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1. Introduction

In a perfect world, we would have perfect data transmission. In our world, this is not the case.
Every time we send a message, there is a chance of something going wrong. For the transmission
of digital information in particular, the accidental swapping of a single 1 or 0 could alter the
meaning of the message. Of course, we want to minimize the likelihood of misunderstandings.
When communicating, we often do this unconsciously. For example, if you are talking to someone
standing a distance away, that person could mishear your message. To counteract this, you might
move closer to the person before talking. Additionally, if the other person doesn’t understand
what you’re saying, they can ask you to repeat yourself. In digital transmissions, where the only
information exchanged is packaged in binary strings, it can be much more difficult to notice when
an error has occurred. For example, if you are sending navigation directions to a drone, and the
drone receives a message saying “turn right” when you actually sent a command to turn left, the
drone doesn’t have any way of determining that the message it received was erroneous. What we
can do is encode our messages in such a way that the the receiving end has a better chance of
noticing any errors. This is where error correcting codes are very useful. In this paper, we will
discuss cyclic error correcting codes, their relation to rings, and explain how to represent Hamming
codes as ideals of a ring.

Definition 1.1 (code). A code of blocklength n is a set of m codewords which are n-tuples of
elements of some finite field Fq, along with a one-to-one correspondence between the codewords and
a set of m possible messages.

Remark 1.2. Note the distinction between “codeword” (an individual n-tuple representing some
message) and “code” (some set of related codewords).

Messages will usually also be tuples of elements of Fq, of some length k < n. Codewords look like
this: (s0, s1, s2, . . . , sn), where si ∈ Fq. We may also write s0s1 . . . sn to denote the same codeword.

A code is useful because it enables us to send information in a different form. An especially useful
sort of code is one that can resist errors in its transmission. That is, supposing that at most d bits
of a given codeword might be corrupted between sending and receiving the codeword, we’d like to
make a code such that the receiver can still determine with certainty which codeword was originally
sent. Some types of errors that can occur include the insertion/deletion of bits and the flipping of
bits. In our paper, we will focus on codes that can detect and correct the flipping of bits only.

Definition 1.3 (error-correcting code). An error-correcting code is a code with the property that,
if up to a certain number d of bits are incorrect, the receiver can still be certain of which codeword
was sent.

A very simple error-correcting code is the repetition code of length 3. In this code, we have a set
of qk messages, where each message is a k-tuple of elements of Fq. (Think of 2k binary messages
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for a simple example.) The codewords are each 3k-tuples of elements of Fq, where the codeword
corresponding to a message is just that message with each bit repeated 3 times. The one-to-one
correspondence is:

s0s1 . . . sk → s0s0s0s1s1s1 . . . sksksk

For example, take k = 6 and q = 2. We have 26 possible messages which are all 6-tuples of 1s and
0s. The message 010001 is sent to the codeword 000111000000000111.

This code can correct at most one error (d = 1). For example, if we receive 000111001000000111
while using the example code from above and we know that at most one bit is incorrect, then
the original codeword can only have been 000111000000000111. If there are at most two incorrect
bits, we can no longer always correct errors, but we can still detect them: we can’t know whether
000111001000000111 is a one-bit corruption of 000111000000000111 or a two-bit corruption of
000111111000000111, but we know that something has gone wrong.

We consider an error-correcting code “good” when it can correct a high number of errors without
being too long relative to the length of the messages. By this standard, repetition codes are pretty
bad: this one triples the length of the message and only corrects one error.

Codes are fine by themselves, but it’s more fun when they have some algebraic structure. We’ll get
into this more with cyclic codes, but here are some preliminary definitions.

Definition 1.4 (linear code). An error-correcting code where codewords form a vector space is
called a linear code.

In a linear code, we have a notion of “adding” codewords, and we must also be able to scalar
multiply them by the elements of some (usually finite) field. The obvious way of making a code
consisting of n-tuples of elements of Fq into a vector space is by treating the n-tuples as vectors of
dimension n over Fq, and that’s exactly what we do. More formally, addition is defined by

(s0, s1, . . . , sn) + (r0, r1, . . . rn) = (s0 + r0, s1 + r1, . . . , sn + rn)

and scalar multiplication is defined by

r(s0, s1, . . . , sn) = (rs0, rs1, . . . , rsn)

Just like in a usual vector space, there is a “zero” codeword (0, 0, . . . , 0) and each codeword has an
additive inverse.

2. Construction of Hamming Codes

We will look at a common type of error correcting code, the Hamming code. Hamming codes can
correct 1 error and possibly detect up to 2 errors (this depends on the length of the codewords).
Some places where Hamming codes are implemented include computer memory chips and satellite
communication hardware. We can generate a Hamming code from any number of bits. Since
Hamming codes correct/detect a set number of errors, regardless of their length, shorter Hamming
codes are more likely to fix errors. We’re using the Hamming code as an example because it can
be defined both with and without abstract algebra. First, let’s define bitwise addition:

Definition 2.1 (bitwise sum). The bitwise sum (or bitwise XOR) of two bits is defined as follows:

a⊕ b =

{
0 if a = b = 0 or if a = b = 1

1 if a = 1, b = 0 or if a = 0, b = 1
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The bitwise sum is essentially addition modulo 2.

Here’s how we can construct a Hamming code for a message in binary:

(1) Label each bit position in the codeword with the binary representation of its position.
(Label the bit in position 1 as 01, position 2 as 10, position 3 as 11, etc). We will denote
the nth bit in our Hamming codeword as hn.

(2) Reserve the bits that correspond to powers of 2 (these have binary representation 100...)
for parity bits. The bit positions that don’t correspond to powers of 2 are our data bits.

(3) We “fill in” our data bits by slotting in the bits we want to transmit. If we let dn denote
the nth bit in the message we want to transmit, then d1 = h3, d2 = h5, d3 = h6, d4 = h7,
d5 = h9, etc.

(4) We construct the parity bits as following:
(a) For parity bit 1, take the bitwise sum of the other bits in positions whose binary

representations end in 1: p1 = h3 ⊕ h5 ⊕ h7 ⊕⊕h9 ⊕ . . ..
(b) For parity bit 2, take the bitwise sum of the other bits in positions whose binary

representations have a 1 in the second to last position: p2 = h3⊕h6⊕h7⊕h10⊕h11⊕. . .
(c) For parity bit 3, take the bitwise sum of the other bits in positions whose binary

representations have a 1 in the third to last position: p3 = h5⊕h6⊕h7⊕h12⊕h13⊕ . . .
(d) For parity bit n, take the bitwise sum of the other bits in positions whose binary

representations have a 1 in the nth to last position.
(5) We fill in our parity bits by assigning parity bit n to the position corresponding to 2n−1, so

p1 = h1, p2 = h2, p3 = h4, p4 = h8, etc.

Let’s actually construct a Hamming code for a message with length 4: 1011.

First, let’s put in our data bits:
h1 h2 h3 h4 h5 h6 h7

1 0 1 1

Next, we have to construct our parity bits:

p1 = h3 ⊕ h5 ⊕ h7 = 1⊕ 0⊕ 1 = 0

p2 = h3 ⊕ h6 ⊕ h7 = 1⊕ 1⊕ 1 = 1

p3 = h5 ⊕ h6 ⊕ h7 = 0 + 1 + 1 = 0

Plugging in our parity bits, we get:
h1 h2 h3 h4 h5 h6 h7
0 1 1 0 0 1 1

So our codeword is 0110011.

3. Matrix Generation of Hamming Codes

While it is relatively simple to construct Hamming codes manually, we can use some matrices to
make it even easier. For the (7,4) Hamming code, we can construct a codeword for the message
d1d2d3d4 by taking the product of the following matrices:

(1)
[
d1 d2 d3 d4

] 
1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1
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Notice that evaluating this matrix results in a 7 bit codeword1:

(2) [d1, d2, d3, d4, d1 + d2 + d4, d1 + d3 + d4, d2 + d3 + d4]

The last three bits are equivalent to our three parity check bits! Recall that h3 = d1, h5 = d2, h6 =
d3 and h7 = d4, so we have

p1 = h3 ⊕ h5 ⊕ h7 = d1 ⊕ d2 ⊕ d4
p2 = h3 ⊕ h6 ⊕ h7 = d1 ⊕ d3 ⊕ d4
p3 = h5 ⊕ h6 ⊕ h7 = d2 ⊕ d3 ⊕ d4

To construct a generator matrix for any binary Hamming code, start by constructing an identity
matrix with the same number of rows as the number of bits in the message to be encoded. Next,

for each parity bit, adjoin a column to the right of the matrix. For each column


c1
c2
...
cj

, let ci = 1 if

di is part of the XOR sum of message bits for the corresponding parity check bit and let ci = 0 if
it isn’t.

4. Decoding Hamming Codes

We know the positions of the data bits and the parity bits, so, in theory, we could just look at
the data bits. The issue is, the whole purpose of error correcting codes is to fix errors. So, while
we could just observe the relevant data bits and ignore the parity bits, this method of “decoding”
doesn’t help us detect or correct errors.

There are actually several ways to decode Hamming codes. The first way is to compare the received
codeword to a list of all possible Hamming codewords of the same length and their decoded versions.
If the received codeword matches a codeword on the list, then great! If the received codeword
doesn’t match any of the codewords on the list, then just choose the codeword that is most similar
to it, and assume that the decoded version of that codeword is the original message. This is
not often used because, especially for longer Hamming codes, checking through long lists of every
possible codeword is rather time consuming.

The second way to decode Hamming codes is a bit more magical. Let’s look at the decoding matrix
for (7,4) Hamming codes. Suppose we have a codeword h1h2h3h4h5h6h7, where h5, h6, h7 are the

1The order of the data/parity bits is different here - instead of placing the parity bits at positions corresponding
to powers of two, this matrix places them all after the data bits. We can swap the columns of the matrix in order
to produce the correct arrangement of data/parity bits, but for the sake of keeping things simple, more rigorous
confirmation of this is left as an exercise to the reader.
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parity bits2. To decode it, evaluate the product of the following matrices:

(3)

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1




h1
h2
h3
h4
h5
h6
h7


=

s1s2
s3



Evaluating this gives us a 3-bit vector, s1s2s3, called the error syndrome (or syndrome). Here’s the
really magical part: if exactly one error occurred, the syndrome will tell us exactly what position
the faulty bit is located at in our encoded word. Since we’re working in binary, we can then fix the
error by fixing the bit in the specified position. After that, we can reconstruct the original message
by just considering the data bits in the encoded message.

Let’s look at an example. Suppose we want to decode 1011010 (this is the codeword we constructed
earlier, just with the bits rearranged so the parity bits are all at the end). But suppose one bit got
flipped, and instead of receiving 1011010, we received 1001010 (the third bit got flipped). We can
use a check matrix to help us find the syndrome:

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1




1
0
0
1
0
1
0


=

s1 = h1 + h2 + h4 + h5
s2 = h1 + h3 + h4 + h6
s3 = h2 + h3 + h4 + h7



We find that

s1 = 1⊕ 0⊕ 1⊕ 0 = 0

s2 = 1⊕ 0⊕ 1⊕ 1 = 1

s3 = 0⊕ 0⊕ 1⊕ 0 = 1

Guess what? 011 is the binary representation of 3! This tells us that the error occurred in the
3rd spot, so we can change 1001010 ⇒ 1011010. This tells us the correct encoded version of our
message, and we can decode it simply by ignoring the parity bits.

The reason why this check matrix works is very similar to why the generator matrix works. Just
evaluate the “hard” way and it will make sense.

5. Finite Fields

In order to focus on codes and rings, we’ve left out some proofs about finite fields. But... Here Are
Some FaCtS3:

2Just as before, we can rearrange this matrix to fit the convention of placing parity bits at positions corresponding
to powers of two. Again, we leave the verification of this as an exercise for the reader.

3The verification of these facts is left as an exercise to the reader. Alternatively, they can be found in [1] and [2].
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(1) Every finite field is of the form Fpk , meaning it has pk elements, with p prime. For every
prime p and integer k, there is a finite field Fpk . We will sometimes denote finite fields by
Fq, where q might be prime or a prime power.

(2) All finite fields of the same order are isomorphic.
(3) The characteristic of Fpk is p, which is also the size of its smallest subfield Fp. For any

α ∈ Fpk , pα = 0.
(4) Fpn is a subfield of Fpk iff n|k.
(5) Every finite field Fpk has at least one primitive element (element of multiplicative order

pk − 1).

(6) The elements of Fpk are precisely the roots of xp
k − x.

(7) If α ∈ Fpk and Fpn is a subfield of Fpk , then α has an irreducible minimal polynomial over
Fpn with coefficients in Fpn .

(8) A finite field forms a vector space over any of its subfields.
(9) Finite fields have a Galois theory. The Galois group of the extension Fpk/Fp is cyclic and

generated by the automorphism σ(α) = αp. The Galois group of the extension Fpk/Fpm is

cyclic and generated by the automorphism σ(α) = αpm .

6. Cyclic Codes with Rings

Cyclic codes are a type of linear error-correcting code with an interesting representation that
involves polynomial rings over finite fields.

Cyclic codes are defined as codes in which any cyclic shift of a codeword is also a codeword. A
cyclic code of block length n can be represented using the ring Rn = Fq[x]/(xn−1). Each codeword
corresponds to a polynomial in the ring, with the correspondence given by

c0c1c2 . . . cn−1 ⇐⇒ c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1

Notice that, because we are quotienting by (xn−1), multiplication by x corresponds to a rightward
shift c0c1 . . . cn → cnc0 . . . cn−1:

x(c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1)

= c0x+ c1x
2 + c2x

3 + · · ·+ cn−1x
n

= cn + c0x+ c1x
2 + · · ·+ cn−2x

n−1

A cyclic code of block length n, since it is a linear code, is closed under addition. Since it is closed
under multiplication by any power of x and any element of Fq, a cyclic code is also closed under
multiplication by any polynomial in Rn. Thus, every cyclic code over Fq of block length n is an
ideal of Rn. But what sort of ideal?

Every cyclic code C contains a unique monic polynomial g(x) of least degree (if there were two,
we could subtract them in such a way to get a polynomial of lesser degree). Now consider some
codeword f(x) ∈ C. We can use polynomial division to write f(x) = h(x)g(x) + r(x), where the
remainder r(x) has degree less than g(x). Since g(x) is of minimal degree, that means r(x) = 0,
and we conclude that the polynomial representation of every codeword in C is divisible by g(x).
Thus, C can be represented by a polynomial ideal, (g(x)). We call g(x) the generator of C because
every codeword in C can be generated from it. We know that the code is exactly the ideal (g(x))
because cyclic codes are closed under multiplication.

A natural question to ask is, what sort of polynomials can be generators? That question determines
exactly what the cyclic codes of blocklength n over Fq are, and fortunately it can be answered fully.
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We use polynomial division again: xn − 1 = h(x)g(x) + r(x), where r(x) has degree less than g(x)
and is therefore 0. So, a generator must be a factor of xn− 1. We start by developing some theory
that will help us factor xn − 1.

The q-cyclotomic cosets modulo n partition the integers modulo n, meaning they split the integers
into disjoint sets sort of like the cosets of a subgroup. For q relatively prime to n, the cyclotomic
cosets mod n are the “cosets” of the sequence 1, q, q2, q3, . . . qr−1 where qr ≡ 1 (mod n). The q-
cyclotomic coset of m (mod n) is Cm = {m,mq,mq2, . . .mqr−1}, where each term in the sequence
is evaluated modulo n.

For example, the 3-cyclotomic cosets mod 14 are:

C1 = {1, 3, 9, 13, 11, 5}
C2 = {2, 6, 4, 12, 8, 10}

C7 = {7}
C0 = {0}

The 2-cyclotomic cosets mod 15 are:
C1 = {1, 2, 4, 8}
C3 = {3, 6, 12, 9}
C5 = {5, 10}

C7 = {7, 14, 13, 11}
C0 = {0}

Now, let’s see why cyclotomic cosets are useful. Suppose we have the polynomial xn − 1 in Fq[x]
where q and n are relatively prime. To learn more about how to factor it, we want to find some field
extension Fqt/Fq such that xn − 1 has a root α in Fqt . This happens precisely when Fqt contains

an nth root of unity, which, since nonzero elements of Fqt are roots of xq
t−1 − 1, happens precisely

when n|(qt − 1). Suppose we’ve found such an Fqt , so let α ∈ Fqt be an nth root of unity. Then,
take some m < n and construct the set

Sm = {αm, αmq, αmq2 , αmq3 , . . . , αmqn−1}
where we raise α to every element of Cm. If we do this construction for every q-cyclotomic coset
mod n, the Sm’s will partition the powers of α.

Now consider the minimal polynomial f(x) with a root αm and coefficients in Fq. We can write

f(αm) = a0 + a1α
m + · · ·+ arα

mr = 0.

Now recall that σ(x) = xq for all x ∈ Fqt is an automorphism of Fqt which fixes Fq
4 and therefore

all of the ai’s. We have

σ(f(αm)) = σ(a0) + σ(a1α
m) + · · ·+ σ(arα

mr) = a0 + a1α
mq + · · ·+ arα

mrq = f(αmq)

but since that’s all still equal to 0, we can conclude that αmq is also a root of f(x). In fact, through
repeated application of σ, we see that the roots of f(x) are precisely the elements of Sm. We have

f(x) =
∏
i∈Cm

(x− αi).

This means f(x) divides xn − 1, since every αi is a root of xn − 1. We can construct a minimal
polynomial like this for the elements of every Sm, so xn−1 can be factored into minimal polynomials

4Following from one of our Field FaCtS, xq = x for all x ∈ Fqt
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where each minimal polynomial corresponds to some Cm and has roots equal to the elements Sm.
For example, the factorization of x15 − 1 in F2 is

x15 − 1 = (x+ 1)(x4 + x+ 1)(x4 + x3 + x2 + x+ 1)(x2 + x+ 1)(x4 + x3 + 1)

where each factor corresponds to a 2-cyclotomic coset mod 15, with the correspondence given below.

Coset Minimal Polynomial Roots
C1 (x4 + x+ 1) α, α2, α4, α8

C3 (x4 + x3 + x2 + 1) α3, α6, α12, α9

C5 (x2 + x+ 1) α5, α10

C7 (x4 + x3 + 1) α7, α14, α13, α11

C0 (x+ 1) α0

Table 1. The 2-cyclotomic cosets mod 15.

Here α is a primitive element of F16. (Remember that F16 has a primitive 15th root of unity because
15|(16− 1), which satisfies the requirement we set earlier.) Since the minimal polynomials are over
F2, the only values they can take are 0 and 1. That explains why, for example, (x + 1) evaluated
at α0 gives α0 + 1 = 1 + 1 = 0.

Since we have completely factored xn− 1, we have also completely determined the possible genera-
tors: they are the polynomials f(x) which are the minimal polynomial of some Sm or the product
of such minimal polynomials. Every cyclic code over Fq of block length n corresponds to the ideal
generated by one of these polynomials. Thus, if xn − 1 factors into m irreducible polynomials over
Fq, there are a total of 2m possible generators and 2m cyclic codes over Fq of blocklength n. (Here
we’re counting xn−1 and 1 as generators, even though they don’t produce especially useful codes.)

For example, there is a cyclic code of block length 15 over F2 where each element is a member of
the polynomial ideal (x4 + x+ 1) of F2[x]/(x15− 1), and also a cyclic code of block length 15 over
F2 where each element is a member of the polynomial ideal ((x+ 1)(x2 + x+ 1)) of Rn.

It’s nice that C is generated by g(x), but we can actually find a better polynomial than g(x) to
generate C with. Remember that we can write xn−1 = h(x)g(x) for some h(x) ∈ C. Since xn−1 is
the product of distinct irreducible polynomials, gcd(g(x), h(x)) = 1, so for some a(x), b(x) ∈ Fq[x],

a(x)g(x) + b(x)h(x) = 1.

Consider e(x) = a(x)g(x) as an element of Rn; specifically, consider

(e(x))2 = e(x)(1− b(x)h(x)) = e(x)− a(x)b(x)g(x)h(x) = e(x)− a(x)b(x)(xn − 1) = e(x).

Thus e(x) is an idempotent element of Rn. But, it has an even more special role as an element
of C: take some f(x) ∈ C and consider e(x)f(x) as an element of C. Recall that if g(x) is the
generator of C, we can write f(x) = g(x)k(x) for some k(x), so we have

e(x)f(x) = (1−b(x)h(x))g(x)k(x) = g(x)k(x)−b(x)k(x)f(x)g(x) = f(x)−b(x)k(x)(xn−1) = f(x)

Thus, e(x) acts as a multiplicative unit for every element of C (though not necessarily for every
element of Rn). This is great, because since g(x)e(x) = g(x) and (g(x)e(x)) ⊆ (e(x)), we have
(g(x)) = C ⊆ (e(x)). Also, since e(x) ∈ C, we have (e(x)) ⊆ C, so C = (e(x)). In summary, every
cyclic code can be expressed as the polynomial ideal generated by some polynomial e(x) which is
an idempotent element of Rn and acts as a unit in C.
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7. Hamming Codes as Cyclic Codes

Before we start discussing exactly how to represent Hamming codes as cyclic codes, we would like to
note that although certain positioning conventions are favored, the positioning of the parity check
bits doesn’t actually matter for the general Hamming code. However, when discussing Hamming
codes as cyclic codes, we typically put all of the parity bits at the beginning of the codeword
because not every configuration of parity bits will work. For the (7,4) Hamming code, each seven-
bit codeword would be of the form p1p2p3d1d2d3d4, where p1p2p3 are the parity bits and d1d2d3d4
are the data bits.

So, if we have any codeword, for example 0101011 (yes, same codeword as before), then 1010110,
generated by shifting every bit by one position, is also a codeword. For Hamming codes of specified
lengths (e.g. the (7,4) Hamming code), it is easy enough to verify this is actually true for a given
code by checking that each codeword shifted by one position is indeed another codeword.

Now that we know Hamming codes can be represented as cyclic codes, we can consider the associated
set of polynomials used to define codewords. For example, a generator polynomial of the (7,4)
Hamming code is

g(x) = x3 + x+ 1(4)

There are other polynomials that can also be used as generators (for example, x3 +x2 + 1), but we
will focus on g(x) for this paper. Most of what we do in the following sections can be done with
other minimal polynomials.

Consider the polynomial g(x) = x3 + x + 1. g(x) doesn’t have any roots in F2, but if we consider
it in R7 = F8[x]/(x7 − 1), then it has some root α in F8 and g(α) = 0. Additionally, any codeword
is a multiple of g(x), so codeword c(x) = f(x)g(x) (for some f(x) ∈ R7) always satisfies c(α) = 0.
In fact, since g(x) is equal to the minimal polynomial of α, we know that all of the polynomials
p(x) ∈ R[x] that satisfy p(α) = 0 must be multiples of g(x). We can actually think of (g(x))
as an ideal of R7. We purposely choose generator polynomials such that they are the minimal
polynomials of primitive roots in our desired field.

Let’s formalize this argument:

Theorem 7.1. Let’s define a code, C, with codewords c = (c0, c1, . . . , cn−1) where c0, . . . , cn−1 ∈ F2

are the individual bits in the codeword c such that

c0 + c1α+ · · ·+ cn−1α
n−1 = 0

for some α ∈ F2m, where α is an nth root of unity. C is an (n, n − m) binary cyclic code with
generator g(x), the minimal polynomial of α. (Where n = 2m − 1). Furthermore, C is a Hamming
code.

Proof. First, every codeword has length n because we defined them them as such. To show that C
is a linear code, we need to show that the sum of any two codewords produces another codeword.
Let’s add two codewords c and d. Since c(α) = 0 and d(α) = 0, we know that (c+d)(α) = 0, thus
(c + d) is also a codeword.

Now, let’s show that C is cyclic. We can generate a codeword c′ by evaluating c′ = cx, and we
know that c′ is a codeword because it satisfies c′(α) = 0. But recall that αn = 1 since α is an nth
root of unity, so c′ is actually equivalent to c with all of its bits shifted by one position:

(c0 + c1α+ · · ·+ cn−1α
n−1)α = cn−1 + c0α+ c1α

2 + · · ·+ cn−2α
n−2
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In other words, we can shift the bits in the codeword by a set position and get another codeword.
This shows that C is cyclic.

Finally, we want to show that C is a Hamming code. Sorry to disappoint, but we can’t do this
without introducing some more terminology.

Short Interlude on Distance and Weight
The Hamming distance between two codewords is the number of positions in which their bits differ.
For example, 1001 and 0111 have a Hamming distance of 3. The minimum distance of a code is
defined as the minimum Hamming distance between any two codewords in the code. The weight
of a codeword is the number of nonzero elements in it. For example, the weight of 0111 is 3. The
minimum weight of a code is defined as the minimum weight of all of the nonzero codewords in the
code. It turns out that the minimum distance of any linear code is equal to the minimum weight
of that code5. Also, all codes with a minimum distance of 3 are Hamming codes6.

Back to the Proof
We want to show that C is a Hamming code. It suffices to show that the minimum distance of C is
equal to 3. To do this, let’s determine the minimum weight of C. It turns out that the minimum
weight of C is 3. We can verify this by checking that C can’t have a minimum weight of 1 or 2.

Let’s check what happens when the minimum weight is 1. Then 1000..., 0100..., 0010..., etc. are
all codewords. But 1000... can’t be a codeword, as it has c0 = 1, c1 = c2 = · · · = cn−1 = 0, so
it doesn’t satisfy c0 + c1α + · · · + cn−1α

n−1 = 0. Furthermore, if 0100..., 0010..., 0001..., etc. are
codewords, then we must have α = α2 = · · · = αn−1 = 0. This is not possible because 0 ∈ F2, but
α 6∈ F2.

Let’s see what happens if we let the minimum weight equal 2. Then we have codewords that have
ck = cj = 1, all other ci = 0. Since codewords must satisfy c0 + c1α+ · · ·+ cn−1α

n−1 = 0, we have

αk + αj = 0. If we assume without loss of generality that k > j, then we have αj(αk−j + 1) = 0.
As we explained earlier, αj can’t be equal to 0. (αk−j + 1) = 0 is also not possible. Since we’re
working with bitwise sums, the equation is satisfied when αk−j = 1. But the lowest power of α
that is equal to 1 is αn = 1. Since j, k ≤ n− 1, we know that k − j < n, so αk−j can’t possibly be
equal to 1.

Finally, let’s verify that everything works properly when we consider a minimum weight of 3. We
end up with αi +αj +αk = 0 for some i, j, k ≤ n− 1. We have many codewords with weight 3, and
since the weight of a code only considers the smallest weight of any codewords, we know that the
minimum weight of the code can be equal to 3. �

Let’s see what this looks like with our favorite example, the (7,4) Hamming code. Table 2. shows
the polynomial representations of codewords for a (7,4) Hamming code:

As shown in the table, every codeword can be represented as a multiple of the generating polynomial.

5Here is an explanation from Stackexchange: https://cs.stackexchange.com/questions/20105/

compute-minimum-hamming-distance-of-a-code
6Here is another explanation from Stackexchange: https://math.stackexchange.com/questions/2490293/

proove-that-hamming-distance-is-three-for-hamming7-4

https://cs.stackexchange.com/questions/20105/compute-minimum-hamming-distance-of-a-code
https://cs.stackexchange.com/questions/20105/compute-minimum-hamming-distance-of-a-code
https://math.stackexchange.com/questions/2490293/proove-that-hamming-distance-is-three-for-hamming7-4
https://math.stackexchange.com/questions/2490293/proove-that-hamming-distance-is-three-for-hamming7-4
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Polynomial Binary Codeword Message
0(x3 + x+ 1) = 0 0000000 0000

x3 + x+ 1 0001011 1011
x4 + x2 + x 0010110 0110
x5 + x3 + x2 0101100 1100
x6 + x4 + x3 1011000 1000
x5 + x4 + 1 0110001 0001
x6 + x5 + x 1100010 0010
x6 + x2 + 1 1000101 0101

(x+ 1)(x3 + x+ 1) = x4 + x3 + x2 + 1 0011101 1101
x(x+ 1)(x3 + x+ 1) = x5 + x4 + x3 + x 0111010 1010
x2(x+ 1)(x3 + x+ 1) = x6 + x5 + x4 + x2 1110100 0100
x3(x+ 1)(x3 + x+ 1) = x6 + x5 + x3 + 1 1101001 1001
x4(x+ 1)(x3 + x+ 1) = x6 + x4 + x+ 1 1010011 0011
x5(x+ 1)(x3 + x+ 1) = x5 + x2 + x+ 1 0100111 0111
x6(x+ 1)(x3 + x+ 1) = x6 + x3 + x2 + x 1001110 1110

(x3 + x2 + 1)(x3 + x+ 1) = x6 + x5 + x4 + x3 + x2 + x+ 1 1111111 1111
Table 2. Polynomial representation of codewords for a (7,4) Hamming code.

8. Hamming Codes as Ideals of Rings

Earlier, we proved that every cyclic code is an ideal of Fq[x]/(xn−1) and every ideal of Fq[x]/(xn−1)
is a cyclic code. This means that we can consider the generating polynomial g(x) = x3 + x + 1
as an ideal in the ring F2[x]/(xn − 1). This makes some things more clear. For example, it is
obvious that xn − 1 = 0 is true. Furthermore, while the Hamming code is simple enough that we
can define it without abstract algebra, this is not always the case. For example, codes over the ring
Z4 warranted an entire chapter in Huffman and Pless’ Fundamentals of Error-Correcting Codes.
Being able to represent codes with rings gives us another perspective on them. And, regardless of
their complexity, thinking about codes as components of rings, fields, or other structures makes the
inherent algebraic structure of the codes themselves much more obvious.
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