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1. Introduction

Modular curves are important to number theory because they parameterize isomorphism
classes of elliptic curves, along with some additional structure. In this paper, we de-
fine the modular groups and congruence subgroups and the compactified modular curves
X0(N), X1(N), and X(N). We then prove some results about parameterization of ellip-
tic curves and briefly discuss modular curves when viewed as algebraic curves. This paper
assumes knowledge of abstract algebra and basic ring theory and algebraic geometry.

2. The Modular Group and Congruence Subgroups

We begin by defining the modular group:

Definition 2.1. The modular group is the group of 2-by-2 matrices with integer entries and
determinant 1:

SL2(Z) =

{[
a b
c d

]
: a, b, c, d ∈ Z, ad− bc = 1

}
.

The group operation is matrix multiplication. These transformations have natural group
properties: having an identity transformation, having inverse transformations, and being
associative. Any element in the modular group represents a transformation of the half plane,
and the product of two matrices in the modular group represents the transformation that is
obtained by consecutively applying the transformations represented by the two matrices.

We say that the modular group acts on the half plane H. Each element in the modular
group is a linear fractional transformation on the upper half plane H = {τ ∈ C : =(τ) > 0}.

That is, for an element γ =

[
a b
c d

]
, we define the map[

a b
c d

]
(τ) =

aτ + b

cτ + d
, τ ∈ H .

The following proposition shows that for an element γ ∈ SL2(Z), γτ is actually in the upper
half plane:

Proposition 2.2. Let γ =

[
a b
c d

]
be an element of SL2(Z). Then, for any τ ∈ H, we have

=(γτ) =
=(τ)

|cτ + d|2
.

Proof. By the definition of the group action of SL2(Z), we have

=(γz) = =
(
aτ + b

cτ + d

)
.

1
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Multiplying numerator and denominator by cτ + d to rationalize this quantity, this is equal
to

=
(

(aτ + b)(cτ + d)

(cτ + d)(cτ + d)

)
=
=(aτ + b)(cτ + d)

|cτ + d|2
.

Let τ = x+ yi. Since ad− bc = 1, the imaginary part of (aτ + b)(cτ + d) is

= ((ax+ ayi+ b)(cx+ d− cyi)) = −acxy + acxy + ady − bcy = (ad− bc)y = y,

so our expression simplifies to
=(τ)

|cτ + d|2
as desired. �

We now introduce some key subgroups of the modular group:

Definition 2.3. Let N be a positive integer. The principal congruence subgroup of
level N is the group

Γ(N) =

{[
a b
c d

]
∈ SL

2
(Z) :

[
a b
c d

]
≡
[
1 0
0 1

]
(mod N)

}
.

Then, we can define a general congruence subgroup as follows:

Definition 2.4. A subgroup Γ of SL2(Z) is a congruence subgroup of level N if there
exists an integer N such that Γ(N) ⊂ Γ.

There are two important types of congruence subgroups called Γ0(N) and Γ1(N) that we
also want to introduce:

Definition 2.5. The subgroup Γ0(N) is defined by

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Definition 2.6. The subgroup Γ1(N) is defined by

Γ1(N) =

{[
a b
c d

]
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), c ≡ 0 (mod N)

}
.

The relationship between these subgroups can be described with the following proposition:

Proposition 2.7. Γ(N) / Γ1(N) and Γ1(N) / Γ0(N).

Proof. Recall that H is a normal subgroup of G if it is the kernel of some group homomor-
phism with domain G. Consider the homomorphism

φ : Γ1(N)→ Z /N Z, φ
([
a b
c d

])
= b (mod N)

Clearly, Γ(N) is the kernel of this homomorphism, so Γ(N) / Γ1(N).
We can use a similar technique to show that Γ1(N) /Γ0(N). Consider the homomorphism

φ : Γ0(N)→ (Z /N Z)∗, φ

([
a b
c d

])
= d (mod N)

Clearly, Γ1(N) is the kernel of this homomorphism, so Γ1(N) / Γ0(N). �
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We can now define modular curves:

Definition 2.8. For any congruence subgroup Γ of SL2(Z), the modular curve Y (Γ) is
defined as the space of orbits under Γ:

Y (Γ) = Γ \H = {Γτ : τ ∈ H}

Recall that we defined three important types of congruence subgroups: Γ(N), Γ0(N), and
Γ1(N). The modular curves for Γ0(N), Γ1(N), and Γ(N) are denoted

Y0(N) = Γ0(N) \H, Y1(N) = Γ1(N) \H, Y (N) = Γ(N) \H .

3. Compactification of Modular Curves

Although the parametrization of elliptic curves that we are focusing on is about the points
on the modular curves Y0(N), Y1(N), and Y (N), it is often useful to compactify the modular
curves to give them useful topological properties. This definition involves extending the
upper half plane as follows:

Definition 3.1. The extended complex upper half plane is H∗ = H∪Q∪{∞}.

We want to introduce a topology on H∗ that will then give us a topology for a modular
curve. For real M > 0, define

NM = {τ ∈ H : =(τ) > M}
We then define the topology with the following basis for open sets: we take open sets in H,
and sets of the form

α(NM ∪ {∞}) : α ∈ SL2(Z),M > 0.

This allows us to define a topology on modular curves; see [DS, Section 2.1] for more details.

Definition 3.2. The compactification of the modular curves Y0(N), Y1(N), and Y (N) is
defined as

X0(N) = Γ0(N)\H∗, X1(N) = Γ1(N) \H∗, X(N) = Γ(N) \H∗

Notice that this definition is equivalent to defining X(Γ) as Y (Γ) ∪ Γ \{Q∪∞} for some
congruence subgroup Γ. This means X(Γ) is Y (Γ) with a few extra orbits.

Definition 3.3. The orbits in Γ \{Q∪∞} are the cusps of X(Γ).

It turns out that the compactified modular curves X0(N), X1(N), and X(N) are compact
Riemann surfaces; see [DS, Chapter 2] for a discussion of this.

4. Lattices and Elliptic Curves

In this section, we introduce lattices and describe the maps between them, which will be
important for our discussion of the Weierstrass ℘-function in section 5. We begin by defining
a lattice:

Definition 4.1. A lattice is a free abelian group, Zω1 +Zω2, where ω1, ω2 ∈ C and satisfy
Rω1 + Rω2 = C.

We can think of a lattice as “tiling” the complex plane into parallelograms.

Example. We can take ω1 = 1 and ω2 = i for an example of the lattice.
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Figure 1. Taking the quotient of the complex plane by a lattice.

Nonexample. Z(i+ 1) +Z(3i+ 3) would not be an example of a lattice, since i+ 1 and 3i+ 3
clearly do not span the complex plane.

Since a lattice is a subgroup of the complex numbers, we can take the quotient group:

Definition 4.2. The quotient group C /Λ = {z + Λ : z ∈ C}, where Λ is a lattice, is a
complex torus.

Remark 4.3. The term “complex torus” comes from the fact that when we take the quotient
of the complex plane by the lattice, we consider two points to be the same if their difference
is a multiple of ω1 and ω2. We can think of a lattice as a tiling of the complex plane
into parallelograms, so taking this quotient reduces the complex plane into one of these
parallelograms (See Figure 1). We then “fold” the blue edges onto each other and the black
edges onto each other, which forms a donut shape or torus.

Since a lattice is a group, we can consider homomorphisms between them. In particular,
we have isogenies:

Definition 4.4. A nonzero holomorphic (i.e., complex differentiable) homomorphism of
complex tori is called an isogeny.

Example. The multiplication by N map,

[N ] : C /Λ→ C /Λ, z + Λ→ Nz + Λ

is an important example of an isogeny. We call the kernel of this map the group of N-
torsion points.

We can actually characterize all homomorphisms of complex tori with the following propo-
sition:

Proposition 4.5. Any homomorphism between complex tori ϕ : C /Λ→ C /Λ′ is determined
by a C-linear map T : C→ C that sends Λ→ Λ′.



MODULAR CURVES 5

Proof. We will sketch the proof; see [DS, Proposition 1.3.2] for more details.
The idea is to lift ϕ to a map ϕ̃ : C→ C using topology and show that ϕ̃′ is holomorphic

and Λ-periodic, i.e. ϕ̃′(z + λ) = ϕ̃′(z) for any λ ∈ Λ. This also means that ϕ̃′ is a bounded
function. Liouville’s Theorem in complex analysis says that a bounded holomorphic function
is constant, so ϕ̃ must be a linear map ϕ̃(z + Λ) = mz + b + Λ′. Using the properties of ϕ̃,
we can also show that mΛ ⊆ Λ′ (which means that the linear map sends Λ→ Λ′). We know
that a homomorphism must send the identity to the identity, so b = 0, and we are done. �

We can easily conclude the following corollary about isomorphisms of lattices, which are
just bijective homomorphisms:

Corollary 4.6. C /Λ1
∼= C /Λ2 if and only if there exists α ∈ C such that αΛ1 = Λ2.

Example. The lattice Z(i+1)+Z(i−1) is isomorphic to Z(−i−3)+Z(−3i+1) by multiplication
by i− 2. On the other hand, the lattice Z+Z(2i) is not isomorphic to the lattice Z+Z(i).

Proposition 4.7. For any nontrivial homomorphism between complex tori ϕ : C /Λ1 →
C /Λ2, we have ker(ϕ) ∼= Λ2/T (Λ2), where T is the linear map corresponding to ϕ.

Proof. Let T (z) = cz. Then, ϕ sends a + Λ1 7→ ca + Λ2. Note that if a ∈ ker(ϕ), then
φ(a+ Λ1) = Λ2, so ca ∈ Λ2. Thus, we can construct a map

φ : ker(ϕ)→ Λ2/T (Λ1), φ(a+ Λ1) = ca+ T (Λ1), a ∈ C

and an inverse

ψ : Λ2/T (Λ1)→ ker(ϕ), ψ(b+ T (Λ1)) =
b

c
+ Λ1, b ∈ Λ2

Each of these maps are homomorphisms, and ψ ◦ φ and φ ◦ ψ are clearly the identity maps,
so we conclude that ker(ϕ) ∼= Λ2/T (Λ2). �

Taking Λ1 = Λ2 and ϕ to be the multiplication by N map yields the following:

Corollary 4.8. The N torsion group is isomorphic to ( 1
N

Λ)/Λ ∼= (Z /N Z)2, so the set

{ τ
N
, 1
N
} is a basis for this group.

For a lattice Λ = Zω1 + Zω2, let ω = ω1/ω2. Then, the lattice defined by Λτ = Z τ + Z
is isomorphic to Λ. This means that we can represent lattices in terms of a single complex
number.

5. The Weierstrass ℘-function

The key to describing the correspondence between lattices and elliptic curves is the fol-
lowing function:

Definition 5.1. The Weierstrass ℘-function is defined by

℘(z) =
1

z
+
∑
ω∈Λ

′
(

1

(z − ω)2
− 1

ω2

)
, z ∈ C, z 6∈ Λ

where the primed summation means that we omit 0 in the sum.
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It is not immediately obvious that this series actually converges for z ∈ C \Λ. To see this,
we can bound the summand:∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ =

∣∣∣∣ z2 − 2zω

ω2(z − ω)2

∣∣∣∣ < Cz
|ω|3

for some constant Cz. Since the sum ∑
ω∈Λ

′ 1

ω3

does actually converge, this shows that the Weierstrass ℘-function converges for z ∈ C \Λ.
On the other hand, as z → λ for λ ∈ Λ, the quantity |℘(z)| approaches infinity, which is why
we sum over C \Λ instead of just C. The points in Λ are called poles of the function ℘(z).

We also define the Eisenstein series and other important functions:

Definition 5.2. The Eisenstein series of weight k for lattices is the function

Gk(Λ) =
∑
ω∈Λ

′ 1

ωk
, k > 2 even.

Remark 5.3. We specify that k is even because Gk(Λ) = 0 when k is odd.

Definition 5.4. We define the functions g2(Λ), g3(Λ) by

g2(τ) = 60G4(τ), g3(τ) = 140G6(τ).

Since isomorphisms of lattices and elliptic curves are equivalence relations, we can consider
the equivalence classes of these objects, which we call isomorphism classes. Our goal is to
use the Weierstrass ℘ function to show that there is a bijection between isomorphism classes
of lattices and isomorphisms classes of elliptic curves. We first show the following lemma:

Lemma 5.5. The Weierstrass ℘ function satisfies the following:

(1) For 0 < |z| < inf{|ω| : ω ∈ Λ \ {0}}, we have

℘(z) =
1

z2
+

∞∑
n=2

n≡0 (mod 2)

(n+ 1)Gn+2(Λ)zn

(2) The derivative of ℘ satisfies

(℘′(z))2 = 4(℘(z))3 − g2(Λ)℘(z)− g3(Λ)

Proof. (1) When |z| < |ω|, we have

1

(z − ω)2
− 1

ω2
=

1

ω2

(
1(

1− z
ω

)2 − 1

)
Notice that the if we differentiate both sides of the geometric series 1

1−r =
∑∞

n=0 r
n,

we get the identity 1
(1−r)2 =

∑∞
n=0(n+ 1)rn. Expanding

(
1− z

ω

)2
using this yields:

1

(z − ω)2
− 1

ω2
=

1

ω2

(
∞∑
n=0

(n+ 1)zn

ωn
− 1

)
=
∞∑
n=1

(n+ 1)zn

ωn+2
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We substitute this into the Weirstrass ℘-function and switch the double sums:

℘(z) =
1

z2
+

′∑
ω∈Λ

∞∑
n=1

(n+ 1)zn

ωn+2
=

1

z2
+
∞∑
n=1

(n+ 1)zn
′∑

ω∈Λ

1

ωn+2

Since Gk(Λ) = 0 for odd k, this is equal to

℘(z) =
1

z2
+

∞∑
n=2

n≡0 (mod 2)

(n+ 1)Gn+2(Λ)zn

as desired.
�

This means that we can construct an elliptic curve with points (℘(z), ℘′(z)), so that it has
the equation

y2 = 4x3 − g2(Λ)x− g3(Λ).

It turns out that we can go the other way as well and construct a lattice from an elliptic
curve. We first introduce the j-function:

Definition 5.6. Let Gk(τ) be the Eisenstein series of weight k,

Gk(τ) =
∑

(c,d)∈Z2

′ 1

(cτ + d)k
.

for an even integer k. We define the functions

g2(τ) = 60G4(τ), g3(τ) = 140G6(τ)

The j-function is the function

j(τ) = 1728
g3

2(τ)

g3
2(τ)− 27g2

3(τ)

Lemma 5.7. Let y2 = 4x3 − a2x − a3 be an elliptic curve. Then, there is a lattice Λ such
that a2 = g2(Λ) and a3 = g3(Λ).

Proof. We will provide a sketch of the proof; see [DS, Proposition 1.4.3] for more details.
The main idea is that the j-function is surjective on the complex plane, so there is some

τ ∈ C such that

j(τ) = 1728
a3

2

a3
2 − a2

3

This means that
g2(τ)3

g2(τ)3 − 27g3(τ)2
=

a3
2

a3
2 − 27a2

3

Clearing denominators, we have

a3
2g

3
2(τ)− 27a3

2g
2
3(τ) = a3

2g
3
2(τ)− 27a2

3g
3
2(τ)

Simplifying yields

(1)
a3

2(τ)

g3
2(τ)

=
a2

3(τ)

g2
3(τ)
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For any ω2 ∈ C, let ω1 = τω2 and Λ = ω1 Z+ω2 Z. We can show that

g2(Λ) = ω−4
2 g2(τ), g3(Λ) = ω−6

2 g3(τ)

We want to find ω1 and ω2 satisfying

ω−4
2 =

a2

g2(τ)
, ω−6

2 =
a3

g3(τ)

By 1, we have

ω−12
2 =

a3
2

g3
2(τ)

=
a2

3

g2
3(τ)

This means that ω−6
2 = ± a3

g3(τ)
, so we can choose either ω2 or iω2. Thus, we have constructed

a lattice Λ such that a2 = g2(Λ) and a3 = g3(Λ).
�

Theorem 5.8. There is a bijection between isomorphism classes of lattices and isomorphism
classes of elliptic curves of the form y2 = 4x3 − a2x − a3, where a3

2 − 27a2
3 6= 0. The

correspondence is given by a2 = g2(Λ), a3 = g3(Λ).

Proof. This result follows from Lemmas 5.5 and 5.7. �

6. Parameterization of Elliptic Curves

In this section, we show that the curves X0(N), X1(N), and X(N) parameterize isomor-
phism classes of elliptic curves along with additional data about cyclic subgroups with order
N , points of order N , and bases of the N -torsion subgroup, respectively. We start with
defining a bijection between elliptic curves and orbits of SL2(Z)/H:

Proposition 6.1. Let Eτ denote the elliptic curve associated to Λτ . Then, Eτ1
∼= Eτ2 if and

only if there exists g ∈ SL2(Z) such that τ1 = g(τ2). This yields a natural bijection between
isomorphism classes of elliptic curves and orbits SL2(Z)/H.

Proof. Suppose Eτ1
∼= Eτ2 ; we want to show that there is some g ∈ SL2(Z) such that

τ1 = g(τ2). By Corollary 4.6, we know that there is some α ∈ C such that αΛτ1 = Λτ2 . This
means that α · τ1 = aτ2 + b and α · 1 = cτ2 + d for some a, b, c, d ∈ Z.

Now suppose there is some g ∈ SL2(Z) such that τ1 = g(τ2); we want to show that
Eτ1
∼= Eτ1 . �

We now begin to describe the relationship between points on modular curves and iso-
morphism classes of elliptic curves. For an elliptic curve Eτ corresponding to the lattice
Λ = Z+Z τ , define Pτ and Qτ as the points corresponding to 1

N
and τ

N
, respectively. Ad-

ditionally, let Cτ be the cyclic subgroup of order N generated by Pτ . Then we have the
following lemma:

Lemma 6.2. Let E be an elliptic curve over C. If P is a point on E with order N , then
there exists τ ∈ H such that (E,P ) ∼= (Eτ , Pτ ). Furthermore, if C is a cyclic subgroup of E
with order N , then there exists τ ∈ H such that (E,C) ∼= (Eτ , Cτ ).

Proof. We present the proof from [Ste03, Proposition 1.4.5].
We write E = C /Λ, where the lattice Λ = Zω1 + Zω2, and ω1

ω2
∈ H. Let P = aω1

N
+ bω2

N

be a point of order N . Then, we claim that gcd(a, b,N) = 1: otherwise, we would be able
to write P = a′ω1

N ′ + b′ω2

N ′ for some N ′ < N , so P would not have order N . Notice that we



MODULAR CURVES 9

can also assume WLOG that gcd(a, b) = 1, since we can add multiples of N to a and b until
they satisfy this condition.

Since a and b are relatively prime, we can find some c, d ∈ Z such that ad− bc = 1. This
means that the complex numbers

ω′1 = aω1 + bω2, ω
′
2 = cω1 + dω2

form a basis for Λ. Let τ =
ω′
2

ω′
1

(we can replace ω2 with −ω2 if necessary to ensure that

τ ∈ H). Thus, we have an isomorphism from Λ→ Λτ defined by

ω′1 = aω1 + bω2 7→ 1, ω′2 = cω1 + dω2 7→ τ =
cω1 + dω2

aω1 + bω2

We can see that this isomorphism is division by ω′1, so it sends aω1

N
+ bω2

N
to 1

N
. This means

that P 7→ Pτ , so (E,P ) ∼= (Eτ , Pτ ) as desired.
We can deduce the second part of the lemma from the first part of the lemma. If the

cyclic subgroup C is generated by a point P of order P , we can find τ ∈ H such that
(E,P ) ∼= (Eτ , Pτ ). Since Cτ is generated by the point 1

N
, this isomorphism also maps C to

Cτ , so we are done. �

Now that we know that every pair (E,C) is isomorphic to a pair (Eτ , Cτ ) with the extra
condition that Cτ is generated by Pτ = 1

N
(and vice versa for points P of order N), we can

characterize the correspondence between points on modular curves and isomorphism classes
of elliptic curves in terms of the specific group Cτ and the specific point Pτ .

Lemma 6.3. A pair (Eτ , Cτ ) is isomorphic to a pair (Eτ ′ , Cτ ′) iff there exists g ∈ Γ0(N)
such that g(τ) = τ ′. Analogously, a pair (Eτ , Pτ ) is isomorphic to a pair (Eτ ′ , Pτ ′) iff there
exists g ∈ Γ1(N) such that g(τ) = τ ′.

Proof. We prove the first statement; the proof of the second statement is analogous.
Suppose (Eτ , Cτ ) ∼= (Eτ ′ , Cτ ′). Then, there exists some λ ∈ C satisfying λΛτ = Λτ ′ . We

can thus write

(2) λτ = aτ ′ + b, λ · 1 = cτ ′ + d

for some γ =

[
a b
c d

]
∈ SL2(Z). We want to show that γ ∈ Γ0(N), i.e. c ≡ 0 (mod N).

If we divide the second equation of 2 by N , we get λ·1
N

= c
N
τ ′ + d

N
. We assumed that

(Eτ , Cτ ) ∼= (Eτ ′ , Cτ ′), so c
N
τ ′+ d

N
must be an element of Λτ = Z τ ′+ 1

N
Z. We conclude that

c ≡ 0 (mod N), and γ ∈ Γ0(N).

Now suppose that there exists some g

[
a b
c d

]
∈ Γ0(N) such that g(τ) = τ ′. Then, if c ≡ 0

(mod N), then c
N
τ ′ + d

N
∈ Λτ ′ . Let α = cτ ′ + d; then, τ ′α = aτ ′ + b. Then, the complex

number α defines an isomorphism between Eτ and Eτ ′ that sends C to C ′, as desired. �

It turns out that the modular curves X0(N), X1(N), and X(N) will give us three ways
to parameterize elliptic curves. We have already shown a correspondence between points on
X0(N) and pairs (E,C), where C is a cyclic subgroup of E with order N ; and a correspon-
dence between points on X1(N) for pairs (E,P ) where P is a point on E with order N . The
parametrization of elliptic curves using points on X(N) will use the following map known
as the Weil pairing.
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Definition 6.4. Let E be an elliptic curve corresponding to the lattice Λτ = Z+Z τ . The
Weil pairing is a map e : E[N ] × E[N ] → Z /N Z defined by e(P,Q) = ad − bc, where
P = aτ/N + b · 1/N and Q = cτ/N + d · 1/N .

Remark 6.5. The Weil pairing is very important in number theory and algebraic geome-
try, and also has practical applications to elliptic curve cryptography and identity-based
encryption.

Example. Let Pτ and Qτ be the points on E corresponding to 1
N

and τ
N

, respectively. Then,
e(Pτ , Qτ ) = −1.

We can prove an analog of Lemmas 6.2 and 6.3 for the Weil pairing:

Lemma 6.6. If P and Q form a basis for E[N ] with e(P,Q) = −1, then there exists τ ∈ H
such that (E,P,Q) ∼= (Eτ , Pτ , Qτ ). Furthermore, (Eτ , Pτ , Qτ ) ∼= (Eτ ′ , Pτ ′ , Qτ ′) iff there is
some g ∈ Γ(N)such that γ(τ) = τ ′.

Proof. The proof is analogous to that of Lemmas 6.2 and 6.3, so we skip it. �

Combining Lemmas 6.2, 6.3, and 6.6, we have the following summary of these results:

Theorem 6.7. (1) The non-cuspidal points of X0(N) correspond to isomorphism classes
of pairs (E,C), where E is an elliptic curve and C is a cyclic subgroup of E with
order N . Two pairs (E,C) and (E,C ′) are isomorphic if there is an isomorphism
ϕ : E → E ′ such that ϕ(C) = C ′.

(2) The non-cuspidal points of X1(N) correspond to pairs (E,P ), where E is an ellip-
tic curve and P is a point of E with order N . Two pairs (E,P ) and (E,P ′) are
isomorphic if there is an isomorphism ϕ : E → E ′ such that ϕ(P ) = P ′.

(3) The non-cuspidal points of XN correspond to triples (E,P,Q), where E is an elliptic
curve and P,Q form a basis of E[N ] such that e(P,Q) = −1 ∈ Z /N Z. Two triples
(E,P,Q) and (E,P ′, Q′) are isomorphic if there is an isomorphism ϕ : E → E ′ such
that ϕ(P ) = P ′ and ϕ(Q) = Q′.

This theorem is useful in number theory because we can analyze modular curves in order
to prove statements about elliptic curves. One of the most famous examples of this is a
theorem due to Mazur and Tate:

Theorem 6.8 (Mazur–Tate). No elliptic curve over Q has a rational point of order 13.

Proof. Note that this statement is equivalent to saying that there are no rational points on
the modular curve X1(13) besides the cusps. We refer the reader to [MT73] for the proof. �

7. Modular Curves as Algebraic Curves

It turns out that we can also define modular curves as algebraic curves (so as solutions to
systems of polynomials in multiple variables). In this section, we will briefly outline some
of the properties of modular curves when viewed this way. See [DS, Chapter 7] for a more
detailed and advanced discussion of this theory.

We start by discussing the cusps of the modular curve.

Proposition 7.1. The modular curve X(1) = SL2(Z) \H∗ has one cusp. For any congruence
subgroup Γ ∈ SL2(Z), X(Γ) has finitely many cusps.

Proof. See [DS, Lemma 2.4.1] for a proof. �
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Recall that we can also construct rings and fields from curves:

Definition 7.2. The coordinate ring of an algebraic set C over a field k is the ring

k[C] = k[x1, x2, . . . , xn]/I(C)

where k is the algebraic closure of k, and I(C) is the ideal

{p ∈ k[x1, x2, . . . , xn] : p(a1, a2, . . . , an) = 0 ∀(a1, a2, . . . , an) ∈ C}
We will sometimes denote this ring O(C). An element of this ring is called a polynomial

function on C.

Definition 7.3. The function field of an algebraic set C is the fraction field of the coor-
dinate ring,

k(C) =

{
f

g
: f, g ∈ k[C], g 6= 0

}
An element of this field is called a rational function on C.

We can actually describe the function field of X(1) = X(SL2(Z) explicitly in terms of the
modular invariant:

Proposition 7.4. The function field C(X(1)) is generated by the modular invariant, i.e.
C(X(1)) = C(j).

We also have the following interesting result:

Theorem 7.5. The field extension C(X(N))/C(X(1)) is Galois with Galois group SL2(Z /N Z)/{±I},
where I is the identity matrix.

We refer the reader to Section 7.5 of [DS] for the proofs of these results.

References

[DS] Fred Diamond and Jerry Michael Shurman. A first course in modular forms, volume 228. Springer.
[MT73] Barry Mazur and John Tate. Points of order 13 on elliptic curves. Inventiones mathematicae,

22(1):41–49, 1973.
[Ste03] William Stein. Points on modular curves parameterize elliptic curves with extra structure, 2003.


	1. Introduction
	2. The Modular Group and Congruence Subgroups
	3. Compactification of Modular Curves
	4. Lattices and Elliptic Curves
	5. The Weierstrass -function
	6. Parameterization of Elliptic Curves
	7. Modular Curves as Algebraic Curves
	References

