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Algebraic curves are the sets of points in a plane that are the zero of a
polynomial in two variables.

1 Introduction

For example, the equation y − x2 = 2 generates a parabola. x2 + y2 − 1 = 0
generates the unit circle. Another well known example is the hyperbola xy−1 =
0. These are all conics, and so is the ellipse. These are all equations of degree
2, i.e. involving terms x2,y2,and xy. It may also use terms of lower degree, i.e.
x, y, and a constant term such as +4. Therefore the general form for any conic
in the xy plane is ax2 + by2 + cxy + dx+ ey + f = 0. (For it to really be a conic
requires that at least one of a, b or c is not zero.) For example, the equation
for an ellipse (x − h)2/a2 + (y − k)2/b2 = 1 derives itself from this. But what
happens when there are higher degree terms, such as x3 or x2y3? How does
this change the behavior of the curve, and what can be used to detect these
patterns? The answer to this question lies in a study of the intersections of the
curve on itself, namely singularities.

2 Cubics

Just as there is a quadratic equation y = ax2 + bx+ c, there is a cubic equation
of similar form y = ax3 + bx2 + cx + d. It is apparent how this translates to a
zero of polynomial in two variables: ax3 + bx2 + cx + d − y = 0. We are not
thinking of all x such that y=0 where this is satisfied, but instead all ordered
pairs (x,y) where this is so. If we were to translate this to an all-encompassing
form for polynomials in two variables of degree 3, it would look something like
this: a1x

3 + a2x
2y + a3xy

2 + a4y
3 + a5x

2 + a6xy + a7y
2 + a8x + a9y + a10 = 0

where a1, ..., a10 are all real constants. Notice that this encompasses all conics,
that is when a1, a2, a3, a4 = 0, but we will only deal with situations where at
least one of these in nonzero.
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3 How to find singularities

Given the curve x3−y3 +xy = 0. It is clear that (0,0) satisfies here. As a point
on the curve approaches (0,0), both higher degree terms will be much smaller
than xy. So the general shape around the origin is xy=0, which is equivalent to
the x and y axis. At this point the graph crosses over itself, so this is a node.

It is important to note that, in the case that the curve is unbounded in the
real numbers, the opposite effect will be achieved when the variables are made
very large. When x and y here are made to be very large, the term xy will
be much smaller in value than x3 and y3, and therefore can be ignored. The
asymptote of the curve becomes x3 − y3 = 0 or x = y. The larger the value of
x gets, the closer it will be in value to y.

4 Algebraic curves in higher dimensions

It is possible to conceive of curves in a 3-dimensional space. For example,
x2+y2+z2 = r2, where r is the radius of the sphere. Or x2/a2+y2/b2+z2/c2 = 1
is a spheroid. Or a plane such as x + 2y − 4z − 5 = 0. Because a line is
a one dimensional object in a three dimensional space, it is representing as 3
expressions, such as x = y = z. Another nice 3-dimensional curve is the cone,
which has an equation x2 + y2 − z2 = 0. It is easy to see that at every point
along the z axis, there is a circle around that point, perpendicular to the z
axis, of radius |z|, described by x2 + y2 = z2, the standard equation for a circle
in 2 dimensions. But we will not dwell too long on algebraic curves of higher
dimensions because they are harder to conceive of, hard to reason with, and
hardly fit the definition of algebraic curve, which is normally restricted to two
dimensions.

5 Constructing certain curves

A common coincidence in two-variable polynomials is superimposing. To ”su-
perimpose” two graphs of equations set equal to zero on to each other, just
multiply them. For example, as seen earlier, xy=0 is the set of all point that lie
either on the x-axis OR on the y-axis. This is because only one of the two factors
x,y has to be equal to 0 for the whole expression to be equal to 0. Similarly, to
superimpose the line y=1 on the parabola y = x2, describe (y− 1)(y− x2) = 0.
This can work for any number of curves at a time.

Sometimes it is the case that a polynomial in two variables really can be
factored in this way.

Another method of factoring is using the common quadratic formula, in
the case that one of the variables never exceeds a power of 2. For example,
x2 − 2y2 + xy = 0 can be factored as (x + 2y)(x − y), which is just two lines
superimposed on each other.

Or, to factor the equation x2 − xy2 + y3 = 0 into (x− a)(x− b), we treat y
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not as a variable but instead as a constant, and obtain two roots:
−y2+

√
y4−4y3

2

and
−y2−

√
y4−4y3

2 . This essentially gives us two halves of the graph, a result

of the two equations superimposed on each other: x =
−y2+

√
y4−4y3

2 and x =
−y2−

√
y4−4y3

2 . This is similar to dividing the graph of y2 = x into y = +
√
x

and y = −
√
x. This process can sometimes tell us about the number of real

solutions, such as in solving for x in x2+y2+xy = 0, which tells us that the only
real solution is (x,y)=(0,0). It also makes it easier to differentiate or integrate,
but it is possible to use implicit differentiation and obtain the same result. This
can help us detect special points, write the equation of a tangent line, etc...

6 Differentiating algebraic curves

Implicit differentiation of algebraic curves is very easy. Differentiate in the same
way as in one variable, using the power rule and multiplication rule, except
multiply by dx and dy for x and y terms respectively.

For example, to differentiate x2 +y2−3xy+ 4 = 0, we obtain 2xdx+ 2ydy−
3(xdy + ydx) = 0. Then we can isolate dy/dx in terms of x and y to obtain the
slope of the tangent line at a given point (x,y). Here it is dy/dx = x/y. At the
point (4,2) the slope is 4/2=2.

7 Properties of algebraic curves

There are various properties that are easy to look for. One is symmetry. If
a polynomial in two variables contains all even degree terms or all odd degree
terms, then it is symmetric about the origin (this doesn’t necessarily mean it
contains the origin). Note: constants count as even degree because there are
ax0y0.

This tells us why y− x3 = 0, xy− 1 = 0, and x2 + y2− 1 = 0 are symmetric
about the origin. Similarly, if a polynomial in two variables contains all even
y terms, then it will be symmetric about the x-axis, and vice-versa. In other
words if a polynomial can be expressed as a polynomial in x and y2, then it
is symmetric about the x-axis. A polynomial in x2 and y2 is symmetric over
BOTH axes. This tells us why y2 − x3 = 0 behaves this way too. This can be
expressed as y = x3/2. Because x3/2 < x for every x < 1, x3/2 will skim the
x-axis near 0, and so will the reflected curve. Therefore, these meet at a sharp
point at (0,0).

8 Conclusion

In Conclusion, some algebraic curves can be described using very simple algebra.
These are only a few examples of ways to describe algebraic curves using simple
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algebra, but there is much to be learned from these techniques in describing the
behavior of Algebraic curves.
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