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Abstract. In algebraic topology, homology groups are often used to encode information
about a topological space, utilizing certain constructs called chain complexes, which capture
certain types of information about the topological space. These chain complexes can then
be used to form homology groups, which are some very interesting algebraic invariants of
topological spaces, often conveying some useful information about the underlying topological
space, such as connectedness.

Now, in the study of homological algebra, we study the homology of more general chain
complexes, which encode information about more general algebraic structures, such as
abelian groups, R-modules, or in general, any object of an abelian category.

In this paper, we lay out the fundamentals of modules, chain complexes, exact sequences,
and homology, then build up to the functors Hom, Ext, Tensor, and Tor. The overall
pedagogical approach to the topic was heavily inspired by [CS] and [Lin], and the other
sources were used to round out the picture and find more examples.

1. R-Modules

In this section, we will give a quick review on the definition of a R-module. Note that
unless otherwise specified, we will refer to commutative rings with unity as simply rings.

Definition 1.1. Let R be a ring. A left R-module MR is an abelian group (M,+) along with
a scalar multiplication map R×M →M such that (r,m) 7→ rm. This scalar multiplication
should also satisfy the following axioms, for r, s ∈ R and m,n ∈M .

(1) r(m+ n) = rm+ rn (Left Distributivity)
(2) (r + s)m = rm+ sm (Right Distributivity)
(3) (rs)m = r(sm) (Associativity)
(4) 1Rm = m (Identity)

A similar formulation can define right R-modules, but since we are dealing with commu-
tative rings, these two formulations are equivalent. In this case, where R is a commutative
ring, we simply refer to MR as an R-module. Moreover, if the context is clear, we will often
omit the R and call M the R-module.

Example. If R = K is a field, these K-modules are precisely the vector spaces over K.

Example. We may also think of abelian groups as Z-modules, with the scalar multiplication
map being the (perhaps) obvious one, where n ∈ Z maps m to a sum of m with itself n
times: (n,m) 7→ m + · · · + m. In fact, as we will see later with different formulations of
homology groups, this is why R-modules are a natural generalization of abelian groups.

Just as with groups, R-modules have similar notions of R-submodules. These aren’t
particularly interesting; they are nearly identical to formulations over other algebraic objects.
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Definition 1.2. Let MR be an R-module. An R-submodule is an abelian subgroup N ⊆M
such that for all r ∈ R and n ∈ N , rn ∈ N . That is, elements in N are closed under scalar
multiplication by elements in the ring.

Example. Ideals of R can be considered R-submodules, with the scalar multiplication map
simply being the multiplication on R.

Definition 1.3. Let M and N be R-modules. A map φ : M → N is called an R-linear map
or an R-module homomorphism if for all m,m′ ∈M and r ∈ R:

(1) φ(m+m′) = φ(m) + φ(m′)
(2) φ(rm) = rφ(m)

We denote by HomR(M,N) the set of all R-module homomorphisms from M → N .

Note that we can naturally see a category R-Mod with objects R-modules and morphisms
R-module homomorphisms.

One class of R-modules that is of interest is the finitely generated R-modules, which we
will soon define.

Definition 1.4. Let {x1, . . . , xm} be a collection of elements from an R-module M . Consider
the subset generated by these elements:

〈x1, . . . , xm〉 =

{
m∑
i=1

rixi | ri ∈ R

}
This subset is an R-submodule of M .

Moreover, if the subset 〈x1, . . . , xm〉 is equal to the R-module M , we say that the set
{x1, . . . , xm} spans or is a spanning set of M .

This leads us right into the definition of a finitely generated module.

Definition 1.5. Let M be an R-module. If there exists a finite spanning set {x1, . . . , xm}
of M , then M is finitely generated.

Example. The Cartesian product Z× Z is a finitely generated Z-module, and is spanned by
the two elements x1 = (1, 0) and x2 = (0, 1).

Example. By the Fundamental Theorem of finitely generated abelian groups, an abelian
group M is finitely generated if and only if it is of the form

M = Zn × Z/n1Z× · · · × Z/nrZ

with ni ≥ 1. Thus, any finitely generated abelian group contains a finite number of copies
of Z, along with a torsion part which is the product of a finite number of cyclic groups of
finite order. Moreover, M is spanned by the set xi = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in the ith
position, then these elements span the module M .

Note that this aligns closely with the notions of spanning subsets of Rn from linear algebra.

Definition 1.6. Let {x1, . . .} be the generating set of an R-submodule of M . If {x1, . . .}
spans M and is linearly independent over R, we say that {x1, . . .} forms an R-module basis
of M .

If an R-module M admits a basis, the module is called a free module.
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Note that free modules need not be finitely generated, but there is a slight caveat: the
elements of a free module can only be formal linear combinations of the basis elements; that
is, all but finitely many elements in the generating set must have coefficient zero.

Example. The elements x1 = (1, 0) and x2 = (0, 1) form a Z-module basis of Z × Z. Thus,
Z× Z is free.

Example. The zero module M = 0 is a free module, with basis the empty set.

Nonexample. An arbitrary finitely generated abelian group M of the form given by the
Fundamental Theorem of finitely generated abelian groups, in general, does not always
admit a basis. In fact, M only admits a basis if it has zero torsion part. (A consequence
of Proposition 6.12.) As we will see later, the Tor functor is thus named because Tor1 can
extract information about the torsion part of an R-module, with R an integral domain.

2. Chain Complexes and Exact Sequences

Chain complexes are ubiquitous in homological algebra, since they are able to capture a
vast wealth of information about certain objects. In algebraic topology, these chain com-
plexes (as well as cochain complexes) are used to extract information about topological
spaces in the form of certain abelian groups. For our purposes, we will introduce these con-
cepts with chain complexes over R-modules, but these results are easily generalizable to any
abelian category.

Definition 2.1. Let (A•, d•) be a family of modulesAi and module homomorphisms di : Ai →
Ai−1 indexed by the integers. The module Ai called the degree i component of the family, and
the homomorphism di is called the boundary operator in degree i, or simply the ith boundary
operator.

Such a family (A•, d•) is a chain complex if di−1 ◦ di = 0 for all i. Sometimes, we may
refer to the complex simply as A•.

Alternatively, for the dual formulation (A•, d•) with di : Ai → Ai+1, (A•, d•) is a cochain
complex if di+1 ◦ di = 0 for all i. Ignoring indices, we can express this condition as d2 = 0.
Schematically, a chain complex can be displayed as follows.

· · · A0 A1 A2 · · ·d0 d1 d2 d3

Most of the following discussion will not concern itself with the difference between chains
and cochains, since that is simply a matter of distinguishing between increasing or decreasing
boundary operators.

The distinction becomes more important when definining homology or cohomology the-
ories, which will come later. The important defining property of complexes is the identity
d2 = 0. However, there is another equivalent formulation, shown below.

Remark 2.2. Let f : M → N and g : N → P be two module homomorphisms. The com-
position g ◦ f is the zero map if and only if im(f) ⊆ ker(g). Moreover, in the context of
(co)chain complexes, the composition of two boundary maps is zero if and only if the image
of the first is contained in the kernel of the next.

This statement is rather simple to prove, so we will not do it here. However, this new view
of the d2 = 0 condition motivates new questions. Given a certain chain complex, when is
the image of one boundary map equal to the kernel of the next? If they are not equal, how
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much do they “fail” to be equal? These are the central motivating questions behind our use
of homology.

Let us first recall some notation and definitions.

Definition 2.3. Let φ : M → N be an R-module homomorphism. Then, define the kernel,
image, and cokernel as follows.

(1) ker(φ) = {m ∈M | φ(m) = 0}
(2) im(φ) = {φ(m) ∈ N | m ∈M}
(3) coker(φ) = N/im(φ)

Recall that ker(φ) = {0} if and only if φ is an injective homomorphism. Moreover, φ is
surjective if and only if im(φ) = N ; that is, if coker(φ) = {0}. In this way, the kernel and
cokernel can be seen as duals. We will soon see that the kernel and cokernel play a special
role when examining sequences.

Definition 2.4. A complex (A•, d•) is said to be exact at Ai if im(di+1) = ker(di). The
complex is called an exact sequence if it is exact for all i.

Remark 2.5. Exact sequences are complexes, but complexes are not necessarily exact. This
“failure” of certain complexes to be exact is the central study of homology.

Exact sequences can lead to nice properties on the objects and boundary maps. First, let
us consider some simple cases where the sequence is finite and begins or ends with the zero
module.

Example. Given R-modules A, B, and C, the following are true. (Note that these need not
be R-modules, and can be objects of any abelian category.)

(1) 0 −→ A
α−→ B is exact if and only if α is injective.

(2) B
β−→ C −→ 0 is exact if and only if β is surjective.

(3) 0 −→ A
φ−→ B −→ 0 is exact if and only if φ is an isomorphism.

Proof. (1,⇒) Suppose the sequence is exact. Then, the image of the inclusion ι : 0 → A is
im(ι) = {0}, and thus by exactness, ker(α) = {0} and α is injective.

(1,⇐) Now suppose α is injective. Then, ker(α) = {0} and the image of the inclusion is
also trivially {0}. Thus they are equal and the sequence is exact.

The proof of (2) is similar to that of (1), and (1), (2) =⇒ (3) is trivial. �

Note that if we have two consecutive nonzero objects in a chain, mapping into/out of zero
on both sides, the two objects are necessarily isomorphic. Moreover, we get an interesting
outcome with three consecutive nonzero objects, interesting enough that we have a name for
it.

Definition 2.6. A short exact sequence is an exact sequence of the form

0 A B C 0α β

By the definition of exactness and the examples above, α is injective, β is surjective, and
im(α) = ker(β). It can be shown that β induces a natural quotient structure on C, since β
is surjective and therefore B/ker(β) ∼= im(β) ∼= C. Using exactness, we may rewrite this as
C ∼= B/im(α). Intuitively, we can see A as a partition of B, with the inclusion map α, then
a map β which induces a quotient structure on C.
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Conversely, if C ∼= B/A, there is a short exact sequence

0 A B C 0

where ↪→ shows an injective map, and � shows a surjective map.

Example. Given a sequence, we can often construct induced exact sequences based on the
objects and maps. For example, consider φ : M → N , with φ an R-module homomorphism.
Then, the following sequence is exact.

0 ker(φ) M N coker(φ) 0
φ

It follows that the case above, where 0 −→M
φ−→ N −→ 0 is exact, corresponds exactly to

when ker(φ) = coker(φ) = {0}.

Definition 2.7. A long exact sequence is an exact sequence containing more than three
(often infinitely many) nonzero terms, and can be written as follows.

· · · A1 A2 · · ·d0 d1 d2

These long exact sequences come up quite often and are rather useful. Interestingly, they
can also be seen as a sequence of short exact sequences.

Example. Let (A•, d•) be a long exact sequence, and let the boundary maps be increasing:
di : Ai → di+1. Define Ki = ker(di) = im(di−1). Then, the long exact sequence induces a
sequence of short exact sequences in the diagram below, where each diagonal is a short exact
sequence.

0 0 0 0

K1 K3

· · · A0 A1 A2 A3 · · ·

K0 K2 K4

0 0 0 0

d−1 d0 d1 d2 d3

Conversely, a sequence of short exact sequences can be combined into a long exact sequence
by taking their middle objects.

Another way of making a long exact sequence is given by the Snake Lemma.

Lemma 2.8 (Snake Lemma). Let the following diagram be a commutative diagram over the
category R-Mod (or in general some abelian category), such that the rows are exact.

A B C 0

0 A′ B′ C ′

f

α

g

β γ

f ′ g′

Then, there exists a long exact sequence of their kernels and cokernels with a map s : ker(γ)→
coker(α) (shown below in dark blue) such that the following diagram commutes, and the
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sequence in blue is exact. Moreover, the blue sequence along with the red arrow (equiv. the
green arrow) is exact if and only if f is injective (equiv. if g′ is surjective).

0 kerα ker β ker γ

A B C 0

0 A′ B′ C ′

cokerα coker β coker γ 0

f

α

g

β γ

f ′ g′

Proof. (Kate Gunzinger, It’s My Turn (1980), [Gun])1

Dr. Gunzinger: “Let me just show you how to construct the map s, which is the fun of the
lemma anyhow, okay? So you assume you have an element in ker(γ)—that is, an element
c ∈ C such that γ takes you to 0 in C ′. You pull it back to B by the map g, which is
surjective, with b ∈ B uniquely determined up to addition by an element in im(f). Alright?
So we pull it back to a fixed b ∈ B here, then you take β(b), which takes you to 0 in C ′ by the
commutivity of the diagram! It’s therefore in ker(g′), hence it’s in im(f ′) by the exactness
of the lower sequence, so we can pull it back to an element in A′—”

Cooperman: “No...no—it’s not well defined.”
Gunzinger: “which it turns out is well defined up to the elements of im(α). And thus

defines an element in coker(α), and that’s the snake!”
Author: “This is not part of the movie, but the red and green conditions are routine to

check, and come down to some diagram chasing.”
�

3. Homology

Earlier, we eluded to the fact that homology somehow measures how much certain objects
in a complex fail to be exact. In this section, we will formalize that notion.

Definition 3.1. Let (A•, d•) be a complex with descending boundary operators (di : Ai →
Ai−1). We define the R-submodule of n-cycles to be Zn(A•) = ker(dn) and the R-submodule
of n-boundaries to be Bn(A•) = im(dn+1).

Since this is a complex, we have Bn(A•) ⊆ Zn(A•) for all n. Therefore, we may describe
their quotient; this is precisely the homology.

Definition 3.2. Let (A•, d•) be a complex. Then, the nth homology module of the complex
is defined as the quotient R-module

Hn(A•) := Zn(A•)/Bn(A•) = ker(dn)/im(dn+1)

1The original idea to include this proof of the snake lemma is from [Cla].
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Remark 3.3. Note that if Zn = Bn, the homology module is zero. Thus, A• is an exact
sequence if and only if Hn(A•) = 0 for all n.2

We see that these homology modules can give us a measure of how close a certain complex
may come to being exact. Intuitively, this is similar to how a commutator subgroup can tell
us how close a certain group is to being abelian; if the commutator is zero, then every pair
of elements commutes and the group is abelian.

In fact, many (co)homology theories are based on the same idea of measuring the “failure
to be exact” of certain (co)chain complexes that have some sort of interpretation in the
theory.

For example, the nth simplicial homology group of some (triangularizable) topological
space X is a measure of how many n-dimensional “holes” are in the space. In this case,
exactness at An is interpreted as a topological space having no n-dimensional holes.

Another example is de Rham cohomology, which (roughly speaking) measures the extent to
which the fundamental theorem of calculus fails in higher dimensions. Again, here the notion
of exactness has another interpretation, related to the fundamental theorem of calculus.

In the remainder of this text, we will not concern ourselves with the geometric or topo-
logical side of homology, instead focusing on the information we can extract from complexes
using these quotient homology modules.

4. The Hom Functor

Recall that from basic category theory, the morphisms between objects A and B of a
category C live in the set HomC (A,B). If we fix A, then we get a (covariant) Hom functor,
HomC (A,−), and dually if we fix B, we get the contravariant Hom functor, HomC (−, B).
In general, we can define the Hom bifunctor HomC (−,−), which is contravariant in one
argument and covariant in the other, defined on a product category with HomC (−,−) : C op×
C → Set. However, in this text, we will only consider the (covariant/contravariant) Hom
functors, rather than the bifunctor.

Let us review the properties of the covariant Hom functor. Let us fix an R-module
M . Then, for any R-module N , the set of R-module homomorphisms from M to N ,
HomR(M,N), forms an R-module under pointwise operations. Moreover, given an R-module
homomorphism φ : N1 → N2, there is an inducedR-module homomorphism φ∗ : HomR(M,N1)→
HomR(M,N2) such that the following square commutes.

N1 N2

HomR(M,N1) HomR(M,N2)

φ

HomR(M ,−) HomR(M ,−)

φ∗

Specifically, a homomorphism α : M → N1 gets mapped to a homomorphism φ∗(α) = φ ◦ α.
Dually, the contravariant Hom fuctor will send an R-module homomorphism φ : M1 →M2

to a homomorphism in the opposite direction; that is, φ∗ : Hom(M2, N) → Hom(M1, N),
again given by composition: φ∗(α) = α ◦ φ.3

2This will become a recurring theme in our study of Tor and Ext, which themselves are defined as the
homology of certain sequences.

3Note that in the covariant case, the star is a subscript, and in the contravariant case, the star is in the
superscript. This general convention will be followed throughout this text.
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Now that we have seen the action of the Hom functor on R-modules and homomorphisms
between them, let us consider their action on exact sequences, and just how much of that
“exactness” is preserved.

Proposition 4.1. Let M,N be R-modules, and let

0 A B C 0α β

be a short exact sequence of R-modules. Then, we get an exact sequence through the covariant
Hom functor.

0 HomR(M,A) HomR(M,B) HomR(M,C)
α∗ β∗

We call such a functor a (covariant) left exact functor. Moreover, if we fix N and consider
the contravariant Hom functor, we again get an exact sequence with some arrows reversed.

0 HomR(C,N) HomR(B,N) HomR(A,N)
β∗ α∗

This functor is also said to be a (contravariant) left exact functor.

This proposition can be proved fairly easily, simply requiring us to check exactness at
HomR(M,B) (or HomR(B,N)), and injectivity of α∗ (or β∗).

Dual to the notion of a left exact functor is that of a right exact functor, which sends an
exact sequence 0 −→ A −→ B −→ C −→ 0 to F (A) −→ F (B) −→ F (C) −→ 0, for some
functor F . Of course, if a functor is both left and right exact, we say that it is an exact
functor.

5. Resolutions and Ext

In this section, we aim to introduce some different types of resolutions (free, projective,
and injective), and their relation to the Ext functor.

Let us begin with free resolutions, to introduce the concept of a resolution.

Definition 5.1. Let M be an R-module. If there is a complex (F•, d•) (with decreasing
boundary operators) such that the following sequence is exact, then the complex F• (with
indices n ≥ 0, and not including M) is said to be a resolution of M .

· · · F2 F1 F0 M 0
d3 d2 d1 ε

The homomorphism ε is called the augmentation map, and is defined as the projection
ε : F0 → coker(d1). Succinctly, we can denote a resolution as follows.

F• M 0ε

Furthermore, if all the R-modules Fi are free, then we say that F• is a free resolution of M .

Remark 5.2. Note that the resolution does not actually contain M , or for that matter the
map ε. (In fact, sometimes we may refer to ε = d0; the convention to use ε is to emphasize
that ε is not in the resolution.) However, we may recover M as the cokernel M = coker(d1).

This follows from exactness. Since F0
ε−→ M → 0 is exact, it follows that ε is surjective.

Therefore, M ∼= im(ε) ∼= F0/ker(ε) ∼= F0/im(d1) ∼= coker(d1).

Now, which kinds of modules admit free resolutions? As it turns out, all modules admit
free resolutions. Before we prove this, though, we must prove a quick lemma.



HOMOLOGICAL ALGEBRA 9

Lemma 5.3. Every module is a quotient of a free module.

Proof. We wish to show that any module M is the quotient of a free module F . Let X =
M \ {0} be the set of nonzero elements in M . Then, let F = 〈X〉 be the free module

generated by X. These structures induce two canonical maps: the inclusion X
ι
↪→ M and

the projection F
f
�M with

ι : x̃i 7→ xi

where x̃i denotes the (nonzero) element xi ∈ M restricted to X, and f the projection map
below.

f :
∑

rix̃i 7→
∑

rixi

Clearly, f is surjective, and thus its image is equal to M . Therefore, there is a natural
quotient

M ∼= F/ker(f)

and thus any module is the quotient of a free module. �

With this, we may prove the following proposition.

Proposition 5.4. Any module over any ring admits a free resolution.

Proof. By the above lemma, M may be written as the quotient of a free module F0 by the
kernel of the homomorphism ε : F0 →M ; that is, M ∼= F0/K0. Since the kernel K0 = ker(ε)
is itself an R-module, we can repeat the process to K0 and write it as the quotient of a free
module F1 by the kernel ker(π1).

Now consider the inclusion map ι1 : K0 → F0, and the induced composition map d1 =
ι1 ◦ π1 : F1 → F0. Since ι1 is injective, it follows that ker(d1) = {x ∈ F1 | ι1(π1(x)) = 0} =
{x ∈ F1 | π1(x) ∈ ker(ι1)} = {x ∈ F1 | π1(x) = 0} = ker(π1)}. We call this new module
K1 = ker(d1) = ker(π1).

From here, it follows that we can repeat this process inductively, resulting in the complex
shown below.

K1

· · · Fn Fn−1 · · · F1 F0 M 0

Kn−1 K0

ι2

dn

πn

d2

π2

d1

π1

ε

ιn ι1

In particular, we define Kn−1 as the kernel Kn−1 = ker(dn−1) (or ker(πn−1); they are equiv-
alent since the ι• are injective), then let Fn be the free module such that Fn/ker(πn) ∼=
Kn−1, with πn : Fn → Kn−1 the canonical quotient map, which is surjective. Then, define
ιn : Kn−1 → Fn−1 be the canonical inclusion map, which is injective.

Now notice that through this process, we have a “zigzag” of surjective and injective maps.

Recall that 0 −→ A
α−→ B is exact if and only if α is injective, and B

β−→ C −→ 0 is exact
if and only if β is surjective. Therefore, we may express the above complex as a sequence of
short exact sequences, as shown below. Thus, the entire sequence is exact and therefore M
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admits a free resolution.

0 0

K1

· · · Fn Fn−1 · · · F1 F0 M 0

Kn−1 K0

0 0 0 0

ι2

dn

πn

d2

π2

d1

π1

ε

ιn ι1

�

Now let us consider projective resolutions.

Definition 5.5. An R-module P is projective if for any surjection of R-modules π : Q′ � Q,
any homomorphism φ : P → Q induces a homomorphism φ′ : P → Q′ such that the diagram
below commutes.

P

Q′ Q

∀φ
∃φ′

π

It is worth mentioning that this is not a universal property; φ′ is not necessarily unique.

Example. A free module F satisfies the condition of being projective.

Proof. Suppose F is a free R-module with basis 〈x1, . . . , xm〉. Then, let π : Q′ � Q be a
surjection. For some arbitrary basis element xi, consider φ(xi) ∈ Q. Since π is surjective,
there exists at least one yi ∈ Q′ such that π(yi) = φ(xi). Now define φ′ : xi 7→ yi. Then,
π(φ′(xi)) = π(yi) = φ(xi), and thus π ◦ φ′ = φ and the diagram commutes.

Therefore, any free module is also projective. �

Now, recall our exact functors from earlier. Recall that the Hom functor (both variants)
is left exact, but not necessarily right exact. Of course, this begs the question: when is the
Hom functor right exact (and therefore exact)?

Theorem 5.6. An R-module P is projective if and only if the covariant functor HomR(P,−)
is exact.

Proof. We begin with the forward direction. Let P be a projective R-module. Of course, it
suffices to simply prove that HomR(P,−) is right exact given that it is left exact. Therefore,
it suffices to prove that given the exact sequence 0 −→ A −→ B −→ C −→ 0, the following
sequence is exact at HomR(P,C).

0 HomR(P,A) HomR(P,B) HomR(P,C) 0
α∗ β∗

Thus, it suffices to show that β∗ is surjective, or that HomR(P,−) preserves surjections.
Let π : A� B be a surjection onR-modules. Then, we want to show that π∗ : HomR(P,A)→

HomR(P,B) is also a surjection. Let φ : P → B be a homomorphism in HomR(P,B), giving
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us the diagram below. Then, since P is surjective, there exists some map φ′ : P → A such
that the diagram commutes.

P

A B

φ
φ′

π

In this situation, π∗(φ
′) = φ, and thus π∗ is a surjection.

Now, let us consider the other direction. Suppose HomR(P,−) is exact. Then, it preserves
surjections; π : A� B maps to a surjection π∗ : HomR(P,A) � HomR(P,B) via our functor.
Then, since π∗ is surjective, for every φ ∈ HomR(P,B), there exists another φ′ ∈ HomR(P,A)
such that φ = π∗(φ

′) = π ◦ φ′, which makes the same above diagram commute.
Thus P is projective if and only if HomR(P,−) is exact. �

Definition 5.7. Let M be an R-module, and P• a resolution of M :

P• M 0ε

If all the R-modules Pi are projective, then we say that P• is a projective resolution of M .

Proposition 5.8. Any module over any ring admits a projective resolution.

Proof. Given that any module over any ring admits a free resolution, and all free modules
are projective, this result follows immediately. �

As a quick side note, one can define the projective dimension of a module, denoted pd(M),
as the shortest length of any projective resolution of M , which turns out to have vast
connections to other notions of dimension in algebraic geometry. Unfortunately, though,
that is outside the scope of this paper.

Given that any module M admits a projective resolution, we can consider what happens
when we apply the Hom functor to our projective resolution.

Definition 5.9. Let M be an R-module, and let P• be a projective resolution of M .
Fix an R-module N , and consider the complex induced by the contravariant Hom functor

HomR(−, N).

0 HomR(P0, N) HomR(P1, N) · · ·
d∗1 d∗2

Then, define the homology groups ExtnR(M,N), for n ≥ 0, as follows.

ExtnR(M,N) := ker(d∗n+1)/im(d∗n)

Proposition 5.10. The homology groups ExtnR(M,N) are independent of the choice of pro-
jective resolution.

Proof. The proof requires some technical machinery (chain homotopies) that was not pre-
sented in this text, and thus will not be presented here. �

Example. Given R-modules M and N , Ext0R(M,N) ∼= HomR(M,N).

Now, there is an alternate way to present the Ext functor, using injective resolutions
instead of projective resolutions. We begin by discussing injective modules.
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Definition 5.11. An R-module I is injective if for any injection of R-modules ι : Q ↪→ Q′,
any homomorphism φ : Q → I induces a homomorphism φ′ : Q′ → I such that the diagram
below commutes.

I

Q Q′ι

∀φ
∃φ′

This is the dual notion of a projective module, so we expect many of the results true
of projective modules to be true of injective modules. Of course, we have a dual result to
Theorem 5.6 above, which shows that an R-module P is projective if and only if HomR(P,−)
is exact. The proofs of these results will be omitted from this text, as they are quite similar
to the proofs for the projective version.

Note however that although the proof for Proposition 5.13 does not follow from the fact
that all modules admit free resolutions (Proposition 5.4), the construction is similar, since
any module can be embedded into an injective module. (Just like how any module is the
quotient of a free module.)

Theorem 5.12. An R-module I is injective if and only if the contravariant functor HomR(−, I)
is exact.

Proposition 5.13. Any module over any ring admits an injective resolution.

One large motivating reason to define Ext in terms of projective modules (rather than free
modules), is that there is a natural dual.

Definition 5.14. Let N be an R-module, and I• a resolution of N :

0 N I•
ε

If all the R-modules Ii are injective, then we say that I• is an injective resolution of N .

Again, we can use the Hom functor to derive a second formulation of the Ext functor.

Definition 5.15. Let N be an R-module, and let I• be an injective resolution of N . Fix an
R-module M , and consider the complex induced by the covariant Hom functor HomR(M,−).

0 HomR(M, I0) HomR(M, I1) · · ·d0,∗ d1,∗

Then, define the homology groups ExtRn (M,N), for n ≥ 0, as follows. Note the difference
from the previous definition; this time, the n is in the subscript.

ExtRn (M,N) := ker(dn,∗)/im(dn−1,∗)

Moreover, these homology groups are independent of the choice of injective resolution.

Theorem 5.16. For any R-modules M and N , and any integer n ≥ 0, the two formulations
of Ext are equal:

ExtRn (M,N) = ExtnR(M,N)

Proof. The proof of this theorem is quite involved, and uses a fairly nasty diagram chase to
achieve its goals. For a proof, see pg. 42 of [CS]. �
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Now, at this point, a sensible reader might inquire: well, it’s quite neat that you can define
this homology using both projective and injective resolutions and get the same result, but
why is it called Ext? Glad you asked.

It turns out that the Ext functor gets its name from its relation to extensions of modules.

Definition 5.17. Let M and N be R-modules. Then, an extension of M by N is a short
exact sequence of modules

0 N E M 0

where two extensions are considered equivalent if the following diagram commutes.

0 N E M 0

0 N E ′ M 0

Moreover, define Ext(M,N) to be the equivalence class of extensions of M by N .

Remark 5.18. Note that the Five Lemma (which we have not (yet) presented in this text)
implies that the middle map is an isomorphism.

Proposition 5.19. For R-modules M and N , Ext(M,N) and Ext1R(M,N) are naturally
isomorphic.

Therefore, the first Ext module has some interpretation as the equivalence classes of
extensions of M by N . Now, a particularly inquisitive reader might now be wondering:
well, what about the other Ext functors?

Unfortunately, those are a little more difficult. But, we do have some nice results when
certain Ext groups are zero.

Proposition 5.20. Let M and N be R-modules. If M is projective or N is injective, then
for all n > 0,

ExtnR(M,N) = 0

In lieu of a formal proof, we will present some discussion to solidify the intuition behind
this proposition. We will explain the result for M projective, since the argument for when
N is injective is basically identical.

Recall that projective resolutions are exact by definition, and that HomR(M,−) is exact
if and only if M is projective. Then, if our initial module M is projective, it follows that the
Hom functor is exact and therefore gives us an exact sequence. Of course, by definition, the
homology groups of an exact sequence are all zero, so clearly the Ext functor is zero at each
object.

The converse of this is also true.

Proposition 5.21. Fix R-modules M and N .

(1) If Ext1R(M,N) = 0 for all N , then M is projective.
(2) If Ext1R(M,N) = 0 for all M , then N is injective.

Moreover, from Proposition 5.20, it follows that if Ext1R(M,N) = 0 for all M or all N , then
ExtiR(M,N) = 0 for all i > 0.
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Therefore, in some sense, we can see the Ext groups as measuring a sort of failure of M
to be projective, where if M is projective, the sequence induced by Hom on a projective
resolution is exact. Of course, we also have the dual case about whether N is injective.

In fact, in homological dimension theory, one can infer information about the homological
“dimension” of a module by considering the least n such that ExtiR = 0 for all i > n, and
equate that to notions of projective or injective dimension.

6. Tensor Products and Tor

In this section, we begin by introducing the tensor product, then discussing its properties
as a functor. Then, we will discuss the Tor functor, which is a sort of natural dual to the
Ext functor.

This construction of the tensor product of two modules is due to [CS], which does a good
job at making the tensor product intuitive.

Definition 6.1. Let M and N be two R-modules. Let T (M,N) denote the free module
indexed by elements in the product M ×N ; that is,

T (M,N) :=
⊕

(x,y)∈M×N

Rex,y

where ex,y is simply denoting the element in T (M,N) corresponding to the element (x, y) ∈
M × N . Of course, this is an absolutely enormous module! Now consider the relation ∼
such that the following are true for all x ∈M , y ∈ N , and r ∈ R:

ex+x′,y ∼ ex,y + ex′,y

ex,y+y′ ∼ ex,y + ex,y′

rex,y ∼ erx,y ∼ ex,ry

Then, the tensor product of M and N is the quotient of T (M,N) by the R-submodule
induced by the relation ∼:

M ⊗R N := T (M,N)/ ∼
Of course, this relation ensures that the tensor product is distributive and bilinear ; that is,
it is linear in both terms.

Moreover, the equivalence class of the element ex,y is denoted x ⊗ y, and is referred to
as a pure tensor. In general, a tensor z ∈ M ⊗R N is the finite linear combination of pure
tensors:

z =
n∑
i=1

xi ⊗ yi

with xi ∈M and yi ∈ N . Thus the pure tensors generate the tensors in M ⊗R N .

Just as Hom turns out to have functorial properties, the tensor product of modules over a
ring R can be seen as a bifunctor −⊗R−. Moreover, there is a notion of duality between Hom
and Tensor, which in turn motivates the dual notion of Ext but using the tensor product,
Tor.

Remark 6.2. In the language of abstract nonsense (otherwise known as category theory),
the relationship between Hom and Tensor can be described as a Tensor-Hom adjunction.
Specifically, Tensor is the left adjoint to Hom, and Hom is the right adjoint to Tensor.
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To take a mild detour further into the land of mathematical gibberish, the Hom functor
commutes with arbitary limits, and Tensor commutes with arbitrary colimits. However,
Hom does not (in general) commute with even finite colimits, and vice versa for Tensor.
This failure to preserve short exact sequences motivates the construction of Ext and Tor,
which measure the failure of these functors to preserve certain exact sequences (resolutions).

Coming back to the language we developed earlier in this text, we can show that the tensor
product is a right exact functor.

Lemma 6.3. Let f : M →M ′ and g : N → N ′ be two R-module homomorphisms. Then, we
have an induced R-module homomorphism

f ⊗ g : M ⊗R N →M ′ ⊗R N ′

which sends x⊗ y 7→ f(x)⊗ g(y).

Proposition 6.4. Let M,N be R-modules, and let

0 A B C 0α β

be a short exact sequence of R-modules. Then, the following induced sequences are also exact:

M ⊗R A M ⊗R B M ⊗R C 0
1⊗α 1⊗β

A⊗R N B ⊗R N C ⊗R N 0
α⊗1 β⊗1

In other words, M ⊗R − and −⊗R N are right exact covariant functors.
In fact, due to the commutativity of R, M ⊗RN = N ⊗RM , and thus these two construc-

tions are equivalent.4

Of course, now that we have seen that Tensor is right exact, this begs the question:
when is it exact? Well, thankfully, mathematicians came equipped to answer that question
with—you guessed it—another definition.

Definition 6.5. Let N be an R-module, and let the following sequence be exact.

0 A B C 0

Now consider the induced sequence under the functor −⊗R N .

0 A⊗R N B ⊗R N C ⊗R N 0

If the induced sequence is exact, we call N a flat module.

Proposition 6.6. Any projective module is flat.

The proof of this proposition requires a little more machinery in the realm of split se-
quences, so we do not prove it here. However, we now have a little more information
about different types of modules that we have encountered in this paper, namely, that
free =⇒ projective =⇒ flat.

Recall that by Proposition 5.20, we can specify when ExtiR(M,N) = 0 based on whether
M is projective (or N is injective). This time, the dual notion is extremely simple to show.
Let us define the dual notion to Ext, the homology groups Tor.

4In the remainder of this text, we shall use whatever convention that makes the most amusing word when
the object is read out loud (i.e., corn).
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Definition 6.7. Let K be a fixed R-module.5 For any R-module N , let P• be the projective
resolution of N :

P• N 0ε

Applying the tensor product −⊕R K, we get the complex

· · · P2 ⊗R K P1 ⊗R K P0 ⊗R K 0
d2⊗1 d1⊗1

Then, we can take the homology groups of our new complex P• ⊗R K; these are our Tor
groups.

TorRn (N,K) := Hn(P• ⊗R K) = ker(dn ⊗ 1)/im(dn+1 ⊗ 1)

Moreover, these Tor groups are independent of the choice of projective resolution.

Again, the proof that TorRn is independent of the choice of projective resolution requires
more machinery than we have developed.

Remark 6.8. Recall that since we are working over commutative rings R, M⊗RN = N⊗RM .
It follows that TorRn (M,N) ∼= TorRn (N,M).

Now, we can have an analogue of Proposition 5.20 for TorRn (N,M), involving flat modules.6

Proposition 6.9. Let M be an R-module. The following statements are equivalent. More-
over, due to the symmetry of Tor, we may make the same statements for N .

(1) M is flat.
(2) TorR1 (N,M) = 0 for all R-modules N .
(3) TorRn (N,M) = 0 for all R-modules N and n > 0.

So, we can see that Tor measures the failure of a module to be flat, just like how
ExtRn (M,N) measure the failure of M to be projective (or N injective). At this point,
you must be wondering if there’s a nice and clean intuitive view of Tor1, just like with Ext1.
Well, you’d be in luck!

Definition 6.10. Let R be an integral domain, and let M be an R-module. The torsion
submodule7 of M , denoted MT , is the following R-submodule.

MT = {m ∈M | ∃r ∈ R \ {0} such that rm = 0}
The module M is said to be torsion-free if MT = 0, or M is a torsion module if MT = M .

This is a generalization of the torsion subgroup of an abelian group, which is the subgroup
of elements of finite order.8

The following theorem will give us some intuition for Tor1.

Theorem 6.11. Let R be an integral domain with field of fractions K, and let M be an
R-module. Then, TorR1 (K/R,M) is isomorphic to MT .

Proposition 6.12. A flat module over an integral domain is torsion-free.

Proof. Let M be a flat R-module, with R an integral domain. Then, TorR1 (N,M) = 0 for all
R-modules N . Since K/R is an R-module, with K the field of fractions of R, it follows that
TorR1 (K/R,M) = 0. But, by the previous theorem, MT = 0 and thus M is torsion-free. �

5For no particular reason, of course.
6We now return to normal notation.
7This is where “Tor” comes from.
8In fact, this definition coincides with that from abelian groups when we consider R = Z.
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