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1 Introduction

This paper discusses an elementary proof of the Nullstellensatz given by Rita-
brata Munshi during his undegraduate studies.

The letter R will always stand for an integral domain, and K will stand for
its field of fractions. We assume familiarity with the notion of an ideal. For the
present purposes, an R -algebra A will mean a commutative ring A that contains
R as a subring. The polynomial R -algebra R [x1, · · · , xn] may be viewed as
R [x1] [x2, . . . , xn] or as R [x1, . . . , xn−1] [xn] . Polynomials in R [x1, . . . , xn] have
degrees in each variable, and a total degree. It is convenient to let the zero
polynomial have (total) degree −∞. In R[x], we then have

deg(fg) = deg(f) + deg(g)

and
deg(f + g) ≤ max(deg(f),deg(g))

for all polynomials f and g. Proofs of results about polynomials often proceed
by inductive arguments in which one lowers degrees of polynomials by taking
appropriate linear combinations. Munshi’s new proof of the Nullstellensatz car-
ries that simple idea to extreme lengths, introducing a simple and precise way
to carry out such inductions when there are many variables.

2 Preliminaries

The reader must be comfortable with the following facts that enter implicitly
or explicitly in the arguments.

Proposition 2.1. The ring R [x1, . . . , xn] is an integral domain.

Indeed, by induction on n, it suffices to show this for n = 1. Here deg(fg) ≥ 0
if and only if both deg(f) ≥ 0 and deg(g) ≥ 0, which means that fg 6= 0 if and
only if both f 6= 0 and g 6= 0

We recall that a (proper) ideal P in R is prime if xy ∈ P implies x ∈ P or
y ∈ P P is maximal if it is not properly contained in a larger (proper) ideal.
A maximal ideal is a prime ideal. An element p of an integral domain R is
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irreducible if it is not zero and not a unit, and if p = ab implies that either
a or b is a unit. This is one possible generalization of the notion of a prime
number in Z. Here is another. An element p is prime if the principal ideal
(p) = {rp | r ∈ R} is a prime ideal.

Proposition 2.2. Every prime element is irreducible, but not conversely.

An integral domain R is a principal ideal domain (PID) if every ideal I in
R is principal. Here the converse does hold in view of the following stronger
result.

Proposition 2.3. If R is a PID, then p is irreducible if and only if (p) is
maximal.

Indeed, if (p) ⊂ (q), then p = rq, and if p is irreducible, then r must be a
unit and (p) = (q)

Proposition 2.4. If F is a field, then F [x] is a PID.

An integral domain R is a unique factorization domain (UFD) if every
nonzero element a that is not a unit can be written as a finite product of irre-
ducible elements, uniquely up to order of factors and multiplication by units.
That is, if a = p1 · · · pm and a = q1 . . . .qn, then m = n and, after reordering,
qi = uipi for a unit ui

Theorem 2.1. Every principal ideal domain is a unique factorization domain.

Theorem 2.2. If R is a unique factorization domain, then so is R [x1, . . . , xn]

Again, the proof is by induction on n. Of course, Theorem 2.6 would be
false if UFD were replaced by PID, since x1 would be an irreducible element
such that (x1) is not maximal.

3 The Nullstellensatz

Consider the fields R and C of real and complex numbers. In R[x], the poly-
nomial x2 + 1 is irreducible. The quotient field R[x]/

(
x2 + 1

)
is a copy of C :

we have adjoined i =
√
−1

Theorem 3.1 (Fundamental theorem of algebra.). Every polynomial f in C[x]
has a root a in C. Thus, if f is monic, it splits completely as a product of linear
polynomials x− ai

This means that the only maximal ideals in C[x] are the principal ideals
(x− a) A field F with the property of the conclusion is said to be algebraically
closed. The Nullstellensatz says that this property propagates to polynomials
in many variables.
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Theorem 3.2 (Nullstellensatz). Let F be an algebraically closed field. Then
an ideal M in F [x1, . . . , xn] is maximal if and only if there are elements ai in
F such that M is the ideal generated by the elements xi − ai; that is,

M = (x1 − a1, . . . , xn − an)

The name ”Nullstellensatz,” or ”zero-place theorem,” comes from the fol-
lowing consequence.

Corollary 3.1. If I is a proper ideal of F [x1, . . . , xn] , then there is an element

a = (a1, . . . , an) in Fn such that f(a) = 0 for all f in I

Proof. The ideal I is contained in some maximal ideal (x1 − a1, . . . , xn − an)

The new proof of the Nullstellensatz is a direct consequence of the following
theorem, which a priori has nothing to do with algebraically closed fields.

Theorem 3.3 (Munshi). Assume that the intersection of the nonzero prime
ideals of R is zero. If M is a maximal ideal in R [x1, . . . , xn] , then M ∩R 6= 0

The following result, which is equivalent to Kaplansky’s [3, Thm. 21, p. 14],
is used in the proof of Munshi’s theorem, and a special case of it enters into the
application of Munshi’s theorem to the proof of the Nullstellensatz.

Theorem 3.4 (Kaplansky). The intersection of the nonzero prime ideals of
R[x] is zero.

Proof of the Nullstellensatz. An ideal (x1 − a1, . . . , x− an) is maximal since

F [x1, . . . , xn] / (x1 − a1, . . . , x− an)

is clearly isomorphic to F and is thus a field. Conversely, let M be a maximal
ideal in F [x1, . . . , xn] , where n ≥ 2. Regard F [x1, . . . , xn] as F [x1] [x2, . . . , xn] .
By Kaplansky’s theorem, the integral domain F [x1] satisfies the hypothesis on
R in Munshi’s theorem. Therefore there is a nonzero element f in M ∩ F [x1].
since F is algebraically closed, f splits into a product of linear factors. Because
f is in M and M is maximal (and hence prime), at least one of those linear
factors, say x1 − a1 is in M. The same argument gives an element xi − ai in M
for each i, 1 ≤ i ≤ n Then

(x1 − a1, . . . , xn − an) ⊂M

since (x1 − a1, . . . , xn − an) is maximal, equality holds and we are done.
Theorem 3.2 is actually the ”weak form” of the Nullstellensatz. For complete-
ness, and because it is the real starting point of algebraic geometry, we explain
how little more is needed to prove the ”strong form” of the Nullstellensatz in
Section 6
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4 The proof of Kaplansky’s theorem

We need a definition and some lemmas to prove Kaplansky’s theorem.

Definition 4.1. R is of finite type if K is finitely generated as an R -algebra;
that is, there are finitely many elements k1, . . . , kn of K such that every element
of K is a polynomial in the ki with coefficients in R

Equivalently, R is of finite type if there exist elements k1, . . . , kn ∈ K s.t.
the evaluation homomorphism at k = (k1, . . . , kn)

φk : R [X1, . . . , Xn]→ A

is surjective;
thus, by applying the first isomorphism theorem K ' R [X1, . . . , Xn] /ker (φk)

Lemma 4.1. If R is of finite type, then K is generated over R by a single
element k, so that every element of K is a polynomial in k with coefficents in R

Proof. Let K be generated by elements k1, . . . , kn, where ki = ai/bi with ai and
bi in R. Let k = 1/b1 · · · bn. If r1 = a1b2 · · · bn, then k1 = r1k, and similarly
for the other ki. Therefore, since every element of R is a polynomial in the ki,
every element of R is a polynomial in k

Setting k = 1/c, we see that c is a nonzero element of R such that every
element of K is a polynomial in 1/c with coefficients in R. We may write
K = R[1/c]

Lemma 4.2. The following conditions on a nonzero element c of R are equiv-
alent:

(i) c is in the intersection of the nonzero prime ideals of R

(ii) every nonzero ideal I of R contains some power of c

(iii) K = R[1/c]

Proof. (i) =⇒ (ii). Assume that no power of c is in I and let P be an ideal
maximal among those that contain I but do not contain any power of c. Such
a P exists by Zorn’s lemma (or more directly if R is Noetherian, when any
ascending chain of ideals stabilizes after finitely many stages). Then P is prime.
Indeed, if ab is in P and neither a nor b is in P, then both (P, a) and (P, b)
properly contain P

and therefore each of these ideals contains some power of c, say p+ ra = cm

and q + sb = cn for some elements p, q in P and r, s in R. The product of
these two elements is a power of c that lies in P, which is a contradiction. This
shows that P is a prime ideal that does not contain c, which is contrary to (i).
Therefore some power of c must be in I (ii) =⇒ (iii). For any nonzero b in R,
some power cn of c is in the ideal (b), say rb = cn. Then, in K, 1/b = r/cn. This
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implies (iii). (iii) =⇒ (i). Let P be any nonzero prime ideal of R, let b be a
nonzero element of P, and write 1/b = r/cn. Then br = cn is in P, hence c is in
P

Lemma 4.3. If R is a PID, then R is of finite type if and only if, up to units,
it has only finitely many prime elements pi

Proof. If c is a nonzero element of R, then c is a product of finitely many prime
elements pi, by Proposition 2.3 and Theorem 2.5. The equivalence of (iii) and
in Lemma 4.3 implies that K = R[1/c] if and only if, up to units, the pi are the
only prime elements in R

Lemma 4.4. Let S be an integral domain such that R ⊂ S ⊂ K. If R is of
finite type, then so is S

Proof. Observe that K is also the field of fractions of S. If K = R[1/c], then
K = S[1/c]

Lemma 4.5. The polynomial ring K[x] has infinitely many prime ideals.

Proof. By Proposition 2.4, K[x] is a PID, and it has infinitely many monic
irreducible polynomials. Indeed, Euclid’s proof that there are infinitely many
prime numbers applies: if p1, . . . , pn were a complete list of the irreducible
monic polynomials in K[x], then q = 1 + p1 · · · pn would be a monic polynomial
divisible by none of the pi. since irreducible polynomials are prime elements, by
Proposition 2.3, the conclusion follows.

Proof of Kaplansky’s theorem Suppose that c is a nonzero element of R[x]
that is in every nonzero prime ideal of R[x]. Let L be the field of fractions
of R[x]. By Lemma 4.3, L = R[x][1/c]. since L contains K and x, we have
R[x] ⊂ K[x] ⊂ L since R[x] is of finite type, so is K[x], by Lemma 4.5. Lemma
4.4 implies that K[x] has only finitely many monic irreducible polynomials, but
Lemma 4.6 ensures that K[x] has infinitely many monic irreducible polynomials.
The contradiction proves the result.

5 The proof of Munshi’s theorem.

We first prove the case n = 1, then the case n = 2. It will be immediately
apparent that the same argument applies to prove the general case, at the price
of just a little added notational complexity.

Let n = 1, write x = x1, and assume that M ∩ R = 0, contrary to the
conclusion of the theorem. Let f(x) = a0x

k +a1x
k−1 + · · ·+ak be a polynomial

of minimal degree in M, where ai is in R and a0 6= 0. Then our assumption is
that k ≥ 1. By hypothesis, there is a nonzero prime ideal P of R such that a0 is
not in P. Let p be a nonzero element of P. since p is in R, p is not in M. Thus
(M,p) = R[x]. Let S = R − P . For each s in S, we can choose a polynomial
gs(x) in R[x] such that pgs(x) + s is in M. since s is not in P, s is not in (p)
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and pgs(x) + s 6= 0. Note that gs(x) and gs(x) + s have the same degree. Here
gs(x) need not be unique, and we agree to choose gs(x) to be of minimal degree
among all possible choices. since pgs(x) + s is in M, its degree is at least k

Now choose an element s0 of S such that gs0(x) has minimal degree among
all gs(x). Write gs0(x) = b0x

j + b1x
j−1 + · · · + bj with b0 6= 0. Then j ≥ k.

Because P is prime and both a0 and s0 are in S, t = a0s0 is also in S. Consider
the element a0 (pgs0(x) + s0)− b0pxj−kf(x) of M. since the coefficient of xj is
zero, the degree of this polynomial is at most j − 1. Clearly, we can rewrite it
as an expression of the form gt(x) + t. since gt(x) has degree at most j − 1,
this contradicts the choice of s0. Thus our original assumption that k ≥ 1 is
incorrect and M ∩ P 6= 0

Now let n = 2 and assume again that M ∩ R = 0. We must derive a con-
tradiction. Write x = x1 and y = x2 to simplify notation. since Kaplansky’s
theorem shows that R[x] and R[y] satisfy the hypothesis of Munshi’s theorem,
we conclude from the case n = 1 that M ∩ R[x] and M ∩ R[y] are nonzero.
Choose polynomials d(x) in M ∩R[x] and e(y) in M ∩R[y] of minimal degrees
m and n among all such polynomials.

Let N be the nonnegative integers and give N ×N the reverse lexicographic
order: (i, j) < (i′, j′) if j < j′ or if j = j′ and i < i′. Define the bidegree of a
nonzero polynomial h =

∑
aijx

iyj to be the maximal (i, j) in this ordering such
that aij 6= 0; we call aij the leading coefficient of h. It is convenient pictorially
to think of the points of N ×N as a lattice in the first quadrant of the plane,
with arrows drawn left and downwards to indicate adjacent inequalities.

The polynomials yjd(x) and xie(y) in M have bidegrees (m, j) and (i, n), re
spectively. since M ∩ R = 0,m > 0 and n > 0, so that (0, 0) < (m, 0) < (0, n).
Let B and ∂B denote the lower left box

B = {(i, j) | 0 ≤ i ≤ m and 0 ≤ j ≤ n}

and its partial boundary

∂B = {(i, j) | i = m or j = n} ⊂ B

We have an element of M of bidegree (i, j) for each (i, j) in ∂B A flow F from
(aq, bq) to (0,0) is a finite sequence of adjacent lattice points

F : (0, 0) < (a1, b1) < · · · < (aq, bq)

Here ”adjacent” means that, for 0 ≤ i < q, either ai = ai+1− 1 and bi = bi+1

or ai = ai+1 and bi = bi+1 − 1 We say that (ai, bi) in F is a point on the
flow F . We have the elementary, but key, observation that a flow from a point
outside B down to (0,0) must intersect ∂B and a flow from a point in B down
to (0,0) is part of a flow from (m,n) down to (0, 0). Here, going downstream
in a flow corresponds to going down in the reverse lexicographic order. Let F
denote the set of all flows from (m,n) to (0,0); it is nonempty and finite.

Now we mimic the proof in the case n = 1. For a flow F in F , let MF be the
set of nonzero polynomials in M with bidegree on F . since there are nonzero
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polynomials of bidegree (m,n) in M,MF is nonempty. Choose a polynomial fF
in MF of minimal bidegree. since M ∩ R = 0, the bidegree of fF is not (0, 0).
Let aF be the leading coefficient of fF and let a be the product over F in F of
the aF since a is a nonzero element of R, our hypothesis ensures that there is a
nonzero prime ideal P of R such that a is not in P . Let p be a nonzero element
of P . since p is in R, p is not in M. Thus (M,p) = R[x, y]. Let S = R−P. since
a is in S, aF is in S for all F in F . For each s in S, we can choose an element
gs(x, y) of R[x, y] such that pgs(x, y) + s is in M. since s is not in P, s is not
in (p) and pgs(x) + s 6= 0. Here gs(x, y) need not be unique, and we agree to
choose gs(x, y) to be of minimal bidegree among all possible choices.

Now choose s0 to be an element of S such that gs0(x, y) has minimal bidegree
among all gs(x, y). Let b be the leading coefficient of gs0(x, y). Consider any
flow from the bidegree of gs0(x, y) to (0, 0). By our key observation, this flow
must coincide with a flow F from (m,n) to (0,0) from some point downwards.
Clearly the bidegree of fF lies downstream from, or coincides with, the bidegree
of gs0(x, y) Let (u, v) be the difference (in the obvious sense) of the bidegrees
of these two polynomials. Then xuyvfF and pgso(x, y) + s0 are two elements of
M of the same bidegree. Multiplying the former by bp and the latter by aF , we
obtain elements of M with the same leading term. since P is prime and both aF
and s0 are in S t = aF s0 is in S. The element aF (pgs0(x, y) + s0) − bpxuyvfF
of M can be rewritten in the form gt(x, y) + t, where the bidegree of gt(x, y)
is less than the bidegree of gs0(x, y). This is a contradiction, hence our original
assumption that M∩R = 0 must be false. As said at the start, the generalization
to n variables works the same way.

6 The strong form of the Nullstellensatz.

Here we need another preliminary, namely the Hilbert basis theorem. A com-
mutative ring R is said to be Noetherian if every ideal of R is finitely generated.
We need only consider integral domains, but the general case of the following
result is no more difficult.

Theorem 6.1 (Hilbert basis theorem). If R is a commutative Noetherian ring,
then so is R[x]. Therefore R [x1, . . . , xn] is Noetherian for all n

An ideal I of R is a radical ideal if xm ∈ I for some m ≥ 1 implies x ∈ I.
The radical of an ideal I, denoted

√
I, is the set of all elements x some power

of which is in I. It is not hard to see that
√
I is in fact an ideal containing I

Now focus on F [x1, · · · , xn] for a field F and a fixed n. Write An = An[F ]
for Fn regarded as just a set (ignoring its vector space structure), and call it
affine n -space. The zeroes Z (I) of an ideal I in F [x1, · · · , xn] are the points a
of An such that f(a) = 0 for all f in I. The affine algebraic sets are the subsets
V of An that are the zeroes of a set of polynomials {fi} . The ideal I (V ) is
then defined to be the set of all polynomials f such that f(v) = 0 for all v in V.
This is an ideal, and it is clearly a radical ideal: if (fm) (v) = f(v)m = 0, then
f(v) = 0
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Thus an algebraic set V gives rise to a radical ideal I (V ), and an ideal
I gives rise to an algebraic set Z (I). Because we start with sets V that are
the zeroes of a set of polynomials, it is immediate that V = Z (J (V )). On
the other hand, for an arbitrary ideal I, it is immediate that I is contained in
I (Z ′(I)) . since F (Z (I)) must be a radical ideal, equality cannot be expected
in general. However, even if we start with a radical ideal, equality need not hold.
The point is that not all radical ideals are of the form I (V ) for some V . For
example, any prime ideal is a radical ideal, and the prime ideal

(
x2 + 1

)
of

R[x] has no zeroes in R. The strong form of the Nullstellensatz says that these
conclusions do hold when the field we start with is algebraically closed.
In mathematics, the Rabinowitsch trick, introduced by George Yuri Rainich
and published under his original name Rabinowitsch ( 1929 ), is a short way
of proving the general case of the Hilbert Nullstellensatz from an easier special
case (the so-called weak Nullstellensatz), by introducing an extra variable

Theorem 6.2 (Strong form of the Nullstellensatz). Let F be an algebraically
closed field. Then, for any ideal I of F [x1, · · · , xn] ,F (Z (I)) =

√
I. There-

fore the correspondences Z and I between algebraic sets and radical ideals are
inverse bijections.

Proof. We must prove that I (Z (I)) is contained in
√
I. By the Hilbert basis

theorem, I is generated by a finite set {f1, . . . , fm} of polynomials. Consider an
element f of I (Z (I)). We must prove that some power of f is in I.

The Rabinowitsch trick goes as follows. The polynomial f in F [x1, . . . xn]
vanishes whenever all polynomials f1, . . . ., fm vanish. Then the polynomials
f1, . . . ., fm, 1 − x0f have no common zeros (where we have introduced a new
variable x0 ), so by the weak Nullstellensatz for F [x0, . . . , xn] they generate
the unit ideal of F [x0, . . . , xn]. Spelt out, this means there are polynomials
g0, g1, . . . , gm ∈ F [x0, x1, . . . , xn] such that

1 = g0 (x0, x1, . . . , xn) (1− x0f (x1, . . . , xn))+

m∑
i=1

gi (x0, x1, . . . , xn) fi (x1, . . . , xn)

as an equality of elements of the polynomial ring F [x0, x1, . . . , xn] since x0, . . . , xn
are free variables, this equality continues to hold if expressions are substi-
tuted for some of the variables; in particular, it follows from substituting x0 =
1/f (x1, . . . , xn) that

1 =

m∑
i=1

gi (1/f (x1, . . . , xn) , x1, . . . , xn) fi (x1, . . . , xn)

as elements of the field of rational functions F (x1, . . . , xn), the field of fractions
of the polynomial ring F [x1, . . . , xn]. Moreover, the only expressions that occur
in the denominators of the right hand side are f and powers of f, so rewriting
that right hand side to have a common denominator results in an equality on
the form

1 =

∑m
i=1 hi (x1, . . . , xn) fi (x1, . . . , xn)

f (x1, . . . , xn)
r
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for some natural number r and polynomials h1, . . . , hm ∈ F [x1, . . . , xn]. Hence

f (x1, . . . , xn)
r

=

m∑
i=1

hi (x1, . . . , xn) fi (x1, . . . , xn)

which literally states that fr lies in the ideal generated by f1, . . . ..fm. This is
the full version of the Nullstellensatz for F [x1, . . . , xn]

It is convenient to let radical ideals I correspond to their quotient F -algebras
F [x1, · · · , xn] /I. If I = I (V ), this quotient ring is called the coordinate ring of
V and denoted F [V ]. It is to be thought of as the ring of polynomial functions
on An that vanish on V. The passage back and forth between algebraic sets
and their coordinate rings is an algebraization of the geometry of solutions to
polynomial equations.

Pedagogically, this development of the Nullstellensatz gives the starting
point of a rigorous introduction to algebraic geometry that requires the absolute
minimum of ring and field theoretic prerequisites.
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