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ABSTRACT

In this paper, we talk about the Inverse Galois problem, which as the title suggests, is essentially
the "opposite" of Galois theory, though significantly harder. We start the paper by exploring a few
examples of basic groups, such as Z/nZ, that can be realized as Galois groups. In particular, we will
see that all abelian groups are Galois groups over Q. The next section will explore Hilbertian fields,
which allow us to realize Galois groups over Q.
Then, we move on to the Inverse Galois problem over C(x), devoting a large part of the paper to
studying the beautiful yet deep connection between fundamental groups, Deck groups, and Galois
groups over fields of meromorphic functions on Riemann surfaces. As a culminating result, we
show that any finite group can be realized as a Galois group over C(x)! Finally, we also introduce
Riemann’s Existence Theorem along with some of the rigidity methods that are central to the study
of the Inverse Galois Problem.

Keywords Inverse Galois Theory · Hilbertian Fields · Fundamental Groups · Deck Groups · Riemann Surfaces

1 Introduction to the Inverse Galois Problem

In order to prove that there was no general solution for polynomials of degree 5, Evariste Galois first introduced the
idea of the Galois group. If we consider a field extension E/F , then degree is the dimension of E as a vector space
over F . We also can define the automorphism group to be the group of automorphisms of E that fix F . However, if F
is to be the fixed field of all the automorphisms in Aut(E/F ), then two properties must be satisfied. First, the field
extension must be normal, meaning that if a polynomial f(x) ∈ F [x] has a root in E then all of its roots are in E.
Second it must be separable, meaning that every x ∈ E has a separable minimal polynomial over F (i.e. with distinct
roots). If E/F is a Galois extension then we denote Aut(E/F ) by Gal(E/F ). Evidently, we know how to determine
whether a field extension is Galois, but we may naturally be inclined to ask ourselves the Inverse Galois Problem: what
groups can be represented as a Galois group. Even more specifically, what groups can be realized as Galois groups over
Q. This question is much, much harder.

Throughout this paper, we assume knowledge of ordinary Galois theory, algebraic topology, as well as basic Riemann
surface theory. The reader is encouraged to see the references at the end of the paper for further reading.

2 Some Motivating Examples

Recall that Galois theory first arose as a method to study the permuting action of field automorphisms that fixed a
certain base field. Naturally, it’s very interesting that the resulting set of automorphisms has a group structure. Let us
investigate some basic examples of this:
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1. Any quadratic extension of Q can be obtained by adjoining a square root to obtain a field extension of the
form Q(

√
n), for some squarefree integer n. Evidently, there are two automorphisms of Q(

√
n) that remained

fixed on Q: the identity and σ :
√
n 7→ −

√
n. Therefore, Gal(Q(

√
n)/Q) ∼= Z/2Z.

2. In general, we may realize the multiplicative group (Z/nZ)∗ by adjoining a primitive nth root of unity to Q.
In particular, for primes p, we see that we may realize the group Z/pZ.

3. Owing to the permuting action of a Galois group, it may naturally be embedded into the symmetric group
Sn. However, one may wonder when Sn is actually realizable. As a simple example, one may verify that
Gal(Q( 3

√
2, ω)/Q) ∼= S3, where ω is a primitive cube root of unity; this follows from the fact that Q( 3

√
2, ω)

is a splitting field for the polynomial x3 − 2 ∈ Q[x] over Q. The Galois group has order 6 and is nonabelian -
in other words, it’s isomorphic to S3.

4. In general, Sn is in fact realizable as a Galois group over the function field C(x) (as we will see, it turns out
ALL groups are realizable as Galois groups over C(x)!); the irreducible polynomial f(x, y) = yn+1−1

y−1 − x =

yn + yn−1 + · · ·+ 1−x ∈ C(x, y) produces a field extension with Galois group Sn. However, the reasoning -
as we will see later - relies on the mysterious yet beautiful connection between Galois groups and fundamental
groups in algebraic topology.

Now, we can prove a minor result pertaining to the Inverse Galois Problem: all finite abelian groups are realizable as
some Galois group. To do this, we first establish the following lemma.

Lemma 2.1 (Special Case of Dirichlet’s Theorem on Primes in an Arithmetic Progression). For any integer m there
are an infinite number of primes p so that p ≡ 1 (mod m).

Proof. Suppose, for the sake of contradiction, that p1, p2, . . . , pk are all such primes. Let m = np1p2 · · · pk. Since
Φm(x) ∈ Z[x] is monic, then limx→∞ Φm(mx) approaches infinity. Hence there exists an t so that Φm(mt) ≥ 2.
Let p be a prime factor of Φm(mt). Then we can see that p | Φm(mk) | (mk)m − 1. Thus (mk)m ≡ 1 (mod p). We
claim that the order of mk is m in the group F×p . Suppose that the order was r < m. Then

xm − 1 =
∏
d|m

Φd(x) = Φm(x)
∏

d < mΦd(x)

= Φm(x)

∏
d|r

Φd(x)

h(x)

= Φm(x)(xr − 1)h(x)

Since p | (mk)m − 1, p - mk =⇒ gcd(p, n) = 1 and p 6= pi for 1 ≤ i ≤ k. Moreover, Φm(mk) ≡ 0 (mod p) so
p ≡ 1 (mod n) which is a contradiction. Thus there are an infinite number of primes that are 1 (mod n). �

Theorem 2.2 (Inverse Galois Problem for Finite Abelian Groups). If G is a finite abelian group, then there is a Galois
extension K/Q with Gal(K/Q) ∼= G

Proof. We first consider Q[ζn], where ζn = e2πi/n. We know that Q[ζn] is Galois over Q with Gal(Q[ζn]/Q) being
given by ζn 7→ ζan for 1 ≤ a ≤ n and gcd(a, n) = 1. Since there are exactly n elements that follow the structure of
(Z/nZ)×, we have that Gal(Q[ζn]/Q) ∼= (Z/nZ)×.
Note that since Gal(Q[ζn]/Q) is abelian, any subgroup is automatically normal. By the Galois correspondence, any
intermediate field K is also normal. If we write K = Q[ζn]H , then Gal(K/Q) = Gal(Q[ζn]/Q)/H .

Now, we have to use Lemma 2.1. We can write G as a direct product of cyclic groups G ∼= (Z/a1Z)× (Z/a2Z)×· · ·×
(Z/arZ) where ai are prime powers. We can find a prime pi ≡ 1 (mod ai) fore each i. Thus (Z/piZ) ∼= Z/(pi− 1)Z
and so Z/aiZ is isomorphic to a quotient of (Z/piZ). This quotient corresponds to some field Ki as we established
previously. This completes the proof as we may simply let K = K1K2 . . .Kr be the compositum of these fields, and
this is our desired extension of Q. �

3 Hilbert’s Irreducibility Theorem

Before we define Hilbertian Fields we first need to establish some background about regular fields.

2
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Lemma 3.1. Given a finite Galois extension (an FG-extension) k′/k and x = (x1, x2, . . . xm) then k′[x]/k[x] is an
FG-extension and Gal(k′[x]/k[x]) ∼= Gal(k′/k).

Proof. Extend the action of G on k′ to k′[x] by g ∈ G then g(xi) = xi for i = 1, 2, . . . ,m. It is clear that G fixes k[x]
and thus k′[x]/k[x] is a FG-extension with Galois group G. �

We can then use the Galois correspondence to conclude that for any intermediate field k′′[x], then [k′′[x] : k[x]] = [k′′ :
k].
Now we define the regular field extension as
Definition 3.2. L is said to be regular over k if k is algebraically closed in L. Say L/k is regular.

This leads us into a lemma that allows us to simplify this definition.
Lemma 3.3. Let k̄ be an algebraic closure of k. If f(x, y) ∈ k[x][y] is an irreducible polynomial over k[x], and if
K = k[x][y]/(f) is the corresponding field extension of k[x], then K is regular over k if and only if f is irreducible
over k̄[x].

Proof. Let L be the algebraic closure of k in K so K is regular over k if and only if L = k. Let f be an irreducible
polynomial over k[x] and let α be a root of f . Then we have a homomorphism ϕ : k[x][y] → k[x](α) which sends
h(y) 7→ h(α) where k[x](α) ∼= k[x][y]/ ker(ϕ) = k[x][y]/(f) = K.
Then α satisfies a polynomial F ∈ L[x][y] of degree [K : L[x]] and F | f . Then by the tower law
[K : L[x]] = [K:k[x]]

[L[x]:k[x]] ≤ [K : k[x]]. Thus deg(F ) ≤ deg(f).
Therefore if L = k then f is not irreducible over L[x][y] since it is divisible by F and thus it is not irreducible over
k̄[x][y].

Now to prove the other direction, we assume that K is regular over k. Then L = k. Now let k′ be an FG-
extension of k and define K ′ to be the compositum of K and k′[x] in an algebraic closure of k[x]. Then by Lemma 3.1,
k′[x]/k[x] is an FG-extension. Note that K ∩ k′[x] is of the form k′′[x] where k′′ is an intermediate field.
Since k′′ ⊂ L = k then we get that k′′ = k so K ∩ k′[x] = k[x]. Since k′[x]/k[x] is Galois, it follows that
[K ′ : k′[x]] = [K : k[x]]. Thus f is irreducible over k̄[x]. �

Now we can define a hilbertian field.
Definition 3.4. A field k is called hilbertian if for each irreducible polynomial f(x, y) ∈ k[x, y] with deg(f) ≥ 1
there are infinitely many b ∈ k such that f(b, y) ∈ k[y] is irreducible. The polynomial fb(y) = f(b, y) is called a
specialization.

A key property of hilbertian fields that will not be proven in this paper is:
Proposition 3.5. For any p1(x, y), . . . pt(x, y) ∈ k[x][y] that are irreducible and of degree greater than 1 when
viewed as a polynomial in y over k[x], there are infinitely many b ∈ k such that none of the specialized polynomials
p1(b, y), . . . pt(b, y) has a root in k.

Another lemma we need before we establish Hilbert’s Irreduciblity theorem is:
Lemma 3.6. Let α be algebraic over a field K. If f(x) =

∑n
i=0 aix

i is a polyomial over K of degree n > 0 with
f(α) = 0, then g(y) = yn +

∑n−1
i=0 aia

n−i−1
n yi is a monic polynomial of degree n where g(anα) = 0. This implies

that K[α] = K[anα].

Proof. Just plug in y = anα. Then

g(anα) = an−1n

(
n∑
i=0

aiα
i

)
= 0

�

Thus we can conclude that if f(x, y) ∈ K[x, y] is a separable polynomial in y over K[y]. Then we may assume that
f is monic in y. Its discriminant is of the form D(x) ∈ K[x] and is nonzero because f is separable in y. For each
b ∈ K, the polynomial f(b, y) ∈ K[y] has a discriminant D(b). Thus f(b, y) is separable for all b ∈ L that do not
make D(b) = 0.
Now we have to introduce the notion of a sparse set.

3
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Definition 3.7. Let M ⊂ N. We say M is sparse if there is a real number κ with 0 < κ < 1 such that

|M ∩ 1, 2, . . . , N | ≤ Nκ

for all but finitely many N .

We can see that a finite set is sparse and all finite unions of sparse sets are still sparse. Now we can introduce a key
theorem about these sparse sets.
Theorem 3.8. Let i0 ∈ Z and let φ(t) =

∑∞
i=i0

ait
i be a Laurent series with complex coefficients, converging for all

t 6= 0 in a neighborhood of 0 in C. Let B(φ) be the set of all b ∈ N for which φ(1/b) is an integer. Then B(φ) is a
sparse set unless φ is a Laurent polynomial meaning that all but a finite number of the ai’s vanish.

Before we jump into the proof of this theorem we have to establish a lemma concerning the Vandermonde determinant.
Lemma 3.9. Let s0 < s1 < · · · < sm be real numbers with m ≥ 1. Let χ(s) be a real-valued function defined for
s0 ≤ s ≤ sm. It is also m times continuously differentiable. Let Vm be the Vandermonde determinant defined as

Vm =

∣∣∣∣∣∣∣
1 s0 s20 · · · sm0
...

...
... · · ·

...
1 sm s2m · · · smm

∣∣∣∣∣∣∣ =
∏
i>j

(si − sj)

Then there exists a number σ with s0 < σ < sm such that

χ(m)(σ)

m!
=

1

Vm

∣∣∣∣∣∣∣
1 s0 · · · sm−10 χ(s0)
...

... · · ·
...

...
1 sm · · · sm−1m χ(sm)

∣∣∣∣∣∣∣
Proof. Let F (s) be the function

F (s) =

∣∣∣∣∣∣∣∣∣
1 s0 · · · sm−10 χ(s0)
...

... · · ·
...

...
1 sm−1 · · · sm−1m−1 χ(sm−1)
1 s · · · sm−1 χ(s)

∣∣∣∣∣∣∣∣∣
and set c = F (sm)

(sm−s0)(sm−s1)...(sm−sm−1)
. Finally we can define G(s) = F (s)− c(s− s0)(s− s1) . . . (s− sm−1). The

function G(s) vanishes at the points s = s0, s1, . . . sm. Hence G(m)(s) vanishes at least at one point σ between s0 and
sm. Since G(m)(s) = F (m)(s)−m!c we get F (m)(σ) = m!c.
Now if we expand F (s) we get

m−1∑
i=0

cis
i + Vm−1χ(s)

where the ci are constants that depend on s0, s1, . . . sm and Vm−1 is the Vandermonde determinant of s0, s1, . . . sm−1.
Thus we get F (m)(σ) = Vm−1χ

(m)(σ). Comparing the two expressions for F (m)(σ), we get:

χ(m)(σ)

m!
=

c

Vm−1
=

F (sm)

(sm − s0) · · · (sm − sm−1)Vm−1
=
F (sm)

Vm

This proves the lemma since σ satisfies the requirements in the lemma. �

Now we can go on to the proof of Theorem 3.8

Proof. First we have to prove that all of the ai’s are real. To do this we must notice that the series φ̄ =
∑∞
i=i0

āit
i

has the same radius of convergence as φ. We also have that φ̄(1/b) = φ(1/b) for b ∈ B(φ). Since B(φ) is infinite, it
follows that φ̄ = φ which proves this claim.
From this claim we also see that the function χ(s) = φ(1/s) is a real-valued function that is defined for large values of s.
We claim that there is a λ > 0 and m,S ∈ N such that whenever s0, s1, . . . sm ∈ Z with χ(s0), χ(s1), . . . χ(sm) ∈ Z
and S < s0 < s1, · · · sm then sm − s0 ≥ sλ0 . To prove this claim, we must note that for sufficiently large m, the series
χ(m)(s) =

∑∞
i=µ dis

−1 has only terms with negative powers of s. Here the di’s are real numbers and since φ is not a

4
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Laurent polynomial, dµ 6= 0. Thus sµχ(m)(s) tends towards dµ as s goes to infinity. Thus there is an S > 0 so that

0 < |sµχ(m)(s)| < |2dµ| for s ≥ S. Now we can apply Lemma 3.9 to choose a σ. Then Vm(χ(m)(σ)
m! is a nonzero

integer and thus has an absolute value which is greater than or equal to 1. Thus. Vm ≥ 1
χ(m)(σ)

and so

(sm − s0)(m+1)(m+2)/2 ≥ Vm ≥
1

χ(m)(σ)
≥ σµ

|2dµ|
≥ sµ0
|2dµ|

This gives us sm − s0 ≥ σµ

|2dµ|

)2/((m+1)(m+2))

so any λ ≥ 2µ/((m+ 1)(m+ 2)) satisfies this claim.
The third claim we need to complete this proof is that if b1 < b2 < · · · is an infinite sequence of positive integers
with bi+1 − bi ≥ bλi for some λ > 0. Then the set B = {b1, b2, . . . } is sparse. To see this we say that for each
positive integer N , we let N ′ be the number of b ∈ B with

√
N < b ≤ N . Then (N ′ − 1)(

√
N)λ ≤ N and hence

N ′ − 1 ≤ N1−λ2 . Thus |B ∩ 1, 2, . . . , N | is bounded by
√
N +N ′ ≤

√
N +N1−λ2 so B is sparse.

These claims help us prove the assertion that B(φ) is sparse. Since B(φ) consists of all integers b where χ(b) = φ(1/b)
is an integer, we can delete all integers less than or equal to S from B(φ) where S is defined in the same way as it in
the second claim. Then the remaining set can be written as the union of m subsets of B each of which satisfies the
condition for the third claim. Thus each of those sets are sparse and since a finite union of sparse sets is sparse, we are
done. �

Now we have to shift our focus to discuss the following theorem.
Theorem 3.10. Let f(x, y) ∈ C[x, y] be of degree n ≥ 1 in y. Let c0 ∈ C be such that f(c0, y) ∈ C[y] is separable of
degree n. Then there exist holomorphic functions ψ1, ψ2, . . . ψn defined in a neighborhood U of c0 such that for each
c ∈ U , the polynomial f(c, y) has the distinct roots ψ1(c), ψ2(c), . . . , ψn(c).

While there are many proofs of this theorem, we will focus on an algebraic approach that requires less high-powered
machinery.

Proof. It suffcies to show that for each root γ of f(c0, y) there is a holomorphic function ψ defined around c0 with
ψ(c0) = γ and f(c, ψ(c)) = 0 for all c close to c0. As long as c is close enough to c0, the values of these n ψ functions
will be distinct and thus comprise of all roots of f(c, y).
Replacing x by x − c0 and y by y − γ will result in the same problem so we may assume that c0 = γ = 0. Thus
we have to find a holomorphic function ψ with ψ(0) = 0 and f(t, ψ(t)) = 0 for all t sufficiently close to 0. If
we consider the Taylor expansion of ψ we get ψ(t) =

∑∞
i=1 ait

i around 0. Since f(0, 0) = 0 we can say that
f(x, y) = ax+ by + some higher order terms. Then b = (∂f/∂y)(0, 0) 6= 0. Since we can just divide by b, we may
assume that b = 1. Then if we define g(x, y) = y − f(x, y) so that g has no constant y term. Now the condition that
f(t, ψ(t)) = 0 is equivalent to

ψ(t) = g(t, ψ(t)) (3.1)

So now we can compute the coefficients ai of ψ recursively, if we develop the right-hand side of 3.1 into a power series
around 0. Indeed the ti-th coefficient on the right hand side involves only aj where j < i and the coefficients of g. After
completing the recursion ai appears as a polynomial with non-negative integer coefficients comprised of coefficients of
g. Note that only for the coefficients of g, only the xrys with r + s ≤ i occur. The coefficients ai yield the unique
power series ψ(t) =

∑∞
i=1 ait

i that solves Equation 3.1. It remains to see that this power series has a positive radius of
convergence. Let C be a positive constant bounding the absolutely value of the coefficients of g. Consider the function

h(t, u) = C

(
−1− u+

1

(1− t)(1− u)

)
Solving the quadratic equation u = h(t, u) for u in terms of t, we get that

Ψ(t) =
1

2(C + 1)

(
1−

√
1− t(1 + (1 + 2C)2) + t2(1 + (1 + 2C)2)

1− t

)
is the unique holomorphic function defined around 0 with Ψ(0) = 0 and Ψ(t) = h(t,Ψ(t)). Here we say that

√
(1) = 1.

The geometric series formula yields that

h(t, u) = C(t+ t2 + tu+ u2 + · · · ) = C

(
−1− u+

∞∑
r,s=0

trus

)

5
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for |t| < 1, |u| < 1. From this and the equation Ψ(t) = h(t,Ψ(t)), we see that the Taylor coefficients bi of Ψ are
obtained using the same polynomials as we did for the ai’s now applied to the coefficients of h which are all equal to
C. Since C bounds the absolute value of the coefficients of g, it follows that |ai| ≤ bi for all i. But the Taylor series∑∞
i=0 bit

i of Ψ has a positive radius of convergence and hence the same holds for ψ(t) =
∑∞
i=0 ait

i which proves the
theorem. �

The last lemma we need before we go into the proof of Hilbert’s Irreducibility theorem is this one:
Lemma 3.11. Let p(x, y) ∈ Q[x][y] be irreducible over Q[x] and of degree r > 1 in y. Then for x0 ∈ Z we let
B(p, x0) be the set of all b ∈ N such that p(x0 + 1

b , c) = 0 for some c ∈ Q. Then for all but finitely many x0 ∈ Z,
B(p, x0) is sparse.

Proof. Note that since p is irreducible and thus separable over Q[x], p(x0, y) is separable for all but finitely many
x0 ∈ Z by Lemma 3.6. Thus we will only consider those x0’s to prove this lemma. We also may assume that
p(x, y) ∈ Z[x, y]. Write p(x, y) =

∑r
i=0 pi(x)yi with pi(x) ∈ Z[x]. For suitably large R the expression

xRp

(
x0 +

1

x
, y

)
=

r∑
i=0

xRpi

(
x0 +

1

x

)
yi

is an element of Z[x, y]. Let p′i(x) = xRpi
(
x0 + 1

x

)
. Then p′r(x) is a nonzero element of Z. Using Lemma 3.6, we get

that the polynomial

q(x, z) = zr +

r−1∑
i=0

p′i(x)p′r(x)r−i−1zi

is an element of Z[x, z] and is monic. Suppose then that p(x0 + 1
b , c) = 0 for c ∈ Q, b ∈ ZZ. Then q(b, p′r(b)c) = 0

and since q(b, z) is a monic polynomial in Z[z], it follows that p′r(b)c is integral over Z. Thus p′r(b)c ∈ Z since it lies
in Q.
Now if additionally, |1/b| = ε, then c = ψi(1/b) for i = 1, 2, . . . , r which we know exist by Theorem 3.10. Thus
h(b)ψi(1/b) = h(b)c ∈ Z. Set φi(t) = h(t−1)ψi(t) for 0 < |t| < ε, i = 1, 2, . . . , r. The above shows that if
b ∈ B(p, x0) and 1/b < ε then φi(1/b) = h(b)ψi(1/b) ∈ Z for some i = 1, . . . , r. Thus, up to a finite set, B(p, x0)
lies in the union of the sets B(φi). By Theorem 3.8, the set B(φi) is sparse if φi is not a rational function.
However, if φi is rational then, then we can show that B(φi) is finite. Then p(x0 + t, φi(t)) is identically zero. Thus
p(x0 + x, φi(x)) = 0 in C[x] if x is a transcendental element over C. Then φi(x) is algebraic over Q[x] and hence it is
also algebraic over Q̄[x]. But we also note that since Q̄[x] is algebraically closed over C[x] (which we can show by
Lemma 3.3), it follows that φi(x) ∈ Q̄[x]. For each β ∈ Gal(Q̄/Q), we can consider the rational function φβ obtained
by applying β to all of the coefficients of φi. Then φβ(q) = φi(q) for all q ∈ Q with φi(q) ∈ Q. If there are infinitely
many such q, it follows that φβ = φi for all β and hence φ has rational coefficients. Then φ(x− x0) ∈ Q[x] is a zero
of p(x, y) over Q[x]. This contradicts the fact that p is irreducible over Q[x] and thus B(φi) is finite.
Finally, since B(p, x0) is a union of B(φi) which are all sparse, then B(p, x0) is also sparse which proves the
lemma. �

Thus now we have all of the tools we need to prove Hilbert’s Irreducibility Theorem.
Theorem 3.12. The field Q is hilbertian.

Proof. Given polynomials pi(x, y) ∈ Q[x][y] as in the hypothesis of proposition 3.5, we can choose x0 ∈ Z that
satisfies Lemma 3.11 for all pi. Let C be the set of b ∈ N such that none of the specialized polynomials pi(x0 + 1

b , y)
has a root in Q. Set B = N C. Then B is the union of B(pi, x0) which are all sparse by Lemma 3.11. Thus B is sparse
meaning that its complement C is infinite which gives us the infinite b’s to satisfy the defintion of a hilbertian field.
Thus Q is hilbertian. �

This theorem, alongside Riemann’s existence theorem, is critical to establishing the concept of rigidity and its
application to the Inverse Galois Problem. Specifically, we will use Hilbert’s Irreducibility Theorem to establish the
General Rigidity Criterion.

We finish this section by using Hilbert’s Irreducibility Theorem to prove that the symmetric group Sn is real-
izable over Q.
To do this we will prove that Sn is realizable over any hilbertian field k. Consider the polynomial
f(y) ∈ k[x1, x2, . . . xn][y] defined by f(y) = yn + x1y

n−1 + · · · + xn and let a1, a2, . . . an be the roots of

6
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f(y). Then Sn acts naturally on the roots where if σ ∈ Sn, then σ : (a1, a2, . . . an) 7→ (aσ(1), . . . , aσ(n). This actions
extends to an automorphism τ : k[a1, a2, . . . an] → k[a1, a2, . . . an]. In this way we have constructed an action on
k[a1, a2, . . . an]. Consider a fixed field F of this action in k[a1, a2, . . . an]. Then F contains k[x1, x2, . . . xn] and
further , k(a1, a2, . . . an) : F ] = |Sn| = n!. But since a1, a2, . . . an are the roots of a polynomial of degree n over
k[x1, x2, . . . xn] it follows that [k[a1, a2, . . . an] : k[x1, x2, . . . xn]] ≤ n!. Thus, F = k[x1, x2, . . . xn] so we can apply
Artin’s Thoerem which states that if G is a finite group of automorphisms on a field E and the fixed field of E is K
then E/K is a finite Galois extension with Gal(E/K) = G. This tells us that

Gal(k[a1, a2, . . . an]/k[x1, x2, . . . xn]) = Sn

which shows that Sn occurs regularly over k. Thus if k is Hilbertian then Sn is realizable as a Galois group over k and
hence over Q.

4 A Beautiful Connection to Algebraic Topology

When first confronted with the Inverse Galois Problem, one may consider trying to analyze certain groups and how they
can be realized as Galois groups. Perhaps, we could look at some naturally occurring groups, and then see if we can
somehow establish a connection with Galois theory...

That’s exactly what happens in algebraic topology! Recall that for a path-connected space X , the fundamental group
π1(X,x) with respect to a base point x ∈ X is the set of all homotopy classes of loops in X originating at x. It turns
out that fundamental groups bear a strong resemblance to Galois groups.

Before we do that, we first briefly review covering spaces. For our purposes, we’ll assume that all topological spaces
that we introduce are path-connected and omit certain proofs in this section.

Definition 4.1. Let X ′ and X be two topological spaces. We say that X ′ is a covering space of X if there exists a map
f : X ′ → X such that f is a continuous surjective map, and for any open neighborhood U ⊂ X , f−1(U) is a union of
(finitely or countably many) disjoint neighborhoods U1, U2, · · · such that for each Ui, f |Ui is a homeomorphism onto
U .

Suppose for a given point x ∈ X , its preimage under the covering map is {y1, y2, ...}. Evidently, we may project any
curve in X ′ down to a curve in X . However, given any curve C in X that originates at x ∈ X , we may lift C to a
unique curve C ′ in X ′ that originates at some yi. Indeed, for the part of C within some neighborhood of x, we have an
isomorphic copy of this curve within the corresponding neighborhood of yi. Then, we can construct a neighborhood
around some x1 which encompasses the next part of the curve, and see that this uniquely determines the next part of
the curve C ′ in the preimage. Continuing in this manner, we may just "glue" all these open neighborhoods together to
obtain a unique curve C ′ in X ′ starting at yi and that is a lift of C. Moreover, we can say the following:

Proposition 4.2. If two curves C1 and C2 in X are homotopic, then any lifts of C1 and C2 in X ′ beginning at the same
point are also homotopic.

Corollary 4.3. The covering map f : X ′ → X induces the inclusion homomorphism

f∗ : π1(X ′, y)→ π1(X,x)

where y is any one of the points in the preimage of x under f .

Proof. Indeed, if some curve f∗(γ′) = 1 (where 1 represents the identity loop), then for any representative C ′ of the
class γ′, f(C ′) = C is null-homotopic. Thus, by our proposition, any lift of C is also null-homotopic, i.e., γ′ = 1.
Since kernel of f∗ is trivial, the map is injective. �

Now, something interesting is going on here. Suppose we have a point x ∈ X and y1, y2, ... in X ′. Then, clearly
x = f(y1) = f(y2) = ... and each curve originating at x has unique lifts originating at the yi’s. We call such lifts
conjugate.

Definition 4.4. Let C ′ be a curve in X ′. Then the number of curves conjugate to C ′ in X ′, if finite, is called the degree
of the covering, deg(f). Moreover, the covering f : X ′ → X is called a Galois covering if every conjugate of a loop in
X ′ is again a loop.

Definition 4.5. A homeomorphism σ from X ′ to itself is said to be a covering transformation if f(σ(y)) = f(y) for
all y ∈ X ′. One can see that the set of all covering transformations of X ′ over X form a group, which is called the

covering transformation group (or the Deck group), denoted by Γ(X ′
f−→ X).
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Proposition 4.6. The action of a covering transformation σ ∈ Γ(X ′
f−→ X) is completely determined by its action on

a single point of X ′.

Proof. Indeed, suppose σ(P1) = P2 for some P1, P2 ∈ X ′. Then, take an arbitrary point Q ∈ X ′. Then, let C1 be
a curve from P1 to Q. This implies that under σ, C1 is taken to a unique curve C2 that originates at P2. This means
the endpoint of C2 is uniquely determined, and since Q was arbitrary, we see that the action of σ on P1 completely
determines the covering transformation. �

This allows us to formulate the following result:
Theorem 4.7. Suppose f : X ′ → X is Galois. Let P1 be a point in X ′ and let {P1, P2, ...} be the set of points
conjugate to P1. Then,

Γ(X ′
f−→ X) = {σ(P1 7→ P1), σ(P1 7→ P2), ...}

where σ(P1 7→ Pi) denotes the unique covering transformation that sends P1 to Pi.

In particular, a Galois covering is transitive. Also, if P1 has finitely many conjugates, then the order of the Deck group
is just deg(f). Now, we come to the crucial theorem connecting the fundamental group with the Deck group:
Theorem 4.8. If f : X ′ → X is a Galois covering, then f∗(π1(X ′, x′)) is a normal subgroup of π1(X,x), which gives
us the group isomorphism

π1(X,x)/f∗(π1(X ′, x′)) ∼= Γ(X ′
f−→ X).

In particular, if we take the universal covering space X̃ of X (which is simply connected), we see that

π1(X,x) ∼= Γ(X̃
f−→ X).

Now, it is possible for different coverings of X to correspond to the same subgroup of π1(X,x). However, in this case,
it is left to the reader to show that we may construct a homeomorphism between these two spaces that commutes with
their covering operation on X . Namely, if f1 is a covering X1 → X and f2 is a covering X2 → X , then there exists a
homeomorphism g : X1 → X2 such that f1 = f2 ◦ g and that sends the base point of X1 to that of X2. Such coverings
X1 and X2 are said to belong to the same covering class, denoted by (X ′, x′), where X ′ is a representative of the class
and x′ ∈ X ′ is a base point.

This brings us to the elegant Galois correspondence of covering spaces:
Theorem 4.9. There is a one-to-one correspondence between all covering classes of (X,x) (lying between (X,x) and
the universal covering class (X̃, x̃)) and all subgroups of π1(X,x) given by

[(X ′, x′)
f−→ (X,x)]⇐⇒ Γ′ = f∗(π1(X ′, x′)).

In particular, the universal covering space X̃ corresponds to Γ′ = 1.

Moreover, suppose Γ′ is a subgroup of π1(X,x); clearly, Γ = f∗(π1(X ′, x′)) for some covering space X ′ of X . Then,

Γ′ is a normal subgroup of π1(X,x) if and only if (X ′, x′)
f−→ (X,x) is a Galois covering. In this case, we have the

isomorphism

π1(X,x)/Γ′ ∼= Γ(D′
f−→ D).

5 Some Riemann Surfaces Added to the Mix

Okay, so at this point, it seems like we can make some Galois groups out of fundamental groups. In particular, if we
look at the Riemann sphere Ĉ = C∪{∞}, and remove some finite set of points {p1, p2, ..., pn}, the fundamental group
of the resulting topological space Ĉ
{p1, p2, ..., pn} with respect to any given base point is the free group on n − 1 generators, Fn−1 = Z ∗ Z ∗ · · · ∗ Z︸ ︷︷ ︸

n−1 times

.

What’s so special about this group is that any finite group G on n− 1 generators {g1, g2, ..., gn−1} can be written as a
quotient of Fn−1 via the canonical homomorphism

φ : Fn−1 → G

that sends each generator of Fn−1 to a corresponding generator of G.
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Therefore, if we could express fundamental groups as Galois groups somehow, then via the Galois correspondence,
we’d be able to realize any quotient of the fundamental group of the Riemann sphere with n punctures for any n ∈ Z+,
and thus any finite group!

Our remaining link arises from the study of Riemann surfaces - complex topological spaces with additional structure.

Definition 5.1. Recall that a Riemann surface is a Hausdorff topological space with complex an equivalence class
of complex atlases, i.e., a class of open coverings U =

⋃
i Ui together with maps fi : Ui → C such that for any i, j,

fj ◦ f−1i : fi(Ui ∩ Uj)→ C is holomorphic.

Definition 5.2. For two Riemann surfaces, X and Y , a holomorphic map φ : Y → X is a continuous map with the
additional structure that for any open subsets U ⊂ X , V ⊂ Y with φ(U) ⊂ V and complex charts f : U → C,
g : V → C, the function f ◦ φ ◦ g−1 : g(V )→ C is holomorphic.

It turns out that, locally, a map between Riemann surfaces resembles an nth power map:

Proposition 5.3. For any map of Riemann surfaces φ : Y → X , let x = φ(y) be the image of some point y ∈ Y . There
exist open sets Ux around x and Vy around y with complex charts f : Ux → C and g : Vy → C such that the local
coordinate map h := f−1 ◦ φ ◦ g : Vy → Ux is given by either h(z) = 0 or h(z) = ze for some positive integer e that
does not depend on the choice of the complex charts.

We omit this proof, but remark that e is special because it’s known as the ramification index (or branching order) of
φ at y; y is known as a branch point. Moreover, from this proposition, it follows that any holomorphic map between
Riemann surfaces is open since a map of the form z 7→ ze is clearly open. Essentially, we have characterized what
maps between Riemann surfaces look like at a local level.

Corollary 5.4. The preimage of a point x ∈ X under φ (from the previous proposition) forms a discrete set. Further-
more, if we let Sφ be the set of branch points of the map from the previous proposition, then Sφ is a discrete set. In
particular, if Y is compact, then Sφ is finite.

Proof. Consider a point q ∈ φ−1(x). By our proposition, we may choose a neighborhood small enough around q so
that the map locally resembles z 7→ ze, for some e ∈ Z+. Such an open map is indeed discrete. The same idea can be
applied to show that Sφ is a discrete set. Moreover, if Y is compact, then Sφ ⊂ Y is a closed subset of a compact set,
and hence compact as well. Any compact discrete set is clearly finite, so we’re done. �

We now restrict our attention to proper maps, namely maps between Riemann surfaces for which the preimage of
every compact set is also compact. Observe that for proper maps between locally compact surfaces (such as Riemann
surfaces), these maps are also closed.

Theorem 5.5. If X is a connected Riemann surface and φ : Y → X is a proper holomorphic map between Riemann
surfaces, then the map is surjective with finite fibres. Additionally, the restriction

Y \ φ−1(φ(Sφ))→ X \ φ(Sφ)

is a finite topological cover.

Proof. Since φ(Y ) is open in X (because φ is an open map) and is also closed (since φ is proper), we see that
φ(Y ) = X since X is connected. Next, finiteness of fibres follows from the fact that any x ∈ X forms a compact set
(namely the singleton set), and so its preimage is compact and discrete, hence finite. Thus, we see that

φ′ : Y \ φ−1(φ(Sφ))→ X \ φ(Sφ)

is a covering map because we have removed all the branched points; therefore, each neighborhood of some (unbranched)
point in the preimage of some x ∈ X \ φ(Sφ) maps homeomorphically to a neighborhood of x in X \ φ(Sφ). In fact,
for any x1, x2 ∈ X \ φ(Sφ), φ′−1(x1) and φ′−1(x2) have the same cardinality, since each path from x1 to x2 uniquely
lifts to a path that begins at some point of φ′−1(x1) and ends at a unique point of φ′−1(x2). Thus, φ′ is a finite-sheeted
covering. �

Now, we can extend this idea a bit further:

Proposition 5.6. Given a proper (nonconstant) holomorphic map φ : Y → X , there exists some positive integer n
such that φ attains each value y ∈ Y exactly n times, counting multiplicity due to branch points.
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Proof. Let n be the number of sheets in the unbranched covering

φ′ : Y \ φ−1(φ(Sφ))→ X \ φ(Sφ).

If we have s ∈ φ(Sφ), then suppose φ−1(s) = {r1, r2, ..., rm}. Also, let ei denote the branching order of ri under f .
Then, there is some neighborhood Ui of ri and Vi of s so that every t ∈ Vi \ s has ei preimage points in Ui. Thus, we
may take some neighborhood V ⊂ V1 ∩ · · · ∩ Vm of s for which φ−1(V ) ∈ U1 ∪ · · · ∪ Um, meaning that for each
t ∈ V \ s (which must be unbranched), φ−1(t) consists of e1 + ...+ em distinct points. Therefore, φ attains each point
in X n = e1 + ...+ em times, which is the sum of all the branching orders. �

Corollary 5.7. On any compact Riemann surface Y , a meromorphic function f : Y → Ĉ has the same number of
zeroes as poles, counting multiplicity.

6 Return of the Galois Group

Now, we connect Riemann surfaces with field theory.
Definition 6.1. Let X be a Riemann surface. A function f is said to be a meromorphic function on X if it’s a
holomorphic function on X \ S, for some discrete closed subset S ⊂ X , with the additional condition that for any
complex chart g : U → C, the complex function f ◦ g−1 : g(U)→ C is meromorphic (in the usual sense).

In fact, the set of all meromorphic functions on X form a field, denoted byM(X). Clearly, any sum or product of
meromorphic functions on X is also meromorphic. Showing that the multiplicative inverse of any f ∈M(X) is also in
M(X) is slightly harder, but it amounts to showing that the poles of 1

f form a discrete closed set, or equivalently that
the zeroes of f form a discrete closed set (this follows readily using the Identity Principle of Complex Analysis).

Now, we introduce the elementary symmetric functions on Riemann surfaces. Suppose we have an unbranched
holomorphic n-sheeted covering of Riemann surfaces ψ : Y ′ → X ′, and let f be a meromorphic function on Y ′. For
any x ∈ X ′, there is a neighborhood U of x for which ψ−1(U) = V1 ∪ ... ∪ Vn is a disjoint union of homeomorphic
neighborhoods in Y ′. Now, let τi : U → Vi be the inverse mapping of U homeomorphically to Vi. Then, we may define
a function fi := τ∗i f = f ◦ τi. Then, if we let t be an indeterminate variable, and consider the polynomial

n∏
i=1

(t− fi) = tn + c1t
n−1 + ...+ cn

we see that ci = (−1)isi(f1, f2, ..., fn), where si denotes the ith elementary symmetric function in n variables. Since
the construction of the ci is the same across any neighborhood U in X ′, we may "glue" each local ci to obtain global
meromorphic functions c1, ..., cn onM(X).
Definition 6.2. The ci above are called the elementary symmetric functions with respect to the covering ψ : Y ′ → X ′.

Now, we aim to find a connection between the fields of meromorphic functions on our Riemann surfaces:
Proposition 6.3. Let φ : Y → X be an n-sheeted branched holomorphic covering map. Suppose A ⊂ X is a discrete
closed subset that contains the image of Sφ, and let B = φ−1(A) ⊂ Y . If f is a meromorphic function on Y \ B,
then f can be meromorphically continued to Y if and only if each of c1, ..., cn ∈M(X \A) can be meromorphically
continued to X .

Now, observe that a nonconstant holomorphic map φ : Y → X between Riemann surfaces induces a map φ∗ :
M(X)→M(Y ) given by φ∗(f) = f ◦ φ (in the language of category theory, we have a contravariant functor going
from the category of Riemann surfaces and holomorphic maps between them to the category of fields of meromorphic
functions on Riemann surfaces and homomorphisms between them). Now, given that φ is surjective, as in the case of a
branched (or unbranched) cover, φ∗ is injective. Indeed, if φ∗(f) = φ∗(g) for some f, g ∈M(X), then since for any
x ∈ X , x = φ(y) for some y ∈ Y , we see that f(x) = f ◦ φ(y) = g ◦ φ(y) = g(x), implying that f = g inM(X).

Now, with Proposition 6.3 in mind, we state the following important theorem:
Theorem 6.4. As usual, let φ : Y → X be a branched holomorphic n-sheeted covering map of Riemann surfaces. If
f ∈M(Y ) and c1, ..., cn ∈M(X) are the elementary symmetric functions of f , then

fn + (φ∗c1)fn−1 + · · ·+ (φ∗cn) = 0.

Moreover, the injectionM(X) → M(Y ) defines an algebraic field extension of degree at most n. Finally, if there
exists an f ∈M(Y ) and some x ∈ X with preimages y1, y2, ..., yn ∈ Y such that the f(yi) (with 1 ≤ i ≤ n) are all
distinct, then this field extension has degree n.
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Proof. The first part of the theorem follows immediately from the definition of elementary symmetric functions: clearly,
for any 1 ≤ i ≤ n, fi is a root of the polynomial

n∏
i=1

(t− fi) = tn + c1t
n−1 + · · ·+ cn

and since fi = f ◦ τi, we have f = f ◦ τi ◦ φ = fi ◦ φ = φ∗(fi), so we may apply φ∗ to the equation

(fi)
n + c1(fi)

n−1 + · · ·+ cn = 0

to obtain
fn + (φ∗c1)fn−1 + · · ·+ (φ∗cn) = 0.

Next, from the above equation, we see that the minimal polynomial of any f ∈M(Y ) has degree at most n. Now, if
L = M(Y ) and K = φ∗M(X). Suppose g ∈ L has a minimal polynomial with the maximal degree N across all
meromorphic functions in L. We claim that g is a primitive element, i.e., L = K(g). If not, then take any f ∈ L
and consider K(f, g); by the Primitive Element Theorem, there exists some other h ∈ L such that K(f, g) = K(h).
However, [K(h) : K] ≤ n0 but

[K(f, g) : K] ≥ [K(g) : K] = n0

meaning that K(g) = K(f, g) and f ∈ K(g). Therefore, L is a finite extension of K of degree n0 ≤ n.

In particular, if the minimal polynomial of any f ∈ L must have m distinct roots, for some m ≤ n. Thus, if m = n, we
immediately see that L has degree n over K. �

As a matter of fact, the last statement of the theorem is always satisfied, and it’s a deep result known as Riemann’s
Existence Theorem (analytic version).

Theorem 6.5 (Analytic Riemann’s Existence Theorem). Let X be a compact Riemann surface, {x1, ..., xn} be a finite
set of points on X , and a1, ..., an a sequence of complex numbers. There exists some f ∈M(X) such that f(xi) = ai
for 1 ≤ i ≤ n.

Therefore, it follows thatM(Y ) is an algebraic extension ofM(X) of degree n. Now, we relate branched coverings to
unbranched coverings:

Proposition 6.6. Suppose A ⊂ X is a discrete closed subset of a Riemann surface X , and let X ′ = X \ A. Also,
suppose ψ : Y ′ → X ′ is a proper unbranched holomorphic covering. Then ψ extends to a proper holomorphic
branched covering φ : Y → X such that Y ′ = Y \ φ−1(A) is an open subset of Y .

Proof. Consider some x ∈ A; we may take some open neighborhood Ux of x such that it contains no other points of A
and there is a chart going from Ux to the unit disc D ⊂ C (by performing some suitable linear transformation in the
complex plane). Clearly, the restriction of ψ to ψ−1(Ux \ {x}) is a finite cover, so suppose it’s a disjoint union of d
open neighborhoods V 1

x ∪ · · · ∪ V dx , with each V ix being homeomorphic to a finite connected cover of Ux \ {x}, which
is homeomorphic to the punctured unit disc Ḋ = D \ {0}.

Now, if we let E be the universal cover of Ḋ, we have the isomorphism

Γ(E → Ḋ) ∼= π1(Ḋ, b) ∼= Z

where b ∈ Ḋ is some base point. Therefore, the deck transformation group is infinite cyclic, meaning that any finite
cover of Ḋ corresponds to a quotient group of Z, namely Z/kZ, for some k ∈ Z≥2. It follows that each cover V ix of Ḋ
is given by z 7→ zk for some k > 1. Since there exists a cover of this form going from Ḋ → Ḋ, we also see that V ix is
homeomorphic to Ḋ since they are in the same covering class.

Next, choose "abstract" points yix, and define Y = Y ′ ∪
⋃d
i=1 y

i
x as the disjoint union of Y ′ and these new points.

We then define an extension φ of ψ by mapping each yix to x. Thus, we may extend the holomorphic isomorphism
V ix −→ Ḋ to a map V ix ∪ {yix} −→ D which sends yix 7→ 0. Moreover, we may define the topology on Y so that this map
becomes a homeomorphism as well. Along with the complex structure on Y ′, this forms well-defined complex charts
on neighborhoods in Y , and the map φ is clearly holomorphic, since its restriction ψ to Y ′ is holomorphic and it looks
like z 7→ zk (for some k ∈ Z≥2) on any yix for any given x ∈ A. Finally, φ is proper since ψ is proper (why?), φ has
finitely many fibres, and the compact subsets of X ′ differ from those of X by finitely many points (namely, the points
in A). �
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Now that we know an unbranched cover can be extended to a branched covering map of Riemann surfaces, we observe
its effect on the Deck group.
Proposition 6.7. Suppose X , Y , and Z are Riemann surfaces, and let φ1 : Y → X and φ2 : Z → X be proper
holomorphic covering maps. For a closed discrete subset A ⊂ X , let X ′ = X \A, Y ′ = φ−11 (X ′), and Z = φ−12 (X ′).
Then, every biholomorphic mapping σ′ : Y ′ → X ′ that preserves the fibers can be extended to a fiber-preserving
biholomorphic map σ : Y → X .

Proof. This proof uses a lot of the same ideas as those of Proposition 6.6. As before, take some x ∈ A and let Ux
be a sufficiently small neighborhood (so that no other points in A are in Ux) with a chart going to the unit disc with
x 7→ 0. Let V 1

x , ..., V
p
x ∈ Y be the disjoint connected components of φ−11 (U), and similarly, let W 1

x , ...,W
q
x ∈ Z be

disjoint connected components of φ−12 . Then, the V ix \ φ−11 (x) and the W j
x \ φ−12 (x) are the connected components of

φ−11 (Ux \ {x}) and φ−12 (Ux \ {x}), respectively.

Now, given that σ′ : Y ′ → Z ′ is a fiber-preserving holomorphic mapping, it’s restriction

σ′|φ−11 (Ux \ {x})→ φ−12 (Ux \ {x})

is biholomorphic. This means that p = q, and we may renumber the indices, so that σ′(V ix \ φ−11 (x)) = W i
x \ φ−12 (x).

Because φ1|V ix \ φ−11 (x)→ Ux \ {x} is a finite-sheeted unbranched cover, V ix ∩ φ−11 (x) consists of exactly one point
bi; we can do the same procedure for W i

x to obtain one such point ci. Hence we can extend the map

σ′|φ−11 (Ux \ {x})→ φ−12 (Ux \ {x})

to a bijective mapping
φ−11 (Ux)→ φ−12 (Ux).

Now, just as we did in Proposition 6.6, we may verify that this map is biholomorphic and a homeomorphism. Applying
this procedure to all points x ∈ A gives us an extended biholomorphic map σ : Y → Z, as desired. �

Why did we prove the convoluted-sounding theorem above? Precisely so that we’d have the following corollary under
our belts:
Corollary 6.8. Every covering transformation σ′ ∈ Γ(Y ′ → X ′) can be extended to a covering transformation
σ ∈ Γ(Y → X).

Therefore, the Deck groups Γ(Y ′ → X ′) and Γ(Y → X) are essentially the same and it makes sense to call Y a finite
Galois cover of X if Y ′ is Galois over X ′.
Proposition 6.9. Suppose φ : Y → X is a proper holomorphic map of Riemann surfaces that is topologically a Galois
branched cover. Then, the following hold:

1. The Deck group Γ(Y → X) acts transitively on all fibers.

2. If y ∈ Y is a branch point with ramification index e, then so are all points in φ−1(φ(y)). The stabilizers of
these points in Γ(Y → X) are conjugate cyclic subgroups of order e.

Proof. Because the Deck group Γ(Y ′ → X ′) acts transitively on all fibers, so does Γ(Y → X) by the continuity of
automorphisms. The first part of the second statement follows from Proposition 6.7 given that y maps to the other
points in φ−1(φ(y)) under certain Deck transformations.

The last assertion follows from the fact that in order to stabilize a branch point y, a sufficiently small neighborhood over
which φ resembles the map z 7→ ze must also be stabilized, which can only be done by the action of a cyclic (rotation)
group of order e. �

In particular, we revisit the second statement when we get to the notion of rigidity.
Theorem 6.10. Suppose X is a Riemann surface and

P (T ) = Tn + c1T
n−1 + · · ·+ cn ∈M(X)

is an irreducible polynomial of degree n. Then, there exists a Riemann surface Y , a branched holomorphic n-sheeted
covering φ : Y → X , and a meromorphic function f ∈ M(Y ) such that (φ∗P )(f) = 0. The triple (Y, φ, f) is
"uniquely determined" in that if (Z, τ, g) is another triple with the same properties, then there is a fiber-preserving
biholomorphic map σ : Y → Z such that g = σ∗(f).
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And now, we begin our final descent into Galois territory! Observe that if φ : Y → X is a holomorphic branched cover
of Riemann surfaces, then Γ(Y → X) has a representation into the automorphism group Aut(M(Y )/φ∗M(X)).
Indeed, for any f ∈M(Y ) and σ ∈ Γ(Y → X), we may define σf = f ◦ σ−1. Clearly, f 7→ σf is an automorphism
ofM(Y ). Moreover, if σ, τ ∈ Γ(Y → X), then

(στ)f = f ◦ (στ)−1 = f ◦ τ−1σ−1 = σ(f ◦ τ−1) = σ(τf)

so we have a group homomorphism
Γ(Y → X)→ Aut(M(Y )).

In fact, every such automorphism f 7→ σf trivially fixes the elements of the subfield φ∗M(X), so our group
homomorphism is in fact

Γ(Y → X)→ Aut(M(Y )/φ∗M(X)).

Now, we come to the big theorem at last:

Theorem 6.11. SupposeX is a Riemann surface,K :=M(X), and P (T ) ∈ K(T ) is an irreducible monic polynomial
of degree n. Let (Y, φ, f) be the triple from Theorem 6.10 and let L = M(Y ). Then, L is a field extension of K
(technically, φ∗K) of degree n and L ∼= K(T )/(P (T )). Each covering transformation σ ∈ Γ(Y → X) induces an
automorphism g 7→ σg = g ◦ σ−1 of L leaving K fixed. The corresponding group homomorphism

θ : Γ(Y → X)→ Aut(L/K)

is in fact a group isomorphism. Finally, the covering Y is Galois over X if and only if L is Galois over K.

Proof. We have already proven parts of this culminating result earlier in the section. First, we already know L is
a degree n field extension of K using the last statement of Theorem 6.4. Because P (f) = 0, we have the field
isomorphism K(T )/(P (T )) ∼= L using basic field theory.

The homomorphism θ : Γ(Y → X)→ Aut(L/K) is injective because σf 6= f for any σ ∈ Γ(Y → X) that is not the
identity. Furthermore, for any α ∈ Aut(L/K), we have that (Y, φ, αf) is another valid triple, according to Theorem
6.10. Thus, by the uniqueness statement of this theorem, there is some τ ∈ Γ(Y → X) for which τ∗f = αf . If
σ = τ−1, then σf = f ◦ σ−1 = f ◦ τ = τ∗f = αf , so α ∈ Aut(L/K) corresponds to σ ∈ Γ(Y → X), showing that
θ is surjective, thus establishing the isomorphism.

Finally, either Y being Galois over X or Aut(L/K) = Gal(L/K) means that both the Deck group and the automor-
phism group have n elements, meaning that the Deck group acts transitively on Y over X and that the automorphism
group is in fact Galois. �

At last, we see that fundamental groups are Deck groups, and Deck groups are Galois groups! This correspondence
highlights a beautiful connection spanning algebra, topology, and complex analysis.

By corollary to this theorem, we can finally realize all Galois groups over the function field C(x):

Corollary 6.12. All finite groups can be realized as Galois groups over the base field C(x).

Proof. Consider the Riemann sphere with n punctures, i.e. X ′ = Ĉ \ {x1, ..., xn} for some xi ∈ Ĉ. Then, letting U be
the universal cover of this space, we have that

Γ(U → X ′) ∼= π1(X ′, x′) ∼= Fn−1

where Fn−1 is the free group on n− 1 generators. In particular, for any group G with n− 1 generators, we may write
it as some quotient of Fn−1, which by the Galois correspondence of covering spaces (Theorem 4.9) corresponds is the
Deck group of some Galois cover U ′ of X ′. By Proposition 6.6, this unbranched cover extends to a branched Galois
cover φ : Y → X , where X = Ĉ (observe that {x1, ..., xn} is a discrete closed set) and Y is some Riemann surface.
Therefore, since Γ(Y → X) is Galois, it follows from our main theorem above thatM(Y ) is Galois overM(X) and

G ∼= Γ(Y → X) ∼= Gal(M(Y )/M(X)) = Gal(M(Y )/C(x))

where we use the fact thatM(X) =M(Ĉ) = C(x). Since n was arbitrary, we see that any finite group G is realizable
as a Galois group over C(x)! �
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7 The Rigidity Method and Beyond

At last, we come to the rigidity method, which is incredibly an powerful technique in realizing groups as Galois groups.
This method first starts out by realizing groups as Galois groups over C(x) (which we have done using Riemann
surface theory) and subsequently using a method of descent to realize groups over "lower" fields like Q. It turns out
that Riemann’s Existence Theorem is central to unlocking this method. In Section 6, we saw the analytic version as
Theorem 6.5.

First, we introduce two complementary definitions:

Definition 7.1 (Algebraic Definition). Consider triples (G,P,C), where G is a finite group, P is a finite subset of Ĉ,
and C = (Cp)p∈P is a family of nontrivial conjugacy classes in G. We define two triples (G,P,C) and (G′, P ′, C ′)
to be equivalent if P = P ′ and there is an isomorphism G → G′ that maps Cp to C ′p for each p ∈ P . Denote the
equivalence class of these triples by T = [G,P,C]. We call such a T a ramification type.

Definition 7.2 (Topological Definition). Let f : R→ Ĉ \ {p1, ..., pn} be a finite Galois covering, and call the Deck
group H . For each pi, let Cpi be the associated conjugacy class in H (recall the second statement of Proposition 6.9).

Now, we state the other two versions of Riemann’s Existence Theorem.
Theorem 7.3 (Algebraic Riemann’s Existence Theorem). Let T = [G,P, (Cp)p∈P ] be a ramification type. Label the
elements of P as p1, ..., p|P |. Then, there exists a finite Galois extension of type T if and only if there exist generators
g1, ..., g|P | of G with g1g2...g|P | = 1 and each gi ∈ Cpi .
Theorem 7.4 (Topological Riemann’s Existence Theorem). Let T = [G,P, (Kp)p∈P ] be a ramification type. Label
the elements of P by p1, ..., P|P |. Then, there exists a finite Galois covering of the punctured Riemann sphere Ĉ \ P
with type T if and only if there exist generators g1, ..., g|P | of G with g1...g|P | = 1 and each gi ∈ Kpi .

While we omit the the proofs of the above theorems, we remark that they are very similar and can be used to show
(again) that all finite groups are realizable over C(x) as a quotient of a free group Fn−1 for some n, since a free group
actually can be presented in the form

Fn−1 = <γ1, ..., γn|γ1γ2...γn = 1>

indicating that Riemann’s Existence Theorem is applicable.

Lastly, we remark that rigidity can be used to show that both symmetric groups and most of the simple groups can be
realized as Galois groups. Moreover, it allows us to descend from a field like C(x) to our field of interest, Q. The
Inverse Galois Problem still remains open over Q, but we hope the reader has learned something interesting about Deck
groups, Riemann surfaces, and the Inverse Galois problem! At last, we rest our case.
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