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Abstract. In this paper, I hope to cover some of the impor-
tant and interesting topics in Homological Algebra, such as alge-
braic topology (homeomorphic topological spaces, specifically, ho-
momorphisms between nth homology groups of topological spaces
for all n.), ring structures, and more. I will be citing from [GQ16]
and [Nad07]1.

1. Introduction to Homology: Definitions and Basics

We begin by stating some basic definitions which will be useful later
on.

Definition 1.1. We call the geometric figure which can be created from
a collection of n+ 1 points in Rn the n-simplex 2. Here are some basic,
very simple examples: point, segment, triangular prism, rectangular
prism, pentagonal prism, hexagonal prism, etc.

As we can see, each n-simplex is either just a point, segment, or
regular prism.

Definition 1.2. An n-face of an n-simplex is a subset of the set of ver-
tices of the simplex with order n+ 1. We call the faces with dimension
less than n proper faces.

Let’s introduce the notion of a complex :

Definition 1.3. A complex is a finite set of vertices {v0, . . . , vk} where
some subsets are abstract simplices, and all faces of distinguished sim-
plices are distinguished. Equivalently, we could define the complex
(also called the abstract simplicial complex) as a family F of subsets

Date: July 13, 2020.
2Note that the plural of simplex is simplices, which we’ll see often.
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of a set S where, for every set S ′ ∈ F and subset R ⊆ S ′, we have that
R ∈ F .

A subcomplex is a subset S of the simplices of a complex K such that
S is also complex.

A complex K is said to be connected if it cannot be represented as the
disjoint union of at least two subcomplices. A geometric complex is
said to be path-connected if there is some path of 1-simplices from a
vertex to another.

In addition to a complex, we also have a geometric realization, which
is essentially a function taking elements of the set {v0, v1, v2, . . . , vk}
(see the latter definition) and mapping them to points in Rn.3 Now
let’s look at a definition combining some things we’ve just learnt:

Definition 1.4. A simplicial complex K is a finite set of simplices
which satisfies the following conditions:

(1) We have a ∈ K for all simplicies A ∈ K where a is a face of A.
(2) We have that A,B ∈ K are properly situated.4

Now let’s turn to some definitions more directly focused on homology
groups.

Definition 1.5. Let S be the set of vertices of a simplex. Selecting
one ordering of the elements of S gives us an orientation. We call an
odd permutation reversed and an even permutation unchanged.

The next few definitions will be rather dense and a bit hard to un-
pack, but they will provide a basis for us to work off of.

Definition 1.6. Given a set An1 , A
n
2 , . . . , A

n
k of oriented n-simplices

(with complex K and some abelian group G and gi ∈ G), the n-chain
x with coefficients in G is the following formal sum:

x = g1A
n
1 + g2A

n
2 + . . .+ gkA

n
K .

We denote the group of n-chains as Ln.

Remark 1.7. While we could certainly allow G to be some arbitrary
abelian group, for now let’s just assume G is Z.

Next, let’s introduce boundaries.

3One such example is the natural realization, where we let n = k + 1 and v0 =
e1, v1 = e2, . . . , vk = ek+1. Here, the ei ∈ Rn are basis vectors.

4We say that two simplices are properly situated if their intersection is either
empty, or it is a simplex itself.
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Definition 1.8. Suppose An is an oriented n-simplex in some complex
K. The (n− 1)-chain of K over Z from

δ(An) = An−1
0 + An−1

1 + . . .+ An−1
n

(here, An−1
i is an (n − 1)-face of K over Z) is called the boundary of

An.5 If an n-chain has boundary 0, we call the n-chain a cycle, and
write the set of n-cycles of K over Z as Ker(δ) = Zn.

A more general (for all Ln), more complicated definition of the bound-

ary is as follows: Suppose we have some n-chain x =
∑k

i=1 giA
n
i . Then

we have

δ(x) =
k∑
i=1

giδ(A
n
i ),

where the Ani are n-simplices of K. So we have that the boundary
function δ is the homomorphism δ : Ln → Ln−1.

Now that we have seen the basics, we can focus more on actual
homology.

2. The Homology group

We will begin our study of the homology group with the following
definition, which relies on several of the previous definitions.

Definition 2.1. An n-cycle x of a k-complex K is said to be homol-
ogous to zero if it is the boundary of an (n + 1)-chain of K, for all
n = 0, 1, 2, . . . , k − 1. We write this as x ∼ 0. The subgroup of Zn of
boundaries is denoted as Bn.

From this, we can now say that a boundary is any cycle homologous
to zero. Now we can finally define the homology group:

Definition 2.2. The n-dimensional homology group of the complex K
over Z is the group Hn = Zn/Bn.

In the latter definition, we have that Bn is a subgroup of Zn; this is
why we can form the quotient group Zn/Bn. Now that we’ve seen all
these definitions, it’s time for a theorem:

Theorem 2.3. Let {K1, K2, . . . , Kp} be the set of all connected com-
ponents of a complex K, and let Hn, Hni be the homology groups of K
and Ki, respectively. Then we have that Hn is isomorphic to the direct
sum Hn1 ⊕ · · · ⊕Hnp.

5If n = 0, we have that δ(A0) = 0.
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Proof. Let Lni be the group of n-chains of Ki.
6 Then Lni must be a

subgroup of Ln. Additionally, we have that Ln = Ln1 ⊕ · · · ⊕ Lnp. We
need to show that something similar is true for Bn and Zn.

Let Bni = δ(Ln+1i) = Im(δ), where this image is restricted to the
subgroup Lni. We can then write Bn as the following direct sum:

Bn = Bn1 ⊕ · · · ⊕Bnp.

Consider some element x ∈ Ln+1, where x = xi + . . . + xp. Now, for
xi ∈ Ln+1i, we have the following:

δx = δx1 + . . .+ δxp ∈ Bn.

Let Zni = Ker(δ) ∩ Lni. We have

Zn = Zn1 ⊕ · · · ⊕ Znp.

It is not too difficult to show this is true.

Now that we’ve shown that both Bni and Zni break down componen-
twise, we have that

Zn/Bn = Zn1/Bn1 ⊕ · · · ⊕ Znp/Bnp

and also that

Hn = Hn1 ⊕ · · · ⊕Hnp.

This completes the proof. [Nad07] �

Definition 2.4. The index of a chain x =
∑k

i=1 giAni is

I(x) =
k∑
i=1

gi.

Proposition 2.5. If K is a connected complex, then for some 0-chain
x, we have that I(x) = 0 =⇒ x ∼ 0, and also that H0(K,Z) ∼= Z.

Proof. See Nadathur’s proof. �

Now let’s look at a lemma, which will help us with the proof of the
next theorem.

Lemma 2.6. A geometric complex K is path-connected iff it is con-
nected.

6Recall that Ln is the group of n-chains of K, and that Ki represents the ith

component of K.
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Proof. Let’s first prove that a geometric complex K is path-connected
if it is connected. Suppose that K is not connected. Then there exist
disjoint subcomplexes L and M where L ∪ M = K. Furthermore,
suppose there is some path between a vertex v0 ∈ V and n0 ∈ N . If
vi the last vertex in the path contained in V , we don’t have that the
1-simplex connecting vi to the next vertex in the path is contained in
V or N . This is because we would have V ∩N = ∅, which contradicts
our initial assumption.

Next, we prove that K is connected if it is path-connected. Assume we
have points v0, n0 ∈ K such that there is no path between them. Then
V is the path-connected subcomplex of K containing v0, and similarly
N is the path-connected subcomplex of K containing n0. There must
be some path connecting v0 to t0 and a path connecting t0 to n0 for
some t0 in the non-empty intersection V ∩ N . Because there are two
paths, one ending with t0 and the other beginning with t0, we can
simply create the path v0 to n0, but this contradicts our assumption
(that there is a path between these two). Therefore, V ∩N = ∅. �

Now we can use the previous lemma and Definition 1.12 for the
following theorem:

Theorem 2.7. The zero-dimensional homology group of a complex K
over Z is isomorphic to

⊕
p Z = Zp, where p is the number of connected

components of K.

Proof. This follows from Lemma 1.14 and Definition 1.12. �

Here are a few examples:

Example. The 0th homology group of the circle is isomorphic to Z.

To show this, think of the circle as being four 1-simplices. We have
that Z0 is the group consisting of sums over four 0-simplices, say, a, b,
c, and d. Let x be some 0-chain j1a+ j2b+ j3c+ j4d. Now let’s reduce
to an element of H0. We do this by creating another chain y = j4c−j4d
and subtracting it from the previous one; we get

x− y = j1a+ j2b+ (j3 − j4)c.

Doing the same thing, we end up with a chain z = (j1− j2 + j3− j4)a.
We have that z ∼ x. We can now write z = ja, for j ∈ Z. Therefore,
for any j, we have H0

∼= Z.

Example. The homology group Hn(Sn) is isomorphic to Z.

We will not show this due to the length of the explanation, but the
reader may see Nadathur’s explanation on page 7 of her paper.
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Example. The homology group Hn(Dn) is equal to 0.

This is pretty easy to show. Let Dn be the simplicial structure of of
the n-simplex (∆n). We have that every n-chain has the form x = k∆n,
for some k ∈ Z. We have Hn = Zn, because x is never a boundary.
However, δx = 0 when k = 0. Therefore, Hn(Dn) = 0.

3. Singular Homology

Let’s begin our study of singular homology with a few definitions.
Although we cannot easily use the information we’ve already learnt and
apply it to singular homology, the definitions here aren’t too different.

Definition 3.1. A singular n-simplex in some topological space X is
a map σ : ∆n → X, where σ is continuous.

Definition 3.2. Let Cn(X) be the free abelian group with basis the
set of singular n-simplices of X. We say that the elements of Cn(X)
are singular n-chains and are finite formal sums

∑
i giσi, where gi ∈ Z.

Definition 3.3. The boundary map δn : Cn(X) → Cn−1(X) is given
by

δn(σ) =
∑
i

(−1)iσ|[v0,...,vi−1,vi+1,...,vn],

where vi are 0-simplices of σ.

We can now define the singular homology group:

Definition 3.4. The singular homology group Hn(X) is the quotient
Hn(X) = Ker(δn)/Im(δn+1).

Remark 3.5. To distinguish between the singular homology group and
the simplicial homology group, we will write H∆

n for the simplicial
homology group.

We won’t go too in-depth with singular homology, but here are two
propositions similar to those we’ve seen when dealing with general ho-
mology as in the previous section.

Proposition 3.6. Let X be a topological space. Then

Hn(X) ∼= Hn(X1)⊕Hn(X2)⊕ · · · ⊕Hn(Xp),

where Xi are path-connected components of X.

Proof. A singular simplex has a path-connected image in X, because σ
are continuous. This means we can write Cn(X) as the following direct
sum:

Cn(X) = Cn(X1)⊕ · · · ⊕ Cn(Xp).
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The boundary map δ is a homomorphism, so Ker(δn) and Im(δn+1)
split. Therefore, we have

Hn(X) ∼= Hn(X1)⊕Hn(X2)⊕ · · · ⊕Hn(Xp),

which is what we wanted to show. �

Proposition 3.7. The zero-dimensional homology group of a space X
is the direct sum of copies of Z, one for each path-component of X.

Proof. See Nadathur’s proof of her paper’s Proposition 3.6. �

These propositions can be used to support the claim that H∆
n
∼= Hn.

The formal statement is as follows:

Theorem 3.8. For all n, the homomorphisms H∆
n (X) → Hn(X) are

isomorphisms7. Thus the singular and simplicial homology groups are
equivalent.

The proof of this theorem is not too difficult given more definitions,
but we will not be covering these in this paper; see Nadathur’s paper
for more information and a proof.

4. Exact sequences

Let’s now turn to exact sequences, an interesting topic in homology.

Definition 4.1. An exact sequence is a sequence of the form

· · · −→ An+1
αn+1−−−→ An

αn−→ An−1 −→ . . . ,

where the Ai are abelian groups, the αi are homomorphisms, and
Ker(αn) = Im(αn+1) for all n.

Definition 4.2. A chain complex is a sequence of abelian groups con-
nected by homomorphisms (boundary operators) where the composi-
tion of any two consecutive maps is 0.

Now, let’s relate exact sequences to chain complices.

Proposition 4.3. An exact sequence is a chain complex, because

Ker(αn) = Im(αn+1) =⇒ Im(αn+1) ⊂ Ker(αn) ⇐⇒ αnαn+1 = 0.

The homology groups of an exact sequence are trivial, because
Ker(αn) ⊂ Imαn+1.

Notice that there are different types of exact sequences: long and
short.

7Here H∆
n (X)→ Hn(X), i.e., the homomorphisms from the simplicial homology

group to the singular homology group
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Definition 4.4. We say an exact sequence is short if it is of the form

0 −→ A
f−→ B

g−→ C −→ 0.

A long exact sequence

A0
f−→ A1

f2−→ A2
f3−→ . . .

fn−→ An

is an exact sequence consisting of more than three nonzero terms.

We have the following theorem, which involves exact sequences:

Theorem 4.5. Let I and J be two ideals of some ring R. Then we
have that

0 −→ I ∩ J −→ I ⊕ J −→ I + J −→ 0

is an exact sequence of R-modules, where the module homomorphism
I ∩ J → I ⊕ J maps every element k ∈ I ∩ J to the element (k, k)
of I ⊕ J , and the homomorphism I ⊕ J → I + J maps each element
(k, l) ∈ I ⊕ J to k − l.

Next, let’s define a type of homology group called a relative homol-
ogy group. We won’t be going into this too much, but here is some
background behind the definition. Given a space X and a subspace
A ⊂ X, define Cn(X,A) to be the quotient group Cn(X)/Cn(A). The
operator δ takes both Cn(X)→ Cn−1(X) and Cn(A)→ Cn−1(A).

Definition 4.6. We have that the following sequence

· · · −→ Cn+1(X,A)
δn+1−−→ Cn(X,A)

δn−→ Cn−1(X,A) −→ . . .

is a chain complex (because δn+1δn = 0). We say the homology groups
Hn(X,A) of this chain complex are relative homology groups. We have
the following two properties of Hn(X,A):

(1) Elements in the relative homology group are represented as rel-
ative cycles.8

(2) A relative cycle x is trivial if and only if it is a relative boundary.9

There is still another topic we will be covering, so we can’t focus on
relative homology, but I encourage the reader to read pages 11 to 13
of Nadathur’s paper, mentioned earlier.

8Relative cycles are essentially n-chains x in Cn(X) where δn(x) = Cn−1(A).
9In other words, if and only if x is the sum of a chain in Cn(A) and the boundary

of a chain in Cn+1(X).
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5. The Universal coefficient theorem

In this section, we will be looking at an interesting theorem in al-
gebraic topology, called the Universal coefficient theorem. First, let’s
cover the basics.

Definition 5.1. There is a complex similar to the chain complex,
namely, the cochain complex, which may be denoted (A∗δ∗). Essen-
tially, the cochain complex consists of a sequence of abelian groups/modules
. . . , A0, A1, A2, . . . connected by homomorphisms δn : An → An+1 such
that δn+1δn = 0. We may write the following sequence to represent the
cochain complex:

. . .
δ−1

−−→ A0 δ0−→ A1 δ1−→ A2 δ2−→ . . . .

Remark 5.2. Although the latter definition for the cochain complex is
important, we won’t be using it very technically (i.e., the notation is
not extremely important).

We may wonder what is the main difference between chain com-
plices and cochain complices. In chain complices, the dimension of the
boundary operators decrease, and in cochain complices, the dimension
of the boundary operators increase. After the next definition, we will
be able to provide an alternative explanation.

Definition 5.3. Generally speaking, we say cohomology refers to a
sequence of abelian groups in a topological space.

Getting back to the question, a difference between chain complices
and cochain complices is that cohomology has a ring structure that
homology lacks.

Definition 5.4. For a ring R, right R-module M , left R-module N ,
and abelian group G, we say that φ : M × N → G is an R-balanced
product if the following conditions hold for m,m′ ∈M , n, n′ ∈ N , and
r ∈ R:

(1) φ(m,n+ n′) = φ(m,n) + φ(m,n′).
(2) φ(m+m′, n) = φ(m,n) + φ(m′, n).
(3) φ(mr, n) = φ(m, rn).

Definition 5.5. Let R be a ring. Let R − Mod be the category of
left R-modules, and let Mod − R be the category of right R-modules.
Fix a left R-module and denote it S. Consider some T (A) = A ⊗R S
for A ∈ Mod−R. This has left functors LiT . Now we define the Tor
groups, for some i, by

TorRi (A, S) = (LiT )(A).
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One more definition, and we’ll be ready to look at the theorem.

Definition 5.6. For some ring R, a right R-module M , and left R-
module N , we have that M ⊗R N , the tensor product, is an abelian
group with a universal balanced product

⊗ : M ×N →M ⊗R N.

By ”universal,” this means that for an arbitrary abelian group G
and balanced product g : M × N → G, there is a homomorphism
g′ : M ⊗R N → G where g′ · ⊗ = g. Now we have the background
information needed to state the theorem (for homology):

Theorem 5.1. Consider the tensor product Hi(X; Z)⊗A. Then there
is a short exact sequence

0→ Hi(X; Z)⊗ A µ−→ Hi(X;A)→ Tor1(Hi−1(X; Z), A)→ 0.

See Gallier and Quaintance’s paper for a slightly different way of
definining this theorem.
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