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1 Introduction

In this paper, I will be discussing tropical algebra: starting with the basic
arithmetic, moving into polynomials, and eventually leading into an interesting
optimization application.

2 The Basics

2.1 Arithmetic

The Tropical Semiring: (R ∪ {∞},⊕,�)
Basic operations:
a⊕ b = min(a, b) and a� b = a + b
Example: 2⊕ 5 = min(2, 5) = 2, and 2� 5 = 2 + 5 = 7

2.2 Properties of the Arithmetic

Both tropical addition and multiplication are commutative, so it follows that
a⊕ b = b⊕ a and a� b = b� a
This should be somewhat intuitive, because min(a, b) = min(b, a) and a+b =

b + a.
Similar to the order of operations in standard algebra, tropical multiplication

always has to come before addition. For example, 3�5⊕6 6= 3�(5⊕6), because
this would be 3 + min(5, 6) = 3 + 5 = 8. In reality, 3� 5⊕ 6 = (3� 5)⊕ 6, or
min(3 + 5, 6) = min(8, 6) = 6.

The distributive law holds true in tropical arithmetic (as an exercise, prove
this!):

a� (b⊕ c) = a� b⊕ a� c.
Example: 5 � (2 ⊕ 7) = 5 � 2 = 5 + 2 = 7. This expression can also be

distributed: 5� 2⊕ 5� 7 = 7⊕ 12 = 7.
Both the addition and multiplication operations have an identity element,

or neutral element: the identity element for addition is ∞ and the identity
element for multiplication is 0. This means that

x⊕∞ = x and x� 0 = x
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Because 0 is the multiplicative identity, not 1, then x 6= 1 � x, because
x 6= x + 1. This is just something to watch out for.

There is no subtraction in tropical algebra, because this can quickly lead to
problems. For example, if x is 11 minus 8, this would mean that x ⊕ 8 = 11.
But because the minimum of 8 and x will always be at most 8, this can’t be
true.

As for exponents, it is easy to figure out that, ab = ba = a × b in tropical
algebra.

In tropical algebra, the ”Freshman’s Dream”, which says that (x + y)n =
xn + yn for n ∈ N, actually holds true:

(x⊕ y)n = xn ⊕ yn.
This is because (x ⊕ y)n = (min(x, y) ∗ n), and because n is positive, then

min(x, y) ∗ n = min(nx, ny) = xn ⊕ yn.

3 Use in Polynomials

Let x1, x2, . . . , xn ∈ (R ∪ {∞},⊕,�) A tropical monomial looks like this:
xk1
1 xk2

2 . . . xkn
n ,

where each xki
i = xi � xi � · · · � xi︸ ︷︷ ︸

kitimes

. This means that in classical arithmetic

xki
i = xi + xi + · · ·+ xi︸ ︷︷ ︸

kitimes

= xi ∗ ki. It follows that

xk1
1 xk2

2 . . . xkn
n = (x1∗k1)�(x2k̇2)�· · ·�(xn∗kn) = x1k1+x2k2+ · · ·+xnkn.

For example, 245362 = 2(4) + 5(3) + 6(2) = 8 + 15 + 12 = 35.

3.1 Definition 2.1:

A tropical polynomial is a finite linear combination of tropical monomials:
p(x1, . . . , xn) = a1 � xi1

1 xi2
2 . . . xin

n ⊕ a2 � xj1
1 xj2

2 . . . xjn
n ⊕ . . .

In p(x1, . . . , xn), the coefficients a1, a2, ... ∈ R and the exponents i1, j1, ... ∈ Z.
(Note : unlike in classical algebra, exponents in a tropical polynomial can

be negative. This makes tropical polynomials Laurent polynomials, which can
be expressed as elements of K[x, 1

x ] for a field K.)
Written in classical arithmetic, the polynomial looks like this:
p(x1, . . . , xn) = min(a1 + x1i1 + . . . xnin, a2 + x1j1 + . . . xnjn, . . . )
It is just a minimum of a finite number of linear equations.
The function p : Rn → R satisfies three important properties:

• p is continuous,

• p is piecewise-linear, where the number of pieces is finite,

• p is concave, meaning p(x+y
2 ) ≥ 1

2 (p(x) + p(y)) for any x, y ∈ Rn
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3.2 Fact 2.2:

All tropical polynomials p(x1, . . . , xn) are the piecewise-linear concave functions
on Rn with integer coefficients.

Example: Let p(x) = x2 ⊕ 1, then p(x) = x � x ⊕ 1. Written in classical
algebra, p(x) = min(2x, 1). This would be a piecewise-linear function with two
different lines: when 2x ≥ 1, or x ≥ 1

2 , then p(x) = 1, and when 2x < 1, or
x < 1

2 , then p(x) = 2x. p(x) can be written as a piecewise function:

p(x) =

{
1 x ≥ 1

2

2x x < 1
2

In this case the real zero of p(x) is when x = 0.
Example: Let us take the equation of a unit circle, so let p(x, y) = x2⊕ y2⊕

(−1). Then p(x) = min(2x, 2y,−1). Then there are no real zeros, because it
would have to be that either x = 0 or y = 0, but then the minimum would just
be −1. What if instead the 1 is positive? Let r(x, y) = x2 ⊕ y2 ⊕ 1. Then the
zeros of r are where x = 0 ≤ y and where y = 0 ≤ x. From this example we
can observe that if there is a constant in a polynomial, the constant must be
positive for it to have any real zeros.

Example: Let p(x) = a�x2⊕b�x⊕c be a tropical quadratic in one variable.
We can see that p(x) = min(2x + a, x + b, c), where this will split the graph in
the (x,y) plane into three lines: y = 2x + a, y = x + b, and y = c. It will only
be true that y = 2x + a when 2x + a ≤ x + b, meaning x ≤ b − a, and when
2x + a ≤ c, meaning c− a ≥ 2x. Similarly, y = x + b only when x ≥ b− a, and
when x ≤ b− c. Finally, y = c only when c− a ≤ 2x and c− b ≤ x.

For a polynomial in one variable p(x) = an�xn⊕an−1�xn−1⊕· · ·⊕a1�x⊕a0,
all lines are present in the graph of y = p(x) on the (x,y) plane if

a1 − a0 ≤ a2 − a1 ≤ · · · ≤ an−1 − an−2 ≤ an − an−1.
Proof: Let p(x) = an � xn ⊕ an−1 � xn−1 ⊕ · · · ⊕ a1 � x ⊕ a0. This can

be expressed as a minimum of a collection of lines: p(x) = min(nx + an, (n −
1)x + an−1, . . . , x + a1, a0). If one of these lines y = mx + am is less than
or equal to in y-value at the intersection of lines y = (m − 1)x + am−1 and
y = (m + 1)x + am+1, then it will be present in the graph. The point of
intersection is where y = (m − 1)x + am−1 = (m + 1)x + am+1. This returns
x = am−1−am+1

2 . The line y = mx+am will only be present in the graph of p(x)

if mx+am ≤ (m+1)x+am+1, which means when am−am+1 ≤ x = am−1−am+1

2 .
This leads to am − am−1 ≤ am+1 − am for any 0 < m < n. Therefore, all lines
are included in the graph if and only if a1−a0 ≤ a2−a1 ≤ · · · ≤ an−1−an−2 ≤
an − an−1.

The fundamental theorem of algebra holds: not necessarily every tropical
polynomial can be factored into linear equations, but every tropical polyno-
mial is equivalent to some other polynomial which can be factored into linear
equations.

For example with the polynomial p(x) = 2�x2⊕4�x⊕3, this is equivalent
to q(x) = 2� x2 ⊕ 3. This is because the line y = x + 4 is always greater than
y = 2x + 2 or y = 3, so it is not even a part of the picture here.
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Figure 1: graph of p(x) = 1� x3 ⊕ 2� x2 ⊕ 4� x⊕ 7

Figure 2: graph of p(x) = 1� x3⊕ 2� x2⊕ 4� x⊕ 7 showing the different lines

4� x2 ⊕ 2� x⊕ 3 = (3� x⊕ 1)� (1� x⊕ 2).

3.3 Hypersurface:

For a tropical polynomial p : Rn → R, the hypersurface, denoted by H(p), is
the set of all points x ∈ Rn where p(x) is the minimum of two or more lines. A
point x will be an element of H(p) if and only if p(x) is not linear at x. The
hypersurface H(p) can be thought of as the ”roots” of p(x).
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3.4 Polynomials in Two Variables:

For any polynomial p(x, y), H(p) is a tropical curve that is a finite graph in R2.
All edges in the graph of H(p) will have rational slopes.

For any node (x, y) of the graph, take the smallest nonzero lattice vector
of each line coming from this node. Zero tension at (x, y) means the sum
of all these vectors is zero. For example if there was a line going vertically
up from the node - this would correspond to the vector (0, 1), a line going
horizontally left from the node - corresponding to (1, 0), and a line going down
and left from the node - (−1,−1), then there is zero tension at this node because
(1, 0) + (0, 1) + (−1,−1) = (0, 0).

For example with a line in two variables:
p(x, y) = a� x⊕ b� y ⊕ c, where a, b, c ∈ R
If would follow that H(p) consists of all points (x, y) such that p(x, y) is

equal to the minimum of at least two of the lines a + x, b + y, and c.

4 Optimization problems:

By now, you the reader have probably figured out that tropical algebra can be
used for optimization. Optimization often involves a set of different lines and
you want to optimize, or attain the most you can with the least effort possible,
which very often involves a minimum!

Example:
You are taking a taxi to a location 6 miles away, and you need to go at least

3 miles in a taxi but can walk the rest of the way if necessary. You have $12
on you. Taxi A charges a flat price of $10 for up to 5 miles. Taxi B charges $6
then $1 per extra mile. Taxi C charges $2 then $3 per extra mile.

What is the best price that you can get while going the farthest possible, in
other words, what is the lowest dollars-per-mile ratio possible?

This problem involves several lines. Let x=distance (miles) and y=price ($).
Then taxi A represents the line y = 10, taxi B represents y = x + 6 and taxi
C is y = 3x + 2. Also there are several inequalities (like there are in most any
optimization problem): 3 ≤ x ≤ 6, and y ≤ 12.

This can be made into a tropical polynomial y = p(x) = 2�x3⊕ 6�x⊕ 10.
Then H(p) = {2, 3, 5}, or in (x,y) coordinates, {(2, 8), (3, 9), (5, 10)}. The point
(2, 8) is not even a possibility because it is not true that x ≥ 3. Out of the
points (3,9) and (5,10), the latter is the better deal, because you are paying
only $2 per mile instead of $3. This also meets all the requirements because
3 ≤ 5 ≤ 6 and 10 ≤ 12. Of course (6,10) is a point on the graph and this
is an even better deal, but remember that taxi A only goes for up to 5 miles.
Therefore the answer is $2 per mile is the best deal.
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