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Chapter 1

Introduction

Invariant theory is a subsection of Abstract Algebra that studies the group actions on algebraic constructs,
specifically on their polynomial functions. The field originally studied the effect on non-changing polynomial
functions, which are deemed invariant, in the face of this mathematical action, generally against a linear

group.

The field is primarily based off of the advances made by British mathematician Arthur Cayley. A
majority of his work centered around the linear transformations of invariant algebraic forms. The advances
made within this field have led to remarkable growth in other areas of math including study of symmetric
groups and functions, commutative algebra, and Lie group representation.

The following sections will include mathematical background on Invariant Theory, Hilbert’s proof of the
Basis Theorem, and Hilbert’s Invariant Theorem.



Chapter 2

Invariant Theory: an Overview

2.1 Background

For a brief introduction, let G be a group, and V a finite vector space over k (field). For our purposes, let k
be a representation of complex numbers.

Representing our group G in V, we get the group homomorphism 7 : G — GL(V).
If k[V] is our ring of polynomial functions € V, then actions of G € V produce another action on k[V].
This is realized through this formula:

(9- )x):=f(G 1(x)) forall z € V,g € G, f € k[V].

This thus brings us to consideration of the subspaces which contain invariant polynomial functions within
this group. Therefore, we want to find an f such that g- f = f, for all g € G. This is our first space of
invariant polynomials, an it can be denoted k[V]%.



Chapter 3

Hilbert’s Theorem

A particularly important part of invariant theory are Hilbert’s set of theorems. First researched by the
German mathematician David Hilbert, the theorems build on advances established by various other European
mathematicians. A detailed analysis of the proof follows.

3.1 Introductory Definitions

The German mathematician David Hilbert used invariant theory in one of his most groundbreaking theorems,
written in 1890, that rigorously proved an open question in Invariant Theory:

If V is a finite representation of our complex group G, with G = SL,(C), then does our invariant ring
G, which acts on our polynomial R = S(V'), produce a finitely generated result?

The proof introduced the novel usage of the Reynolds operator. A common definition defines it as

R(R(9)y) = R(¢)R(¢) for all ¢ and 4.

Alternatively, this can also be defined via group notation. If G acts on V, with V = C2, then G is also
active on R = C[V] = Clx,y]. This is due to the identity (g F)(x,y) = F(g~! o (z,y)). Additionally, note
that R is a subring R of functions F(z,vy) such that ge F = F.

When group G is linearly reductive, every G-invariant subspace W of V has a G-invariant complement.
This is noted as:

V=Waew¢

Whenever group G is linearly reductive, R“ can be split as R — R: Rq = Rg oT.
This projection R — R is the RY linear map that is referred to at the Reynolds operator.
Furthermore, when G is finite,

R’(f) = ﬁdeGg.f'
The operator can also be obtained via integration.

Within the Hilbert proof, the Reynolds operator was modified, defined as an operator p from R — R®,
such that:

p(1) =1
pla+0b) = p(a) + p(b)
plab) = ap(b)

This applies when a is our set of invariants.
Using this definition, Hilbert was able to answer the above question.



3.2 Basis Theorem - Hilbert

Theorem: If R is a ring, let R[X] denote the ring of indeterminate polynomials of X over R. The basis
theorem states:

If ring R is a left Noetherian ring, then (polynomial) ring R[X] is also a left Noetherian ring.

Suppose a C R[X] is a generated, non-finite ideal. Then, observe the sequence fy, f1,... such that b, is
the left ideal of fo,..., fn—1, with f, € a b, being of a minimal degree.
Through this, it can be determined that deg(fo), deg(f1),... are a non decreasing natural sequence.

Additionally, let a,, be the leading coefficient of f,,, while also letting b be the left ideal in R. This can
be generated by the sequence ag,aq, .. ..
Since R is the Noetherian chain of ideals, (ag) C (ag,a1) C (ao, a1,az2) C ... will eventually terminate.

Then, consider b = (ag,...,an—_1) for some set of integers N. In particular, observe the form ay

= Zuiai,ui €R

<N

Then, observe

g= Z u; X dea(fn)—deg(fi)
i<N
The leading term of the above is equal to f,,. Furthermore, g € by. That being said, fy ¢ by, meaning that
fN — g € a by has a degree less than fy, thus contradicting and completing our proof.

3.3 Proof

Begin with a ring R. Grade this ring with the use of degrees. Ideal I is defined to be the ideal that is
generated by the invariants of positive outputs. Using Hilbert’s basis theorem (referred above) the ideal T is
finitely generated (solely as an ideal). Thus I is generated by a finite number of G related invariants.

Let 41,...,7, be a finite set of G invariants, which generate the ideal I. Then, show that these generate
the invariant ring Rg.

Describe = as a homogeneous invariant of degree d greater than 0. Then, define x as the following:
x =a1l; + -+ apiy for any a; in the noted ring R because x is part of ideal I.

Then, assume that note that a; is homogeneous for degree d through degree i; for all j. Finally, applying
the Reynolds operator to our x gives us:

After that, we now have to show that x lies within R that is generated via iy ... 1,.

Begin by analyzing the first case, where elements of p(ax) are lesser than d in regards to their degree.
Via an induction assumption, all elements within this case are in the respective R algebraic operator. Thus,
our z is also within this grouping. (z = p(a1)is + -+ p(an)in)

In the second case, it is impossible to determine whether all elements have a degree lesser than d. However,
it is still possible to prove the above theorem in an inductive manner. Begin by replacing each p(ax) with
its component between degree d and degree i;. This modified set of p(ay still remain as invariants, while
also having a degree lesser than d. Additionally, the equation = p(ay)i; + - -+ + p(a, )i, continues to be
true. Thus, it can be determined that z, in all magnitude, lies within the i1, ...,4, R algebra, meaning, via
induction, that all elements of R® continue to lie in the above R algebra.



