
Gröbner Bases

Joey Huang

July 6, 2020

1 Summary

In Hilbert’s Nullstellensatz, we derive a bijection between the radical ideals
of a ring and the algebraic varieties on an affine space. However, given an
arbitrary polynomial h ∈ R[x1, . . . , xn] and an ideal I = (f) ⊆ R[x1, . . . , xn],
a problem that often comes up is whether or not h ∈ I. In the case of n = 1,
we can use Euclidean polynomial division and check to see if the remainder
of h

f is the zero polynomial, but in higher dimensions, this becomes expo-
nentially harder. Therefore, we would like to see if there is another way of
representing the ideal I by writing I = (g) with g being easier to work with
computationally. We call g the Gröbner basis for f .

To define the Gröbner basis, we first have to look at monomial term
orders, namely lexicographic ordering and graded lexicographic ordering.
Given a term order, we can specify a way to write the polynomial in further
calculations. We can also find the initial ideal of a polynomial given a term
order, denoted by in≺(f), as well as the initial ideal in≺(I) = (in≺(f) : f ∈
I).

A finite subset G ⊂ I is a Gröbener basis if in≺(I) = (in≺(g) : g ∈ G),
but there is only a single reduced Gröbner basis for each ideal I. Buchberger’s
Criterion tells us that if the normal form of the S-polynomials of a set G
is zero, then it’s a reduced Gröbner basis; stemming from this, we have
Buchberger’s Algorithm which can be used to compute the reduced Gröbner
basis for any given ideal I = (f).

While Gröbner bases have many important applications in solving sys-
tems of multivariate polynomial equations, geometric theorem proving, and
graph coloring, it can be effectively used to find solutions to integer pro-
gramming problems.

1



2 Motivation for Gröbner Bases

In many cases, we wish to solve systems of polynomial equations. Given
polynomials f1(x1, . . . , xn), f2(x1, . . . , xn), . . . , fm(x1, . . . , xn) ∈ C[x1, . . . , xn],
we would like to find, if any, (a1, . . . , an) ∈ An

C such that

f1(a1, . . . , an) = f2(a1, . . . , an) = · · · = fm(a1, . . . , an) = 0

Example. Let f1 = x1 + x2 − 1 and f2 = x1 − x2 + 2. Since there are
two variables and two equations, we can solve for the roots of f1 and f2.
We could use heuristics and see that adding f1 and f2 eliminates the x2
term, but the most usual way to solve systems of linear equations is through
Gaussian elimination, where we use the term x1 in f1 as a pivot to get
f2 := f2 − f1 = −2x2 + 3. We then use this new term f2 = −2x2 + 3 as a
pivot, f1 := f1 + 1

2f2 = x1 + 1
2 . Hence, we can also write the original system

of equations by the equivalent system f1 = x1 + 1
2 and f2 = −2x2 + 3. We

shall see in a later section that they are, in fact, Gröbner bases.

3 Monomial Term Orders

In the last section, we solved a system of linear polynomials using Gaussian
elimination, which, put into linear algebra terms, are equivalent to finding
a reduce row echelon form of (A|B) where A is LHS of the system of linear
polynomials and B is the RHS vector. The key to this method was choosing
pivot variables for each step, but when we go beyond linearity, this becomes
harder to intuitively see. For example, x21 and x1x2, which should be used
as a pivot first?

Thus, we introduce the notion of monomial term orders.

Definition 3.1. A term order is a total order ≺ on a set of monomials xa =
xa11 xa22 · · ·xann such that xa ≺ xb → xa+c ≺ xb+c (multiplicative) and 1 ≺ xa

for all xa 6= 1.

Definition 3.2. A lexicographic order is the order ≺ such that xa ≺ xb

exactly when the first non-zero entry in b− a is positive.
A graded lexicogrphic order is the order ≺ such that xa ≺ xb if deg xa <
deg xb or deg xa = deg xb and the last non-zero entry of b− a is negative.

Example. For R = k[x1, x2, x3] and degree 2, we have the lexicographic
order 1 ≺ x1 ≺ x21 ≺ x2 ≺ · · · ≺ x23 and the graded lexicogrphic order
1 ≺ x1 ≺ x2 ≺ x3 ≺ x21 ≺ x1x2 ≺ · · · ≺ x2x3.

2



Definition 3.3. Given a polynomial f on R and a term order ≺, there exists
an initial term denoted by in≺(f) given by the monomial with the “largest”
exponent. We also define in≺(0) = 0.

Definition 3.4. Given an ideal I ⊂ R and a term order ≺, the ideal of the
initial terms is in≺(I) = {in≺(f)|f ∈ I}.

Definition 3.5. A finite subset G of an ideal I is a Gröbner basis if in≺(I) =
{in≺(g)|g ∈ G}. A Gröbner basis is called minimal if the elements in G
minimally generates I.

Example. Let F = {x22 − x1, x2} and a lexicographic order. F is not a
Gröbner basis because x1 = x2 ∗ x2 − (x22 − x1) ∈ in≺I, but x1 6∈ F .

Lemma 3.6. Dickson’s Lemma Let S be a set of monomials in k[x1, . . . , xn].
Under the order xa ≺ xb and if xa|xb, there are only finitely many minimal
elements of S.

Corollary 3.7. Every monimial ideal in k[x1, . . . , xn] is finitely generated.

4 Calculating Gröbner bases

Gröbner bases are extremely useful in computational algebraic geometry,
because finding the Gröbner basis for a polynomial or an ideal can help us
solve algebraic systems of equations, represent polynomials in terms of other
polynomials, and construct nonlinear cryptosystems.

Example. Let’s try and find the Gröbner basis for the ideal I = (x2, xy+y2)
with a graded lexicographic order y ≺ x. We see immediately that in≺(I)
contains x2 and xy, but what about other elements?We first cancel the lead
terms y(x2)−x(xy+ y2) = xy2, but this is divisible by xy. We then use the
term xy2 to cancel out xy2 − y(xy − y2) = y3 ∈ I, so y3 is in the Gröbner
bais. Using Buchberger’s Criterion, we can check that these are the only
elements, so G = {x2, xy + y2, y3}.

4.1 Buchberger’s Criterion

Definition 4.1. Let there be two non-zero polynomials p and q where in(p) =
c1x

a and in(q) = c2x
b, the S-polynomial

S(p, q) = c2x
cp− c1x

dq

where xcxa = xdxb and gcd(xc, xd) = 1.

3



Theorem 4.2. [Buchberger’s Criterion] Let I ⊂ R be an ideal, and let
G ⊂ I be a finite subset of nonzero polynomials. Then G is a Gröbner basis
iff every pair of elements p, q ∈ G, RG(S(p, q)) = 0.

4.2 Buchberger’s Algorithm

From this criterion, we can derive a comprehensive algorithm for finding the
Gröbner basis for any polynomial f or ideal I.

Algorithm 1: Buchberger’s Algorithm

input : A set {f1, . . . , fn} ⊂ R
output: A Gröbner basis G of the ideal generated by {f1, . . . , fn}
G := {f1, . . . , fn};
Pairs := {(fi, fj) |1 ≤ i < j ≤ n};
while Pairs 6= ∅ do

(gi, gj) := remove an element from Pairs;
S :=S(gi, gj);
h :=RG(S);
if h 6= 0 then

Pairs := Pairs ∪ {(h, g)|g ∈ G};
G := G ∪ {h};

end

end
return G

In the last example, we have p = x2 and q = xy + y2. in(p) = x2

and in(q) = xy. The S-polynomial S(x2, xy + y2) = y(x2) − x(xy + y2) =
−xy2. S(xy2, xy + y2) = xy2 − y(xy + y2) = −y3. So the Gröbner basis is
{x2, xy + y2, y3}

5 Linear Programming Applications

Gröbner bases are incredibly useful in problems in operations research, as
there are many linear programming equations that can be easily solved using
this method.

Example. Given a collection of coins, we can use Gröbner bases to find a
minimal combination of coins of the same monetary value. For example, we
will try to find a minimal integer solution to

P + 5N + 10D + 25Q = 117

4



subject to P,N,D,Q ≥ 0. We can represent this sum as a product: f =
P aN bDcQd where P a represents a pennies.

Since we also have several equivalence equations for the different coins,
we can use an ideal to represent all the possible monetary values. Let F =
{P 5−N,P 10−D,P 25−Q}. Using Buchberger’s algorithm as described in
section 4.2, we find the Gröbner basis to be G = {P 5 −N,N2 −D,D2N −
Q,D3 −NQ}. In other words, this gives a new set of equivalence relations:
always replace two dimes and a nickel with a quarter and 3 dimes with a
nickel and a quarter. Since the Gröbner basis is exhaustive, we are sure that
there are no simpler solutions. Hence, we can start with 117 pennies and
repeatedly use the substitutions to find the minimal set: P 2DNQ4.

5


