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1 Introduction and a review of projective space and
varieties

The Grassmannian is a concept relating to linear algebra and vector spaces, but relates
to algebraic geometry through projective space and can be represented as a topological
space. Closely related is the concept of flag varieties, which can be constructed as
products of Grassmannians. This paper assumes prior knowledge of abstract algebra,
including ring theory and algebraic geometry. We aim to show, through the concepts
introduced in this paper, both how the direct product of Grassmannians generates a flag
variety, and how flag varieties can be written as quotients of algebraic groups.

Definition 1.1 (Projective Space). For a field k, the n-dimensional projective space
Pn
k is the set of all lines which pass through the origin of the affine space An+1

k .

To review, the lines that make up projective space are represented as points, since the
lines all go through the origin and two points determine a line. Points in n-dimensional
projective space are therefore represented in the form (a1; a2; . . . ; an), where the line
represented passes through the origin and the point (a1; a2; . . . ; an).

Definition 1.2 (Homogeneous Polynomial). A homogeneous polynomial is a poly-
nomial f(a0, . . . , an) such that f(λa0, . . . , λan) = λdf(a0, . . . , an). Equivalently, a
polynomial is homogeneous if each of its monomial term is of the same degree.

Since points in projective space can be represented using infinitely many different points
- for example, (a1; a2; . . . ; an) is equivalent to (λa1;λa2; . . . ;λan) - it is important that we
ensure that only polynomials for which these points are equivalent are considered when
defining projective varieties. Homogeneous polynomials are such polynomials.
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Definition 1.3 (Projective Sets). Projective sets are the vanishing sets of families
of homogeneous polynomials.

This corresponds with the definition of homogenous polynomials - equivalent points on
a certain line which is part of the vanishing set of a polynomial must all vanish with the
polynomial.

Remark 1.4 (Projective Varieties). Projective sets are varieties if they are irre-
ducible.

Similar to algebraic varieties, projective sets are varieties if they are irreducible.

2 The Grassmannian

Definition 2.1 (The Grassmannian). The Grassmannian, denoted Gr(k, V ), is the
linear subspace (of dimension k) of an n-dimensional vector space V.

For example, the Grassmannian Gr(1, V ) is equivalent to the set of all the lines passing
through the origin in the n-dimensional vector space V . Likewise, the Grassmannian
Gr(2, V ) is the set of planes passing through the origin in V .

Proposition 2.2 (Projective Varieties). Gr(1, V ) is equivalent to the projective
space of dimension n− 1.

As defined earlier, projective space consists of the lines which pass through the origin
of affine space of one dimension higher, so Gr(1, V ), which is the 1-dimensional linear
subspace (or lines) in V , is the same as the projective space of V . For example, taking
the simplest example of Gr(1,R2), we can define a point mGr(1,R2), where m is a real
number, as {(x, y) ∈ R : y = mx} to get a better sense of what exactly a point is.

Proposition 2.3 (Projective Varieties). There is a bijection between the Grass-
mannian Gr(1,R2) and R ∪∞

This bijection maps line l with slope m to the point (1,m) ∈ R2. Lines with slope ∞
are then mapped to points with x = 0, thus requiring that the bijection includes ∞ as
well.

Proposition 2.4. The Grassmannian Gr(1,R2) can be represented as a manifold,
namely a semicircle.

When representing a point with slope m in Gr(1,R2), we can choose any point (x, y)
as long as y

x
= m. Therefore, we can restrict our representation to include points on the

circle y2 + x2 − 1 where y ≥ 0; points on this semicircle correspond to
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Remark 2.5. The Grassmannian can be represented as a homogeneous space.

A homogeneous space (in topology) is defined as a topological space or manifold on
which a group G acts. The way to define Gr(r, V ) as a group is by representing it as the
quotient group of the general linear group of V , namely Gr(r, V ) = GL(V )/H.

Theorem 2.6. Gr(r, V ) = GL(V )/H where GL represents the general linear group
of V and H acts as the stabilizer of one of its subspaces.

The general linear group of a vector space is defined as the set of its automorphisms,
also referred to as the set of its (invertible) linear transformations. To review, the
stabilizer of an element x in a group is a subgroup consisting of all elements g ∈ G such
that g · x = x. The quotient group formed by this is a homogenous space. The elements
of the group GL(V )/H thus are able to act on the manifold (the Grassmannian).

3 The Plucker Embedding and Plucker Coordinates

3.1 Plucker Coordinates

Briefly, we define, Plucker coordinates, which are a way of defining a line in 3-dimensional
projective space using 6 homogeneous points.

The way to define a line in Euclidean space is to either represent it in terms of two
distinct points, or a point and a direction.

Given two points x and y on a line, we can construct two vectors: one for direction
(or d = x− y), and one for the moment, (or m = x× y).

Although neither determines line individually, together we generate 6 points d1, d2, d3,m1,m2,m3

corresponding to the weights of the vector, which uniquely determines the line. The
Plucker embedding is a generalization of this system.

3.2 The Plucker Embedding

It is possible to express a Grassmannian as a subvariety of a projective space, as studied
by Julius Plucker, one of the first people to study nontrivial Grassmannians.

Definition 3.2.1 (The Plucker Embedding). There is a map from Gr(k, V ) to
P(
∧k V ), the projective space of the kth wedge power of v.

Definition 3.2.2 (Wedge Power). For a vector space V ,
∧k V = V ∧ V... ∧ V (n

times), where ∧ represents the wedge product of two vectors. If V has a basis of
v1, . . . , vn, then the kth wedge power of V has a basis consisting of

(
n
k

)
.

We can thus define an injective mapping of Gr(k, V ), mapping each element of the
Grassmannian to the projective space of the kth wedge power of V .
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Theorem 3.2.3. The Plucker embedding defines an injective mapping to P(
∧k V ),

allowing the Grassmannian to be studied in the context of a projective variety.

Proof. For an element Λ ∈ Gr(k, V ), we can take a basis for Λ, say {l1, l2, . . . , lk}. The
mapping is defined as: φ(Λ) = [l1 ∧ l2 ∧ . . . ∧ lk].

4 Flag Varieties

Definition 4.1 (Flags). In linear algebra, a flag is a chain of increasing subspaces
of a vector space V , each of which is a proper subset of the last.

Each subspace is strictly contained in the next, and the chain starts and ends with {0}
and V . The signature of a flag {0} = A1 ⊂ A2 ⊂ . . . ⊂ Al = V is defined as the sequence
(dim(A1), dim(A2), . . . dim(V )). A flag is called a complete flag if for dimVi = i in the
sequence 0 = v0 ⊂ Vi . . . ⊂ Vk = V where k is the dimension of V , eg. if its signature is
of the form (1, 2, 3, . . . n). If this is untrue, the flag is called partial.

Definition 4.2 (Flag Varieties). Flag varieties are varieties consisting of flags of a
vector space V over a field F .

Flag varieties, as discussed later, can be expressed in the form of direct products of
Grassmannians. Flag varieties are also projective varieties, a fact which follows from the
fact that they are generated by the direct product of Grassmannians.

Theorem 4.4. Flag varieties can be written as direct products of Grassmannians.

Proof. We take, for any sequence of l integers, with 0 < a1 < a2 < . . . < al < n. We then
define F(a1, . . . , al, n) to be the set of all flags in Cn with their signatures corresponding
to the sequence an.

Remark 4.5 (Projective Varieties). F(a1, . . . , al, n) is contained within Gr(a1, V )×
. . .Gr(an, V ), because each subspace with dimension ak has a corresponding element
in Gr(ak, V ). In the case of l = 1, F(a1, n) = Gr(1, V ).

Now we must show that F(a1, . . . , al, n) has the structure of a variety.
To do this, we must show that F(a1, . . . , al, n) is a closed algebraic set, which we can

do by showing that it is a union of closed sets.
To do this, we can define a function πij which, for 0 < i < j ≤ l, is the restriction

to F(a1, . . . , al, n) of the projection Gr(a1, V ) × . . .Gr(an, V ) → Gr(ai, V ) × Gr(ak, V ).
Then, reversing this map, we have:

F(a1, . . . , al, n) =
⋂
i,j

π−1
ij (F(ai, aj)
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.
Because this is a closed set, we now know that flag varieties generated in this form

are closed algebraic sets and are indeed varieties.

5 Algebraic Groups and Borel Subgroups

Flag varieties can be written as quotients of algebraic groups, which produces a number
of interesting results in the realm of algebraic geometry.

Definition 5.1 (Algebraic Group). An algebraic group is an affine group scheme.
A group scheme is a scheme which includes 3 morphisms:

• m: G×C G→ G

• i: G→ G

• ε: Spec(C)→ G.

These are all morphisms in terms of the algebraic variety (to review, a morphism
is a function between two varieties X and Y which is given in terms of a set of
polynomials in X).

Further, we must define the Borel and parabolic subgroups of any group G, and by
putting these two pieces together, we are able to see how flag varieties can be generated
through algebraic groups.

The definitions of these subgroups are pretty straightforward:

Definition 5.2 (Borel Subgroup). A Borel subgroup is a subgroup which is maximal
out of the set of subgroups which are connected and solvable.

Definition 5.2.1 (Connected Space). A connected space is a topological space
which cannot be represented as the union of two disjoint open subsets.

Definition 5.3 (Parabolic Subgroup). A parabolic subgroup is a subgroup such
that B/P is a projective variety.

All Borel subgroups are parabolic, and both are self-normalizing, but this is not really
important to the topics in this paper, so the proof is omitted.

Next, we must define flag varieties in the context of Borel subgroups and algebraic
groups.

As defined earlier, a complete flag is one with a signature of (1, 2, . . . , n). A flag variety
with this signature is thus called a full flag variety.

Given an integer n, we have the basis of Cn to be {e1, e2, . . . , en}. We can thus
construct a full flag variety by taking the flag {0}, {e1}, {e1, e2}, . . . , {e1, e2, . . . , en}.
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By permuting the basis elements, we observe that the general linear group GLn can
be used to generate full flag varieties (they are not necessarily unique). However, when
we assign B to be the upper triangular matrices, we find that GLn/B aggregates the
duplicates and categorizes them.

Therefore we have:

Theorem 5.4. F(a1, . . . , al, n) ∼= GLn/B

based on the reasoning described above. From this fact follows that for each parabolic
subgroup, there is a corresponding flag variety F(a1, . . . , al, n), and vice versa.
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