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1. Introduction

In this paper we aim to gain an understanding of some of the pre-
requisites of the Lefschetz Hyperplane Theorem as well as the theorem
itself. The theorem, in short, provides a bridge between the shape of
algebraic varieties and its subvarieties. We will get into the more rig-
orous definition near the end of the paper, but it’s helpful to note the
various connections and uses of this theorem throughout mathematics.
More specifically, the Lefschetz Hyperplane Theorem has applications
in Hodge Theory, which is a major source of information related to the
Hodge conjecture, as well as Morse Theory, which deals with differen-
tial topology. Although both of these are well out of the scope of this
paper, it is recommended the reader look into them if interested. First,
we will need a good understanding of some of the basics of homology
and topology, so we begin with that.

2. A crash course in homology and topology

Although homology and topology in themselves are huge branches of
mathematics with various applications and perspectives, we will only be
dealing with what we need for this paper in understanding the Lefschetz
Hyperplane theorem. Roughly speaking, homology groups are a family
of topological invariants that don’t require complicated computations
like some homotopy groups. The goal in homology is to be able to
count the number of compact n-dimensional “holes” H in a topological
space X. In order to understand some of the concepts in homology
further, we will need some basic definitions:

Definition 2.1. We define the orientation of an n-simplex S as S =
[v0, ..., vn] where v0, ..., vn are the bounding vertices of S.

The boundary of S is

∂n([v0, ..., vn]) =
n∑

i=0

(−1)i[v0, ..., v̂, ..., vn]

where v̂ is omitted when summing.
1
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Remark. An 0-simplex is simply a point. A 1-simplex is an edge. A
2-simplex is a triangle, and we generalize this to an arbitrary dimension
when we talk about an n-simplex.

Suppose we have a 3-simplex, also known as a tetrahedron. Then,
we have the boundary of this as

∂3([v0, v1, v2, v3]) = [v1, v2, v3]− [v0, v2, v3] + [v0, v1, v3]− [v0, v1, v2]

The idea of orientations will carry over as the main building block
of homology. So, it’s helpful to get used to them. Since there is clearly
more than one orientation for a given n-simplex —(n+1)! in fact— we
need to be able to see whether two orientations are the same or not. In
short, we consider two orientations to be equivalent if the permutation
connecting them is even, and different if it is odd.

Suppose we have a 2-simplex. The permutation connecting the orien-
tations [v0, v2, v1] and [v2, v0, v1] can be seen as sending 0→ 2, 2→ 0,
and 1 → 1, or (02)(1). Since there is 1 transposition, it is an odd
permutation, thus the two orientations are different. We call a linear
combination of the oriented n-simplices of a space X an n-chain. These
n-chains form a group, denoted by Cn(X).

The boundary of an n-simplex forms an (n− 1)-chain, and from this
we can create a homomorphism ∂n : Cn(X) → Cn−1(X) defined as
∂n(a1T1 + · · · a1Tr) = a1∂n(T1) + · · · ar∂n(Tr), where Ti is an n-simplex
of a triangulation of a space X and ai is an element in an n-chain in
Cn(X). This homomorphism leads us to the following theorem, which
has a helpful corollary.

Theorem 2.2. Suppose we have an n-chain A ∈ Cn(X). Then, ∂n−1 ◦
∂n(A) = 0.

Proof. It suffices to just work out the math from definition 2.1.

∂n−1 ◦ ∂n(A) = ∂n−1

(
n∑

i=0

(−1)i[v0, ..., v̂i, ..., vn]

)

=
n∑

i=0

(−1)i∂n−1([v0, ..., v̂i, ..., vn])

=
n∑

i=0

(−1)i

(
i−1∑
j=0

(−1)j[v0, ..., v̂j, ..., v̂i, ..., vn] +
n∑

j=i+1

(−1)j−1[v0, ..., v̂i, ..., v̂j, ..., vn]

)
.
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Note that in the last expression, there are two hatted terms instead of
the regular one, in different order in both sums. Suppose that i < j.
Then it appears with coefficient (−1)i(−1)j−1 = (−1)i+j−1 (this is

when vi is removed first) and then it appears with coefficient
(−1)i(−1)j = (−1)i+j (when vj is removed first). The sum of these is
0, thus for each (n− 2)-simplex [v0, ..., v̂i, ..., v̂j, ..., vn] the coefficient is
0, meaning that ∂n−1 ◦ ∂n(A) = 0. �

Corollary 2.3. im(∂n) ≤ ker(∂n−1).

Remark. We use “≤” to denote subgroup.

Proof. ker(∂n−1) contains the (n−1)-chains whose boundaries are 0 and
im(∂n) contains the (n−1)-chains that are images under the boundary
map, so it follows that im(∂n) ≤ ker(∂n−1). �

Definition 2.4. The group of n-cycles Zn(X) is defined as ker(∂n) ≤
Cn(X) and the group of n-boundaries Bn(X) is defined as im(∂n+1) ≤
Cn(X).

First, we move to an interesting topological concept before formally
defining the homology group. We will primarily be focusing on an idea
called “triangulation.” Simply put, triangulation is the process of divid-
ing a surface into triangles (hence the name triangulation) and doing
so such that there is no overlap. Below is an example of a triangulated
torus.

We can define this idea more formally as follows:

Definition 2.5. Suppose we have a surface S and a polyhedron P and
a homeomorphism f : P → S. f is a triangulation if:

(1) Every face of P has three edges and is homeomorphic to a closed
disk

(2) The intersection of any two faces of P is either empty, a single
vertex, or a simple edge

(3) The intersection of any two edges of P is either empty or a
single vertex
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Even though this definition looks heavy at first, it’s helpful to always
think back to the simpler, less rigorous definition of “splitting” a sur-
face into many, nonoverlapping triangles. You may wonder why this
is helpful at all in homology or the final theorem we wish to state, as,
at first glance, doesn’t seem directly related. However, triangulation
is an incredibly helpful tool when it comes to calculating homology
groups, which we will see a couple examples of soon, and avoids using
complicated techniques. Moving forward with this paper, we will gen-
erally think of triangulation in terms of just drawing the edges with
the correct properties, rather than constantly deriving and verifying
the homeomorphism and its properties listed above.

Now that we have the necessary background for homology groups,
let’s discuss some of the structure behind them.

Definition 2.6. We call the quotient group Hn(X) = Zn(X)
Bn(X)

the nth

homology group of X.

The number of holes in X is simply the dimension of Hn(X) (some-
times we say Hn(X,Z) to clarify we are working with coefficients in Z).
To get the hang of this, let’s do a fairly common examples of calcu-
lating the homology group of a torus, then we can move on to relative
homology. First, let’s use the following diagram for the triangulation
of a torus:

We begin by calculating the boundary maps. To find ∂2, note that U
is going “against” f and e, while going “with” g. Thus, ∂2(U) = g−f−e
and using the same logic for L, we get ∂2(L) = f + e − g. These are
the 2-chains. To calculate the 1-chains we see that ∂1(e) = ∂1(f) =
∂1(g) = a− a = 0. (This is because all these edges start and end at a).
Now, let’s find Z2(T) (aka the kernel), where T is the torus. Clearly,
this is just 〈U +L〉 because U +L = 0. We need to find B2(T) (aka the
image) now. This is simply 0 because there does not exist any 3-chains
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(or you can also say 3-boundaries). Thus, H2(T) = 〈U + L〉 ∼= Z. We
can move on to H1(T) now.

We have Z1(T) = 〈e, f, g〉 because these are all 0. B1(T) = 〈e+f−g〉.
As you can see, this is very different from H2(T) because in this quotient
group, g = e + f . So, we can replace every instance of g with e + f .
Because of this, every cycle with just e’s and f ’s is considered distinct,
thus H1(T) = 〈e, f〉 ∼= Z2. To find H0(T), we know that Z0(T) = 〈a〉
and B0(T) = 0. Thus, once again, we have H0(T) ∼= Z. Now, we have
all the calculated components required for the homology group, which
is:

Hn(T) ∼=


Z n = 0, 2

Z2 n = 1

0 n ≥ 3

Let’s move to relative homology.

3. Relative homology

Now that we have a basic understanding of simplical homology, we
can move onto a bit more advanced topic known as relative homology.
We will only be covering the basics, as this is all that is needed for our
final result.

Before we define the nth relative homology group, we will need a cou-
ple more definitions within the scope of simplical homology we skipped
over in section 2.

Definition 3.1. A chain complex is a sequence of abelian groups
connected by the homomorphism ∂n : Cn(X) → Cn−1(X) such that
∂i ◦ ∂i+1 = 0 for i = 0, ..., n− 1.

From theorem 2.2, we know that any n-chain forms a chain complex.
Just like before, the homology groups of a chain complex are of the
form ker(∂n)/ im(∂n+1). We also need to define Cn(X,A) (where X is
a topological space and A ⊂ X) as Cn(X)/Cn(A). Note that for this
to be a valid quotient group, it is necessary that Cn(A) ≤ Cn(X). It
follows that we can apply the same homomorphism ∂n to Cn(X,A) and
we define it as follows. ∂

′
n : Cn(X,A)→ Cn−1(X,A).

Definition 3.2. The nth relative homology group of a space X and
subset A ⊂ X is the homology group Hn(X,A) of the chain complex of
the abelian groups connected by the homomorphism ∂

′
n : Cn(X,A) →

Cn−1(X,A).

Below is the chain complex we are referring to:
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· · · −→ Cn+1(X,A)
∂
′
n+1−→ Cn(X,A)

∂
′
n−→ Cn−1(X,A) −→ · · ·

Let’s take a look at a more geometric interpretation of the relative
homology group. Simplical homology deals with loops that start and
end at the same points, but with relative homology, this is not neces-
sarily the case. Both the starting and ending points of the loop must be
contained within the space A, but these points need not be the same.
It is the homology group of the space X where elements are loops with
the condition described above.

4. The lefschetz hyperplane theorem

We now have the necessary background to state and prove the Lef-
schetz Hyperplane theorem. There are two theorems we will be cover-
ing, namely the Lefschetz Main Theorem and the Lefschetz Hyperplane
Theorem. Although the proof of the main theorem is far too long to in-
clude in this paper, we will be using it to prove the hyperplane theorem.
Before we state either theorem, we will need a couple more concepts
from topology and homology. The proof of the following theorems are
slightly out of the scope of this paper, so we leave it for the reader to
look into.

Theorem 4.1 (Five Lemma). Suppose we have the following com-
mutable diagram:

If the rows are exact sequences and m and p are isomorphism, l is an
epimorphism, and q is a monomorphism, then n is an isomorphism.

Remark. By exact sequence, we mean a sequence of homomorphisms
such that the image of one is the kernel of the next.

Theorem 4.2 (Leray-Thom-Gysin). Suppose we have a closed mani-
fold X and a closed oriented submanifold Y of codimension c. Then,
the map

Hm−c(Y,Z)→ Hm(X,X\Y,Z)

for any m with Hm(Y ) = 0 if m < 0 is an isomorphism.

Remark. By codimension, we mean the complement of the dimension
of Y with respect to X.
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But what does this map mean? Well, let’s say we have a cycle
A ∈ Hm−c(Y ). What’s produced by this map is a closed disk that
“grows” transverse to Y in X. The following figure can help to visualize
this:

We will be using this isomorphism to help prove the hyperplane
theorem. Let’s state the main theorem.

Theorem 4.3 (Lefschetz Main). Suppose we have a smooth projective
variety X where Y, Z are two codimension one transversal hyperplane
sections of X. Y and Z intersect transversally at X ′. Then, we have
the following:

Hq(X\Z, Y \X ′,Z) =

{
0, if q 6= n

free Z-module of finite rank, if q=n

Where n := dim(X).

What this theorem calculated is the homology group of the space
X\Z, where elements are q-dimensional loops the begin and end at
some two points in the space Y \X ′, however, these points are not
necessarily the same.

We can finally state and prove the Lefschetz Hyperplane theorem.

Theorem 4.4 (Lefschetz Hyperplane). Suppose we have a smooth
projective variety X with dimension n. We have smooth hyperplane
section Y ⊂ X. Then

Hq(X, Y,Z) = 0, 0 ≤ q ≤ n− 1

Proof. Suppose we have the exact sequences:

V ⊂ U ⊂ X,
V ⊂ Y ⊂ X.

The Lefschetz Main Theorem on the first sequence gives us Hq(X, V ) ∼=
Hq(X,U), q 6= n, n + 1 as well as the exact sequence:
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0→ Hn+1(X, V )→ Hn+1(X,U)→ Hn(U, V )→ Hn(X, V )→
Hn(X,U)→ 0

We can apply the Leray-Thom-Gysin isomorphism to (U,X) and we
get the result Hq(X,U) ∼= Hq−2(Z). Since Hq(X, V ) ∼= Xq(X,U), we
can conclude that Hq(X, V ) ∼= Hq−2(Z), q 6= n, n + 1.

Let’s move to the second exact sequence from our initial two. We
can write the sequence for this and X ′ ⊂ Z as follows:

· · · → Hq(Y, V )→ Hq(X, V )→ Hq(X, Y )→ Hq−1(Y, V )→ · · ·
↓ ↓ ↓ ↓

· · · → Hq−2(X
′)→ Hq−2(Z)→ Hq−2(Z,X

′)→ Hq−3(X
′)→ · · · .

The first and fourth arrows here are referring to the Leray-Thom-
Gysin isomorphism and the second arrow is the isomorphism Hq(X, V ) ∼=
Hq−2(Z), q 6= n, n + 1. The diagram of sequences commutes, so by five
lemma, the following holds with regard to the third down arrow:

Hq(X, Y ) ∼= Hq−2(Z,X
′), q 6= n, n + 1, n + 2.

We can use induction on n, thus completing the proof of the Lefschetz
Hyperplane Theorem.

�
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