we get b = bxy =⇒ xy = 1, hence x is a unit and we proved that a
and b are associates. �

Theorem 2.3. Let D be a PID and 0 6= (p) ⊆ D, then (p) is a maximal ideal if
and only if p is irreducible.
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Proof. Suppose (p) is a maximal ideal and p = ab(Target:a or b is a unit). The
equation tells us that a | p, then by our lemma we have (p) ⊆ (a) ⊆ D. Then by
the definition of a maximal ideal, we can say (p) = (a) or (a) = D. Then in the first
case p and a are associates, so b is a unit. Similarly, in the second case we can say
that a is a unit(by our lemma). Hence either way we proved that p is irreducible.

Another interesting approach is by supposing p is irreducible. Consider a ∈ D
with (p) ∈ (a) ∈ D. Notice by our lemma a | p, so p = ab for some b ∈ D, but p
is irreducible so a is a unit or b is a unit. In the first case, (a) = D. In the second
case, p and a are associates (p) = (a). Hence in both the cases (p) is maximal
ideal. �

Corollary 2.4. If p ∈ D is irreducible (D is a UFD), then it is prime. In an
arbitrary ring this is not the case, in that case the notion of being a prime is more
restricted than the notion of being irreducible.

Proof. Suppose p is irreducible. Look for what it takes for p to be prime. Then we
want to show p | a or p | b. So ab = pr for some r ∈ D and ab ∈ (p), a maximal
ideal. That implies it is a prime ideal. So, a ∈ (p)or b ∈ (p).Hence we can say
a = px or b = py, which clearly states p ∈ a or p ∈ b. �

Proposition 2.5. Every ideal in k[x] is a Principal Ideal domain.

Proof. Let’s suppose k is a field. Then by Division Algorithm we have ∀f(x), g(x) ∈
k[x]∃!q(x), r(x) such that f(x) = g(x).q(x) + r(x) with

0 ≤ deg r(x) < deg g(x)

Suppose I ⊆ k[x] is an ideal. Take p(x) ∈ I such that p(x) is monic polynomial and
deg[p(x)] is minimal over all polynomials of positive degree. Suppose f(x) ∈ I and
we perform division algorithm such that f(x) = p(x).q(x) + r(x). Here deg[r(x)]
must be 0 otherwise it would violate the minimality of p(x), which clearly indicates
f(x) ∈ (p(x)) and I ⊆ (p(x)). Other case include p(x) = α 6= 0 ∈ k. So that means
(p(x)) = (α) = k[x]. Hence we proved that k[x] is a PID.

Example. Z[x] is not a PID. The proof of this example is left as an exercise for the
readers. You can start by taking I = (x, 2) and proving that it is not a principal
ideal.

�

3. Field of Fractions

We can think of Q “as a set of symbols a
b ”, where a, b ∈ Z(b 6= 0),and a

b = c
d =⇒

ad = bc, here I will be using few notations to prove some results.

• D is any integral domain.
• S = {(a, b) | where we have a, b ∈ D, b 6= 0}.
• ∼⊆ S × S, (a, b) ∼ (c, d), that implies ad = bc.
• [a, b] = {(c, d) ∈ S | (a, b) ∼ (c, d)}, where the square brackets denote

equivalence class.
• FD = {[a, b] | where a, b ∈ D, b 6= 0}.

Theorem 3.1. FD is a field(the field of fractions of D). It is the unique “smallest”
field such that D ↪→ FD, which tells that D can be embedded in FD.
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Proof. First, we try to prove that ∼ is an equivalence relation. (Reflexive) (a, b) ∼
(a, b) because ab = ab. (Symmetry) Suppose (a, b) ∼ (c, d), such that we have
ad = bc or bc = ad. Hence (c, d) ∼ (a, b). (Transitive) Let’s suppose (a, b) ∼ (c, d)
and (c, d) ∼ (e, f). So we will get (a, b) ∼ (e, f).

Now we will try to prove that addition is well defined in this case. Our motivation
is Q numbers, where it has the property of ab + c

d = ad+bc
bd . So the same thing we see

in equivalence class as [a, b]+ [c, d] = [ad+bc, bd]. Now suppose [a, b] = [â, b̂], which

completely indicates that ab̂ = âb. Similarly we make the case with c and d and we

finally get the result [a, b] + [c, d] = [ad+ bc, bd] or [â, b̂] + [ĉ, d̂] = [âb̂+ ĉd̂, b̂d̂].
Now we want to show that we can “include” D ↪→ FD. Consider ι : D → FD,

and also Z(a) = [a, 1]. Now we will exhibit it is a ring homomorphism ι(a + b) =
[a+ b, 1] =⇒ [a, 1] + [b, 1] = ι(a) + ι(b).

Also ι(ab) = [ab, 1] = [a, 1] + [b, 1] = ι(a)ι(b). Now along with this we prove that
a ring homomorphism is injective. Suppose Z(a) = 0. Then we have [a, 1] = [0, 1],
which implies to the fact that a = 0. But if anything in the kernel is equal to 0 that
tells us that the kernel is just the zero element, which is the same thing as saying
it is injective.

Lastly, we try to show the uniqueness of D. So we have Z ↪→ R and also Q ↪→ R.

Suppose that we have a field k such that D
φ
↪→ FD, where φ is an injective ring

homomorphism. Our goal is to find some ψ : FD → k such that D
ι
↪→ FD

φ
↪→ k.

Set ψ([a, b]) = φ(a)(ψ(b))−1) and we observe that φ(a), φ(b) ∈ k. So the last thing
we need to check is that ψ is an injective field homomorphism. ψ([a, b] + [c, d]) =
ψ([ad + bc, bd]) = φ(ad + bc)(φ(bd))−1 = (φ(a)φ(d) + φ(b)φ(c))(φ(b))−1(φ(d))−1

which after multiplication gives you φ(a)φ(b)−1 + φ(c)φ(d)−1 = ψ[a, b] + ψ[c, d].
Similarly, we want to show for the multiplication part. So the final conclusion

we would get is ψ([a, b].[c, d]) = ψ[a, b]ψ[c, d]. Suppose [a, b] ∈ kerψ. We want to
show that this thing is trivial. In other words it is injective. Thus ψ[a, b] = 0 and
then (φ(a)φ(b)−1 = 0)φ(b). Hence this gives us the result that φ(a) = 0. So, a = 0
and [a, b] = [0, 1]. So the kerψ = {[0, 1]}. Hence it is injective and therefore we
proved this result. �

4. Unique Factorisation Domain

Definition 4.1. We say an integral domain D is a Unique Factorisation Domain
(UFD) if

• Every nonzero-nonunit can be written as the product of irreducibles.
• If a = p1p2 . . . pr = q1q2 . . . qs with pi, qj to be irreducible then r = s and ∃

a permutation σ ∈ Sr with pi = qσ(i)ui, where ui is a unit.

We have some important results if we are given with p(x) = anx
n + . . .+ a0 ∈ D[x]

• content(p(x)) = gcd(a0, . . . , an)
• p(x) is primitive if content = 1, which means the coefficients of the poly-

nomials have no common factor

Proof. Z[ι
√

3] = {a + bι
√

3 | a, b ∈ Z}. Consider 4 = 2.2 = (1 + ι
√

3)(1-ι
√

3). For

it to be a UFD 2 = (1 + ι
√

3)u, where u is a unit. u = a + bι
√

3 ∈ Z[ι
√

3] ⊆ C.

u−1 = a−bι
√

3
a2+3b2 ∈ Z[ι

√
3]. Then we will need a

a2+3b2 ∈ Z. So we will have b = 0 and
a
a2 ∈ Z =⇒ 1

a ∈ Z. Then a = ±1.So that implies u = ±1. Hence 2 = ±(1 + ι
√

3),
which is not true. This is a contradiction to our assumption. �
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Example. Z is a UFD by Fundamental theorem of arithmetic. Let’s also consider
a non example Z[ι

√
3] and also Z[

√
5] ⊆ R.

Theorem 4.2 (Gauss’s Lemma). If f(x), g(x) ∈ D[x] are primitive then so is
f(x).g(x)

Lemma 4.3. cont(f(x)g(x)) = cont(f(x)).cont(g(x))

Lemma 4.4. Suppose p(x) ∈ D[x] with p(x) = f(x).g(x) ∈ F [x], where F is the

field of fraction, then ∃f̂(x), ĝ(x) such that p(x) = f̂(x)ĝ(x)

Corollary 4.5. If p(x) is irreducible in D[x], then p(x) is also irreducible in F [x],
and the converse is also true.

Theorem 4.6. If D is a UFD then D[x] is a UFD.

The proof to this property is left as an exercise for the readers and they can
try this out using the previous properties to show the uniqueness and primitive
property.

5. Euclidean Domains

Definition 5.1. An integral domain D is known as a Euclidean Domain if ∃ N :
D → N such that

• If 0 6= a, b ∈ D then N(a) ⊆ N(ab).
• If a, b ∈ D with b 6= 0 then there exists q, r ∈ D such that a = bq + r with
r = 0 or N(r) < N(b).

Example. Z which are just given by the following relation N(m) = |m|

Example. k[x], the ring of formal power series over the field k. For each nonzero
power series P , define f(P ) as the order of P , that is the degree of the smallest
power of occurring in P . In particular, for two nonzero power series P and Q,
f(P )≤f(Q) if and only if P divides Q.

Nonexample. Every domain that is not a principal ideal domain, such as the ring of
polynomials with at least two indeterminates over a field, or the ring of univariate
polynomials with integer coefficients, or the number ring Z[

√
(−5)].

Definition 5.2. Z[i] = {a + bi | a, b ∈ Z} is a Euclidean domain. So this is the
property of Gaussian integers.

Proof. Define N(α) = αᾱ = |α|2. Then α = a + bi and α = a − bi. Then N(α) =

a2 + b2, where a, b ∈ Z. Now using α, β ∈ Z[i] =⇒ N(αβ) = αβᾱβ = αβᾱβ̄.
Further rearranging the terms, we get αᾱββ̄ = N(α)N(β) ≥ N(α). Now we move
on to prove the second property. So suppose αβ ∈ Z[i], where β 6= 0.α = a+bi, β =

c+ di =⇒ β−1 = c−di
c+di = β̄

|β|2 . Hence, we find that

αβ̄−1 =
(a+ bi)(c− di)

c2 + d2

=
1

c2 + d2
((ac+ bd)(bc− ad)i)

=
ac+ bd

c2 + d2
+
bc− ad
c2 + d2

i

= (q1 + r1) + (q2 + r2)i
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where − 1
2 ≤ r1, r2 ≤ 1

2 and q1, q2 ∈ Z.

αβ−1 = (q1 + r1) + (q2 + r2)i

= (q1 + q2i) + (r1 + r2i)

α = βγ + β(r1 + r2i)

α = βγ + ρ

∴ N(ρ) = ββ̄(r1 + r2i)(r1 − r2i)

= N(β)(r2
1 + r2

2), 0 ≤ r2
1, r

2
2 ≤

1

4
≤ 1

2
N(β) < N(β)

Here we finished our proof, which is in fact a Euclidean Domain. �

Theorem 5.3. If D is a Euclidean Domain then it is indeed a PID.

Proof. Suppose I ⊆ D is an ideal. Take b∈ I such that N(b) is minimal among all
elements from I(b ⊆ I). Now, take a ∈ I and by Division Algorithm, a = bq + r,
where r = 0, or N(r) < N(b). Also if we see r = a − bq ∈ I, we will have r = 0,
otherwise we would contradict the minimality of N(b).

a = bq ∈ (b) =⇒ I ⊆ (b) =⇒ I = (b)

�

6. Ideals of quotients of PIDs

Theorem 6.1 (Fourth Isomorphism Theorem). Let f : G −→ G′ be a surjective
homomorphism. Then

• There is an inclusion preserving bijection

{A | Kerf ≤ A ≤ G} −→ {B | B ≤ G}

given by A 7−→ f(A) with inverse given by B 7−→ f−1(B)
• Let Kerf ≤ N ≤ G. Then N E G if and only if f(N) E G′ in which case

there is an isomorphism G/N −→ G′/f(N) given by aN 7−→ f(a)f(N) for
all a ∈ G

Proof. We sketch a proof. As for the first part, we suppose that f : G −→ G′

is any homomorphism. Then Kerf ⊆ f−1(B) and B ⊆ f(f−1(B)) for all B ≤
G′. If f is surjective then = f(f−1(B)). Let A ≤ G. Then A⊆ f−1(f(A)). If
Kerf ⊆ A then A = f−1(f(A)). As for second part, observe that the composite
G −→ G′ −→ G′/f(N) of f followed by the projection is surjective and has kernel
f−1(f(N)) = N , by the first Isomorphism Theorem. �

Theorem 6.2 (Zorn’s Lemma). Every poset with the property that every increasing
chain has a maximal element has a maximal element for the whole part.

Example. Let S be the set of all subgroups of a given group G. For H,K ∈ S
(that is, H and K are subgroups of G), declare H ≤ K if H is a subset of K. This
is a partial ordering, called ordering by inclusion. It is not a total ordering: for
most subgroups H and K neither H ⊂ K nor K ⊂ H. One can similarly partially
order the subspaces of a vector space or the ideals (or subrings or all subsets) of a
commutative ring by inclusion
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Example. In R with its natural ordering, the subset Z has no upper bound while
the subset of negative real numbers has the upper bound 0(or any positive real).
No upper bound on the negative real numbers is a negative real number.

Lemma 6.3. Let S be a partially ordered set. If {s1, . . . , sn} is a finite totally
ordered subset of S then there is an si such that sj ≤ si for all j = 1, . . . , n.

Proof. The s′is are all comparable to each other; that’s what being totally ordered
means. Since we’re dealing with a finite set of pairwise comparable elements, there
will be one that is greater than or equal to them all in the partial ordering on S.
The reader can formalize this with a proof by induction on n, or think about the
bubble sort algorithm. �

Proposition 6.4. Suppose D is a PID and I ⊆ D is an ideal then every ideal of
D/I is principal.

Proof. Supppose J ⊆ D/I is an ideal. J = J/I with I ⊆ J ⊆ D. Since D is a PID
I ⊆ (a) and J ⊆ (b). So the claim is J = (b + I). So (b + I) ⊆ J is very much
true because b + I ∈ (b) + I. Suppose x ∈ J = J/I = (b)/I = {j + I | j ∈ (b)}.
We can say x = rb + I for some r ∈ D. So x = (r + I)(b + I) ∈ (b + I). Hence,
J ⊆ (b+ I). �

Corollary 6.5. If P ⊆ D is a prime ideal then D/P is a PID.

Proof. We have D/P is a principal ring by the example. So D/P is an integral
domain because P is prime. �

Example. If D is a PID. Then every prime ideal contained in D is maximum.

Example. Let D be an integral domain such that every prime ideal is principal then
D is a PID.

Proof. We are going to prove by the method of contradiction. Suppose we have a
set of non principal ideals A = {I ⊆ D | I is not principal}.

This is a poset with the ordering I ⊆ I ′. Consider a chain of I1, I2, I3, . . . ∈ A
with I1 ⊆ I2 ⊆ I3 . . . So consider I∞ =

⋃∞
i=1 Ii. Our claim is I∞ ∈ A.Suppose

not I∞ = (a). So a ∈ I∞. Hence an ∈ In for some n. (a) ⊆ In ⊆ I∞ = (a).
Therefore we have In = (a). We have satisfied the hypothesis of Zorn’s Lemma
that A has a maximal ideal. Now, we consider I is the maximal non-principal
ideal. I is not a prime ideal and ∃a, b ∈ D such that ab ∈ I but a /∈ I and
b /∈ I. Observe I ( (I, a) = (α). The fact that (α) is a PID is by maximality
of I. Also I ( (I, b) ⊆ J = {r ∈ D | ra ∈ I} = (β). Same is the reason for
this case too by maximality of I. Now taking x ∈ I ⊆ (α), so x = rα, for some
r∈ D. Now r(α) ⊆ (x) ⊆ I =⇒ a ∈ (α) =⇒ rα ∈ I =⇒ r ∈ J , so we
have r = yβ =⇒ x = y(αβ) ∈ (αβ) =⇒ I ⊆ (αβ). Here one point from the
proof must be noted that β ∈ J =⇒ βα ∈ J . Since I ⊂ D is an ideal iβ ∈ I
∀i ∈ I. That tells us for any s ∈ (Ia) we have βs ∈ I. In particular we take
s = α =⇒ αβ ⊂ I =⇒ (αβ) ⊆ I. But this is a contradiction, therefore D is a
PID and hence our assumption was wrong. �
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