
INVARIANT THEORY AND ALGORITHMS

KISHAN JANI

Abstract. Invariant theory deals with finding quantities that remained unchanged due to certain
group actions or transformations. In this expository paper, we lay emphasis on studying invariant
theory from an algebraic point of view, focusing on the action of subgroups of GLn(k) and SLn(k)
on polynomial rings. We will also prove the finite generation of invariant rings under action by a
special type of GLn(k) subgroup (namely linearly reductive groups) and also derive a significant
bound on the degree of invariant polynomials. Stemming from this discussion, we will also present
algorithmic approaches to the problem of finding the fundamental invariants of a ring under a given
group action. Lastly, we will discuss applications of these algorithms in finding invariants of the
dihedral group Dn and finding self-dual codes in coding theory. The paper assumes the knowledge
of group and ring theory, linear algebra and some elementary calculus related to taylor expansions.

1. Introduction

Definition 1.1. For a group G and a set X, a group action, more specifically a left-group action,
is defined as a function ϕ : G×X → X such that

(1) ϕ(eG, x) = x where eG is the identity of the group and x ∈ X
(2) ϕ(g1g2, x) = ϕ((g1, ϕ(g2x))) for g1, g2 ∈ G

For the sake of brevity, if the left-group action is known, the notation ϕ = · is often used,
simplifying the group action axioms to eG · x = x and (g1g2) · x = g1(g2 · x). Let us look at some
examples of group actions.

Example 1.1. Let us consider the group action of Gn = {1, ω, ω2, . . . , ωn}, the multiplicative
group of nth roots of unity, on C. The element ωk ∈ Gn acts on a complex number z ∈ C by
rotating it 2kπ/n radians in the counter-clockwise direction.

Example 1.2. The special linear group SL2(C) acts on polynomials in C[x, y] by imposing the
following linear transformation(

x′

y′

)
=

(
a b
c d

)(
x
y

)
=

(
ax+ by
cx+ dy

)
for

(
a b
c d

)
∈ SL2(C)

A natural and interesting question that can be asked is about quantities that do not change after
a group action. This question forms the basis for invariant theory, which analyzes such quantities
called invariants.

Definition 1.2. Formally stated, an invariant is a quantity that does not change under a group
action, that is for a group action ϕ, a quantity f would be invariant if ϕ ◦ f = f .

The notion of an invariant is actually quite common in many fields of mathematics, and can be
extended to any form of transformation in general. For example, if we consider the transformation
of coordinates P (x, y) by the rotation matrix Rθ, defined as(

x
y

)
7−→

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
≡
(
x′

y′

)
Then if we look at the distance between P and the origin O before and after the transformation,

dist(P,O) =
√

(x− 0)2 + (y − 0)2 =
√
x2 + y2

1
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dist(P ′, O′) =
√

(x′ − 0)2 + (y′ − 0)2 =
√

(x cos θ − y sin θ)2 + (x sin θ + y cos θ)2

=

√
x2 cos2 θ + y2 sin2 θ − 2xy cos θ sin θ + x2 sin2 θ + y2 cos2 θ + 2xy cos θ sin θ

=
√
x2 + y2 = dist(P,O)

Thus, the distance from the origin before and after the rotation is the same, and so we say that
distance from the origin is an invariant under the given transformation. Additionally, since distance
does not change under translation, we show that distance between any two points is invariant under
rotation.
This paper will explore invariants from an algebraic perspective, and so our focus will be restricted
to polynomials that remain invariant under certain specific group actions, namely those by the
general linear and special linear groups. The following example shows one such invariance:

Example 1.3. Consider an action on the polynomial ring C[x, y] by the group

G =

{(
1 0
0 1

)
,

(
−1 0
0 −1

)
,

(
0 −1
1 0

)
,

(
0 1
−1 0

)}
⊂ SL2(C)

For f(x, y) ∈ C[x, y], these four matrices correspond to the following actions: for post-transformation
coordinates (x′, y′), f(x′, y′) = f(x, y), f(x′, y′) = f(−x,−y), f(x′, y′) = f(y,−x), and f(x′, y′) =
f(−y, x). Then, since an invariant polynomial must have ϕ(f(x, y)) = f(x′, y′) = f(x, y), it must
satisfy the following:

f(x, y) = f(−x,−y), f(x, y) = f(−y, x), f(x, y) = f(−x, y)

Multiple polynomials pi(x, y) ∈ C[x, y] invariant under this group action can be found; for instance,
consider the following:

(1) p1(x, y) = x2 + y2 + x2y2

(2) p2(x, y) = πx2y2(x2 + y2) + 15
(3) p3(x, y) = 2xy3 − 2yx3 + 5x2y2

A natural yet non-trivial result that stems from the definition of such invariant polynomials is that
for two such polynomials f1 and f2, f1 + f2 and f1f2 would also be invariant. A direct implication
of this additive and multiplicative closure is the possibility that the set of all invariant polynomials
under a certain group action is a ring. This is in fact true and can be easily verified.

2. Classical Invariant Theory

Definition 2.1. For G ⊂ GLn(k), a polynomial f ∈ k[x] = k[x1, x2, . . . , xn] is G-invariant if
g ◦ f = f for all g ∈ G. Furthermore, the set of G-invariants forms a sub algebra of k[x], more
particularly a ring of G-invariants denoted by

k[x]G = {f(x1, x2, x3, . . . xn) : f ∈ k[x], g ◦ f = f ∀ g ∈ G}

Example 2.1. It so happens that in the case of Example 0.3, we are able to generate the complete
ring of invariants k[x, y]G using three polynomials f1 = x2 + y2, f2 = x2y2, and f3 = x3y− y3x. So
then we have that

C[x, y]G ∼= C[x2 + y2, x2y2, xy3 − yx3]

Example 2.2. Consider the finite group G generated by

A =

1 0 0
0 ω 0
0 0 ω2
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where ω = e
2πi
3 is a cube root of unity, so ω3 = 1. Then we have the group H = {I, A,A2} ⊂

SL2C. For H acting on C[x, y, z], we have the following transformations on a polynomial p:

f(x, y, z) = f(x, y, z), f(x, y, z) = f(x, ωy, ω2z), f(x, y, z) = f(x, ω2y, ωz)

In this case, our invariant ring is finitely generated and obeys the following isomorphism,

C[x]H ∼= C[x, y3, z3, yz]

In both examples, we encountered finite SLn(k) subgroups whose actions upon the ring C[x]
produced finitely generated rings of invariants. One of the most celebrated results of invariant
theory is Hilbert’s Finiteness theorem, which states that for actions by linearly reductive groups,
the ring of invariants can always be generated by a finite set of invariants.

Definition 2.2. If we have k[x]G ∼= k[I1, I2, . . . , In] then the invariants I1, I2, . . . , In are called the
fundamental invariants of the ring and a relation between these invariants is called a syzygy.

Example 2.3. Once again, alluding to Example 0.3, the fundamental invariants are I1 = x2 +y2,
I2 = x2y2, and I3 = xy3 − yx3. Additionally,

(xy3 − yx3)2 = x6y2 + y6x2 − 2x4y2 = x2y2(x4 + y4)− 2x2y2 = x2y2
[
(x2 + y2)2 − 2x2y2

]
− 2x4y4

So we have the syzygy
I2

3 = I2(I2
1 − 2I2)− 2I2

2 = I2I
2
1 − 4I2

2

The study of invariants under GLn(C) group actions on binary forms was of particular interest
in 19th century research in the topic. One of the primary reasons for this was that the invariant
quantities that are determined for quadratic forms are invariant under any finite or infinite subgroup
of GL2(C).

Definition 2.3. A polynomial p(x) of degree d is homogeneous if all its terms have the same
degree. One of the interesting properties that result from this definition is that p(ax) = adp(x) for
a constant a.

Definition 2.4. A binary form of degree d is a homogeneous polynomial in x and y of the form

d∑
i=0

(
d

i

)
aix

d−iyi = a0x
d +

(
d

1

)
a1x

d−1y + . . . ad−1

(
d

d− 1

)
xyd−1 + ady

d

for a1, a2, . . . ad ∈ k, generally taken to be C in this paper.

Example 2.4. The binary quadratic form is given by p(x, y) = a0x
2 +2a1xy+a2y

2 for p ∈ C[x, y].

Under SL2(C) group action on the binary form, it can be shown, through rather exhaustive
algebra, that under such a group action, the determinant ∆2 = a2

1 − a0a2 is an invariant.
Note that the discriminant is a polynomial in the coefficients of p(x, y). Invariants of binary forms
under SL2(C) group actions are traditionally polynomials in the coefficients of the original binary
form.

Definition 2.5. For the linear action by matrices A ∈ GL2(C) on C[X], binary forms transform
in the following way

d∑
i=0

(
d

i

)
aix

d−iyi =
d∑
i=0

(
d

i

)
a′ix

d−iyi

where ai, a
′
i ∈ C. A polynomial I ∈ C[a0, a1, a2, a3, . . , an] is the invariant of a binary form if

I(a0, a1, a2, a3, . . , ad) = (detA)gI(a′0, a
′
1, a
′
2, a
′
3, . . , a

′
d)

with the ring of all invariants defined as C[Xd]. g is called the index or weight of the invariant.
Naturally, in the case of SLn(C) groups, the index of the invariant is zero.



4 KISHAN JANI

Example 2.5. In the case of the invariant ring for binary quadratic forms C[X2] ∼= C[∆2], for an
arbitrary GL2(C) action defined by(

x
y

)
7→
(
α β
γ δ

)(
x
y

)
=

(
x′

y′

)
for A =

(
α β
γ δ

)
that ∆′2 = (detA)2∆2 i.e, the discriminant has index 2.

Definition 2.6. Another useful notion when considering invariants of binary forms is the covariant.
A polynomial F ∈ C[a0, a1, a2, a3, . . , ad, x, y] is covariant if for the linear action of all A ∈ GL2(C),

F(a0, a1, a2, a3, . . , ad, x, y) = (detA)gF(a′0, a
′
1, a
′
2, a
′
3, . . , a

′
d, x, y)

The task of calculating all such invariants and covariants quickly becomes arduous and complex
task. For example, the two fundamental invariants of the binary quartic

p4(x, y) = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy

3 + a4y
4

are the following

f1 = a0a4–4a1a3 + 3a2
2, f2 = a0a2a4–a0a

2
3–a2

1a4–a3
2 + 2a1a2a3

Interestingly, the latter can be represented as

f2 = det

a0 a1 a2

a1 a2 a3

a2 a3 a4


This particular quantity is known as the catalecticant. One can form the catalecticant of a 2n
binary form in a similar way by shifting ai to the right by one after each row for an (n+1)× (n+1)
matrix. The catalecticant of the coefficients of a binary form gives an invariant; a proof for this
can be found in [Lor18].
Modern computational tools have allowed the computation of fundamental invariants for binary
forms upto degree d = 10. These invariants can be found in [PD14] along with an efficient compu-
tational method.

The computation of invariants in C[x] motivates more general theorems about the structure of
the invariant ring. One of the key questions posed by invariant theory in the nineteenth century
was that about the finiteness of the set of generators: does an invariant ring C[x]G exist for all
kinds of groups? If not, for what kinds of groups does it exist? Gordan managed to prove finiteness
for the specific case of binary forms under SL2(C) group actions. However, his method, while con-
structive, could not be extended beyond the SL2(C) group. A proof for this theorem using bracket
functions can be found in [KR84]. Hilbert’s 1890 and 1893 papers extended Gordan’s result to
linearly reductive groups through a novel method.

3. Some Representation Theory

One of the key restrictions of Hilbert’s Finiteness Theorem is the linear reductivity of the group
causing a specific group action. A justification for this restriction and the proof of the theorem in
general requires the motivation of an alternate representation-theoretic characterization of C[x]G

in terms of vector spaces. Consequently, we first introduce the necessary tools required for creating
this new definition.

Definition 3.1. A representation of a group G is the homomorphism ϕ : G −→ GL(V ) where
V is a vector space. The dimension dim(V ) = n of the vector space is the cardinality of the basis
vectors, enabling us to express the group action of G as an n × n matrix transformation. For our
purposes, we assume that dim(n) <∞. Another equivalent definition that is often used defines the
representation of G as the group action of G on the vector space V , namely φ : G× V −→ V .
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Definition 3.2. A subrepresentation W of V is a G-invariant subspace of V , that is to say

W = {w : g ◦ w ∈W ∀ g ∈ G}

Definition 3.3. This definition can be extended to define a representation-theoretic generalization
of our polynomial ring; for a vector space V over k and a group G, k[V ] denotes the k-algebra of
polynomial functions f(x) on V . Furthermore, we then call f ∈ k[V ] G-invariant if g ◦ f = f
for all g ∈ G. The set of G-invariants forms a sub-algebra k[V ]G, defined as

k[V ]G = {f ∈ k[V ] : g ◦ f = f ∀ g ∈ G}

Definition 3.4. A representation is called irreducible if it has no subrepresentations except the
trivial subrepresentations 0 and V . It is reducible otherwise. Additionally, a representation is called
completely reducible if it can be expressed as the direct sum of irreducible subrepresentations. A
group is called linearly reductive if it has completely reducible finite-dimensional representations.

Equipped with this background, we can provide a brief explanation of why we require the con-
dition of linear reductivity. Hilbert’s original proof and the proof mentioned here, both involving
defining an equivariant map ρG : k[V ] −→ k[V ]G, called the Reynolds operator. For such a map to
be defined, we require that every finite-dimensional representations of G is completely reducible,
which then forces the group to be linearly reductive. For a more detailed and rigorous explanation
of the condition of linear reductivity, we refer the reader to [KP], [Mil12].

4. The Reynolds operator

As mentioned in the previous section, our proof hinges on defining a map ρG : k[V ] −→ k[V ]G,
which is called the Reynolds operator. In this section, we prove a few basic properties of this
operator. It is much more convenient to work with the non-representation theoretic definition of
the invariant ring, and so it has been used here.

Definition 4.1. The Reynolds operator ρG(f) for a group G acting on a set X with f ∈ X is
defined as

ρG : f 7−→ 1

|G|
∑
g∈G

g ◦ f

In the case of actions by matrix subgroups G of GLn(C) on the polynomial k[x], ρG(f) for f(x) ∈
k[x] is defined by the map

ρG : f 7−→ 1

|G|
∑
A∈G

f(A · x)

It then follows that in the case of action by matrix subgroups, the Reynolds operator preserves the
degree of polynomial since it only imposes a linear transformation of the variables.

Intuitively, one can consider the Reynolds operator as a form of average of the action of G on
f . As a result of this averaging action, it turns out that this operator has a form of absorption
property with respect to the ring of invariants: the Reynolds operator applied to any element f
returns an element of the invariant ring. This property becomes extremely useful when it comes to
the computation of fundamental invariants as it gives us a method of generating invariants from
a given base of polynomials. We will develop this method in an algorithmic way in Section 6. It
is also important to note that this averaging effect of ρG(f) imposes a significant restriction upon
our choice of the underlying field: since we are dividing by |G|, we must have that char(k) = 0.
For our purposes, we will assume this to be the case.

Proposition 1 (Absorption Property). Let ρG(f) be the Reynolds operator.

(1) For a polynomial ring k[x] and its invariant ring k[x]G, ρG(f) maps k[x] to k[x]G

(2) If f ∈ k[x]G, then ρG(f) = f .
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(3) For f0 ∈ k[x]G and f ∈ k[x], ρG(ff0) = f0ρG(f)

Proof. Suppose we have f ∈ k[x] and B ∈ G. Then

ρG(f)(B · x) =
1

|G|
∑
A∈G

f(B ·A · x) =
1

|G|
∑
BA∈G

f(BA · x)

Now for A1, A2 ∈ G, suppose BA1 = BA2, then since B ∈ G ⊂ GLn(C), we can multiply both
sides by B−1 to get that A1 = A2. This means that the product BA ∈ G always maps to a unique
element in G. But then since A covers the length of G and since G is finite, we must have |G|
distinct matrices BA, and so BA also covers the entire group. Then we have that

1

|G|
∑
BA∈G

f(BA · x) = ρG(f)(x)

and so ρG(f)(B · x) = ρG(f)(x), which means ρG maps f to an invariant polynomial. So then
we get the map ρG(f) : k[x] −→ k[x]G. We have proved the result only for GL2(C) matrices; the
general proof is very similar to this, and can be found in [Dan17].

For (2), suppose f ∈ k]x]G. Then

ρG(f) =
1

|G|
∑
g∈G

g ◦ f(x) =
1

|G|
∑
g∈G

f(x) = f(x)

This also implies that ρG ◦ ρG(f) = ρG(f) since ρG(f) ∈ k[V ]G, which means that the operator ρG
is idempotent in this case.

Now for (3), since f0 is invariant, we have g ◦ f0 = f0. Then

ρG(ff0) =
1

|G|
∑
g∈G

g ◦ [ff0(x)] =
1

|G|
∑
g∈G

(g ◦ f(x)) · (g ◦ f0(x)) = f0 ·
1

|G|
∑
g∈G

g ◦ f(x) = f0ρG(f)

�

5. Finiteness and Degree Bounds

In this section, we focus on proving Hilbert’s finiteness theorem and other related results about
the finite-generation of the k[V ]G.

Theorem 1 (Hilbert 1890). If G is linearly reductive, then k[V ]G is a finitely generated ring.

Before beginning the proof for this theorem, we first need to prove Hilbert’s Basis Theorem,
which by its own is a crucial result in ring theory.

Theorem 2 (Hilbert Basis Theorem). If R is noetherian, the R[x] = R[x1, x2, . . .xn] is noetherian.

Proof of Hilbert Basis Theorem. It is sufficient to prove that if R is noetherian then R[x] is noe-
therian, since our argument can then be extended by induction on n for R[x].

Let I ⊂ R[x] be an ideal. We will construct a finite generating set for I. Let f1 be the non-
zero polynomial of least degree in I. Next, for i ≥ 1, we recursively define functions fi+1 as
follows: fi+1 is the polynomial of least degree in I / (f1, f2, . . .fi). The sequence terminates when
I = (f1, f2, . . . fn). We claim that I is finitely generated, so I = (f1, f2, . . . fn) for some n ∈ N.
Aiming for a contradiction, suppose this recursive process leads to an infinite set of polynomials
(f1, f2, . . . ). Let ai denote the leading coefficient of polynomial fi and let J be the ideal in R
defined as J = (a1, a2, . . . ). Since R is noetherian, J must be a finitely generated ideal and so
J = (a1, a2, . . . am) for m ∈ N. So then we can have an element am+1 =

∑m
i=1 riai for ri ∈ R. It
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follows from our construction that fm+1 will have degree greater than or equal to fi for 1 ≤ i ≤ m.
Consider the polynomial

g :=

m∑
j=1

rjfjx
deg fm+1−deg fj

It follows from this definition that g ∈ (f1, f2, . . . fm) and that g has the same leading coefficient
and degree as fm+1. Then fm+1−g /∈ (f1, f2, . . .fm) but it has a degree less than that of fm+1. This
raises a contradiction, since we chose fm+1 to be the polynomial of least degree not in (f1, f2, . . .fn).
So then we cannot have an infinitely generated ideal of R[x], and further we can say that R[x] is
noetherian. �

Now we can provide a satsifactory albeit nonconstructive proof of the Finiteness theorem:

Proof of Hilbert’s Finiteness Theorem. Let m be the ideal of k[V ] generated by all invariant homo-
geneous polynomials of degree d > 0. Let V be a finite dimensional vector space. Since k[V ] is
noetherian, by the Hilbert Basis Theorem, m is finitely generated by a set of invariant homogeneous
elements, say {f1, f2, f3, . . . fn}. We will prove that k[V ]G = k[f1, f2, f3, . . . , fn].

The ⊇ inclusion is obvious since the invariant ring consists of the set of invariant homogeneous
generators and also non-homogeneous invariants if they exist.
For the ⊆ inclusion, suppose f ∈ k[V ]G. We will prove by induction on d = deg(f) that
f ∈ k[f1, f2, f3, . . . , fn]. The base case for d = 0 is trivial. If d > 0, then we have that f ∈ m and
so it can be expressed as

f =
n∑
i=1

αifi for αi ∈ k[V ]

Now we apply the Reynolds operator ρG(f) : k[V ] −→ k[V ]G on both sides of the equation(Note
that due to this map, we must have G a linearly reductive group and char(k) = 0):

ρG(f) =
n∑
i=1

ρG(aifi)

But since f, fi ∈ k[V ]G, we get

f =
n∑
i=1

fiρG(ai)

Clearly, ρG(ai) ∈ k[V ]G has to be a homogeneous invariant, which will have degree deg[ρG(ai)] =
deg(f)− deg(fi) < deg(f). Now since deg[ρG(ai)] < deg(f), we can conclude under our induction
hypothesis that ρG(ai) ∈ k[f1, f2, f3, . . . , fn]. But then we can reinterpret f as

f =

n∑
i=1

fiρG(ai) ∈ k[f1, f2, f3, . . . , fn] since ρG(ai) ∈ k[f1, f2, f3, . . . , fn]

So then our second forward inclusion holds, and k[V ]G = k[f1, f2, f3, . . . , fn]. Thus, k[V ]G is finitely
generated. �

Theorem 3 (Noether 1916). If G is a finite matrix subgroup of GLn(k), then

k[x]G = k

[
ρG(

n∏
i=1

xkii ) : ki ≥ 0,

n∑
i=1

ki ≤ |G|
]

that is to say that the degree of the fundamental invariants is limited by the order of the group.
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Proof. For the sake of brevity, let Xd ≡
∏n
i=1 x

ki
i where k1 + k2 + . . . kn = d denote a monomial in

k[x] of degree d in n different variables. Let f =
∑N

d=1 cdX
d ∈ k[x]G be an invariant, where cd ∈ k.

Then since ρG(f) = f ,

f = ρG(f) = ρG

( N∑
d=1

cdX
d

)
=

N∑
d=1

cdρG(Xd)

and so every invariant is a linear combination of ρG(Xd) over k. So then our approach will be to
instead prove that ρG(Xd) is a polynomial in ρG(Xβ) for all d where |β| ≤ |G|. First let us analyze
ρG(Xd):

(1) ρG(Xd) =
1

|G|
∑
A∈G

(A · x)d

where (A · x)d represents the represents our monomial Xd after transformation, which stated ex-
plicitly gives

(A · x)d =
n∏
i=1

(Ai · x)ki

where Ai denotes the ith row of matrix A. Now consider the expansion of (y1A1 ·x + y2A2 ·x. . . +
ynAnx)d so that by the multinomial theorem we get on the right hand side

(y1A1 · x + y2A2 · x. . . + ynAnx)d =
∑

k1+. .+kn=d

d!

k1!k2!. . . kn!
(A · x)dY d

For the sake of brevity, Let
(
d
ki

)
denote the multinomial coefficient. Summing both sides over all

possible A ∈ G,

(2)
∑
A∈G

(y1A1 · x + y2A2 · x. . . + ynAnx)d =
∑
A∈G

( ∑
k1+. .+kn=d

(
d

ki

)
(A · x)dY d

)

(3) =
∑

k1+. .+kn=d

(
d

ki

)
Y d
(∑
A∈G

(A · x)d
)

=
∑

k1+. .+kn=d

(
d

ki

)
· Y d · |G| · ρG(Xd) (From (1))

Before progressing further, we first assert the following lemma about symmetric polynomials

Lemma 1. For a field k, every symmetric polynomial in k[x] can be written as a polynomial in
P1,P2,P3, . . . Pn, where Pk = xk1 + xk2 + . . . xkn is called a power sum.

Proof. The proof of this lemma is rather involved and requires a substantial background in the
theory of symmetric functions. A proof of this lemma using Newton’s Identities has been motivated
in [CLO97]. We provide a brief outline of this proof. Newton’s identities relate power sums defined
above and the elementary symmetric functions ek =

∑
1≤ji≤n xj1xj2 . . . xjn :

k∑
j=0

(−1)jjPk−jej = 0 for 1 ≤ k ≤ n

n∑
j=0

(−1)jPk−jej for k > n

Then it can be shown by induction that ej can be expressed as a polynomial in P1,P2,P3, . . . Pn.
Then since any symmetric polynomial can be expressed as a polynomial in elementary symmetric
functions, we get the lemma. We refer the reader to Kieth Conrad’s Notes on Symmetric Func-
tions [Con] to obtain the necessary background required for this proof.
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We use Lemma 2. on the left hand side of (2) in the following way: let YA ≡ y1A1 ·x+y2A2 ·x. . . +
ynAnx. Then we get on the left hand side of (2)

∑
A∈G YdA, which is the dth power sum of YA over

a total of |G| such elements, and so a symmetric polynomial. But now we can apply Lemma 2.
over our |G| objects. Since we have that YdA as a symmetric function in S = {A : A ∈ G} with
|S| = |G|,it can be expressed as a polynomial in the power sums Q(P1, P2, . . . P|G|) by Lemma 2.
Combining this with (3), we get

(4)
∑

k1+. .+kn=d

(
d

ki

)
· Y d · |G| · ρG(Xd) = Q(P1, P2, . . . P|G|)

Now in the polynomial Q(P1, P2, . . . P|G|), each Pβ where β ≤ |G| can be written as:

Pβ =
∑

k1+. .+kn=β

(
β

ki

)
· Y β · |G| · ρG(Xβ) = q(Y β, ρG(Xβ))

for some polynomial q. Then we essentially have Q as a polynomial in Y β and ρG(Xβ). Then if
we look at (4) again,

∑
k1+. .+kn=d

(
d

ki

)
· Y d · |G| · ρG(Xd) = Q

[
q
(
Y 1, ρG(X1)

)
, q
(
Y 2, ρG(X2)

)
, . . . q

(
Y |G|, ρG(X |G|)

)]
Now, if we equate the coefficients of Y n, we finally get that(

d

ki

)
· |G| · ρG(Xd) = q′(ρ(Xβ)) for some β ≤ |G| and some polynomial q′

In our char(k) = 0, the coefficient of ρG(Xd) is non zero, and we have ρG(Xd) as a polynomial in
ρ(Xβ). �

This theorem is an extremely crucial result as it not only provides a bound for the degree of
fundamental invariants under finite GLn(k) action, but it also suggests an algorithmic approach
that can be used to find the set of fundamental invariants. This approach will be discussed in
section 6.

Hilbert’s Finiteness Theorem is an extremely powerful result that limits the finite generation of
invariaints only on the basis of linear reductivity of a group, which stems from our use of the
Reynolds operator. Hilbert provided another proof in 1893 using the Cayley Ω-operator and the
nullcone N0 which was constructive and algorithmic in nature and can be found in [Hil93]. This
proof was a groundbreaking achievement in Invariaint theory since it provided a pathway to gener-
ate the fundamental invariants of any linearly reductive group. One can find this proof, along with
the aforementioned algorithm, in [Stu08]. It is then a natural to ask whether there is some way to
extend this result to all group actions. This was Hilbert’s 14th problem.

Question 5.1 (Hilbert’s 14th Problem). Is the ring of invariants C[x]G always finitely generated
for G ⊂ GLn(C)?

This question remained unsolved for many years until Nagata managed to produce a counter-
example in 1959, which can be found in [Nag59].

6. Computational Aspects of Invariant Theory

As mentioned in the previous section, one of the most important corollaries to the constructive
proofs for finiteness in Section 5 is that they produce the scope of generating algorithms to compute
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fundamental invariants. In this section, we will discuss some algorithms pertaining to invariants
under finite group actions.
Recall Theorem 3. in Section 5, which states that the ring of invariants k[x]G can be generated

by ρG(
∏n
i=1 x

ki
i ) for ki ≥ 0 and degree of monomial less than |G|. This means that the ring of

invariants for action by finite G ⊂ GL2(C) can be determined by applying the Reynolds operator
to all monomials with degree β ≤ |G|. This gives us our first algorithm:

Algorithm 6.1. (Generating C[x]G using Reynolds operator) We can generate the fundamental
invariants of the invariant ring C[x]G for finite subgroups G ⊂ GLn(C) using the Reynolds operator

ρG(
∏
xkii ) for k1 + k2 + . . . + kn ≤ |G|.

Suppose we are looking for all monomials f such that deg(f) = β ≤ |G|. Then k1 +k2 + . . .kn = β

for ki ≥ 0. Then the total number of possible monomials in this particular case becomes
(
β+n−1
n−1

)
.

deg(f) = 0 is trivial, so then for all possible values of β,

(5) Number of monomials =

|G|∑
β=1

(
β + n− 1

n− 1

)
Example 6.1. Consider group action on C[x, y, z] by H = {I, A,A2} as in Example 2.2. Since

ω = e
2πi
3 is a cube root of unity, we have ω3 = 1 and also ω2 + ω + 1 = 0. By equation 5, we have

to consider a total of 19 monomials. Let us first look at the three transformations to consider due
to elements of H:

I =

1 0 0
0 1 0
0 0 1

 (x, y, z) 7−→ (x, y, z) A =

1 0 0
0 ω 0
0 0 ω2

 (x, y, z) 7−→ (x, ωy, ω2z)

A2 =

1 0 0
0 ω2 0
0 0 ω

 (x, y, z) 7−→ (x, ω2y, ωz)

Fundamental Invariaints using ρH
Monomial
(f)

1
G

∑
A∈G f(A · x) Monomial

(f)

1
G

∑
A∈G f(A · x)

x 1
3(x+ x+ x) = x x2y 1

3x
2(y + ωy + ω2y) = 0

y 1
3(y + ωy + ω2y) = 0 x2z 1

3x
2(z + ωz + ω2z) = 0

z 1
3x

2(z + ωz + ω2z) = 0 xy2 1
3x(y2 + ω2y2 + ωy2) = 0

xy 1
3x(y + ωy + ω2y) = 0 xz2 1

3x(z2 + ω2z2 + ωz2) = 0

yz 1
3(yz+ω3yz+ω3yz) = yz yz2 1

3(yz2 + ω5yz2 + ω4yz2) = 0

zx 1
3x(z + ωz + ω2z) = 0 x3 1

3(x3 + x3 + x3) = x3

x2 1
3(x2 + x2 + x2) = x2 y3 1

3(y3 + y3 + y3) = y3

y2 1
3(y2 + ω2y2 + ωy2) = 0 z3 1

3(z3 + z3 + z3) = z3

z2 1
3(z2 + ω2z2 + ωz2) = 0 y2z 1

3(y2z + ω4y2z + ω5y2z) = 0

xyz 1
3x(yz + ω3yz + ω3yz) =
xyz
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So then we get the list of invariants {x, yz, x2, xyz, x3, y3, z3}. However, we only have 4 fundamental
invariants since {x2, xyz, x3} can be generated by f1 = x, f2 = yz, f3 = y3, f4 = z3. So then

C[x]H ∼= C[x, y3, z3, yz]

Next, we consider another powerful quantative algorithm that determines, for action by a finite
group, how many invariants are of a given degree. The algorithm stems from Molien’s Formula for
the Hilbert or Poincare Series, of which we first present a linear algebraic proof.

Definition 6.1 (Hilbert Series). The Hilbert Series of the graded algebra C[x]G is the generating
function

ΦG(z) =
∞∑
d=0

dim(C[x]Gd )zd

The Hilbert series bears an immense significance when it comes to G-invariant algebras; since we
find the dimension of each degree-based subspace of the invariant ring and express it as a formal
power series, we have that the coefficient of zj , expressed as CΦG(zj), gives the number of linearly
independent invariants that exist at that degree.

Theorem 4 (Molien 1897). The Hilbert Series ΦG(z) of the invariant ring C[x]G is given by

ΦG(z) =
1

|G|
∑
g∈G

1

det(In − gz)

where In represents the n× n identity matrix.

Proof. We first need to introduce the following lemma which relates the dimensions of our graded
algebra to the trace of the matrix acting upon the algebra.

Lemma 2. If G ⊂ GLn(C) is a finite dimensional group, then the dimension of the invariant
subspace C[x]G is given by

dim(C[x]G) =
1

|G|
∑
A∈G

tr(A)

where tr(A) represents the trace of the matrix A.

Proof. For proving this lemma, we construct an average matrix verson of the Reynolds operator.
Consider the matrix

Γ =
1

|G|
∑
A∈G

A

Suppose we have Γ acting as a linear transformation on the vector space C[x]. This transformation
clearly would be a matrix variant of the Reynolds operator, causing the matrix linear transformation
Γ : C[x] −→ C[x]G defined on individual elements by the Reynolds operator ρG(f). It then
follows that Γ satisfies the properties of ρG(f) mentioned in Section 4 Proposition 1 adjusted for
matrices. Of particular importance is the property that Γ2 = Γ, since this implies that the matrix
is idempotent. Then it has eigenvalues λ = 0, 1. Now since the multiplicity of the eigenvalues gives
the rank and the trace can be defined as the sum of all eigenvalues, we get that rank(Γ) = trace(Γ).
From this, we get that

dim(C[x]) = rank(Γ) = trace(Γ) =
1

|G|
∑
A∈G

trace(A)

Now let C[x]d denote the vector subspace of d-forms in C[x], so then for linear transformations
ϕ ∈ G we have an induced linear transformation ϕd ∈ C[x]d. The set of these linear transfor-
mations creates an induced group of linear transformations Gd. Naturally, C[x]Gd is our invariant

subspace. A form consists of monomials xk11 x
k2
2 x

k3
3 . . . x

kn
n such that k1 + k2 + k3. . . kn = d, so
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then the total distinct monomials, and hence the dimension of C[x]d, is
(
n+d−1
n−1

)
. Then the induced

linear transformation group Gd consists of
(
n+d−1
n−1

)
×
(
n+d−1
n−1

)
invertible matrices.

Let us examine the case when d = 1, where we have the induced transformation matrix ϕ1. The
eigenvectors would be xϕ,1, xϕ,2, . . . , xϕ,n and the eigenvalues would be λϕ,1, λϕ,2, . . . , λϕ,n for
λϕ,i ∈ C. But since xϕ,1, xϕ,2, . . . , xϕ,n are our base variables, the transformation ϕ1 represents the
standard linear transformation caused by ϕ acting on C[x], that is to say ϕ = ϕ1. Furthermore,
each ϕ is diagonalizable since the eigenvectors are linearly independent.

Since d-forms are homogeneous and the basis of our vector space C[x]d, it follows that the ba-

sis vector of
(
n+d−1
n−1

)
monomial d-forms is also the eigenvector. Let the eigenvectors of ϕd be

denoted by xk1ϕ,1, x
k2
ϕ,2, . . . , x

kn
ϕ,n where k1 + k2 + k3. . . kn = d and let the eigenvalues be denoted by

λk1ϕ,1, λ
k2
ϕ,2, . . . , λ

kn
ϕ,n where λkiϕ,i ∈ C.

trace(ϕd) =
∑

k1+. . . kn=d

λk1ϕ,1λ
k2
ϕ,2. . . λ

kn
ϕ,n

Then from Lemma 2 and Definition 6.1,

ΦG(z) =

∞∑
d=0

dim(C[x]Gd )zd =

∞∑
d=0

1

|G|
∑

ϕ∈Gtrace(ϕ)zd

=
∞∑
d=0

1

|G|

(∑
ϕ∈G

( ∑
k1+. . . kn=d

λk1ϕ,1λ
k2
ϕ,2. . . λ

kn
ϕ,nz

d
))

=

∞∑
d=0

1

|G|

(∑
ϕ∈G

( ∑
k1+. . . kn=d

λk1ϕ,1λ
k2
ϕ,2. . . λ

kn
ϕ,nz

k1+k2+k3. . . . kn
))

=
∑
ϕ∈G

1

|G|

( ∞∑
d=0

( ∑
k1+. . . kn=d

λk1ϕ,1z
k1 · λk2ϕ,2z

k2 · . . . · λknϕ,nzkn
))

(6) =
∑
ϕ∈G

1

|G|

( ∑
(k1,. . . kn)∈Nn

λk1ϕ,1z
k1 · λk2ϕ,2z

k2 · . . . · λknϕ,nzkn
)

Observe that
∑

ki∈N λ
ki
ϕ,iz

ki can be expressed as its generating function∑
ki∈N

(λϕ,iz)
ki =

1

1− λϕ,iz

And so we then get in (6)∑
ϕ∈G

1

|G|

(
1

1− λϕ,1z
· 1

1− λϕ,2z
· . . . · 1

1− λϕ,nz

)
=
∑
ϕ∈G

1

|G|
1

(1− λϕ,1z)(1− λϕ,2z) · . . . · (1− λϕ,nz)

Now notice that

(1− λϕ,1z)(1− λϕ,2z) · . . . · (1− λϕ,nz) =

∣∣∣∣∣∣
1− λϕ,1z . 0

. . .
0 . 1− λϕ,nz

∣∣∣∣∣∣ = det(In − ϕz)

since ϕ = ϕ1 has eigenvalues λϕ,1, λϕ,2, . . . , λϕ,n. And so we get the formula

ΦG(z) =
1

|G|
∑
ϕ∈G

1

det(In − ϕz)
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�

Example 6.2. Suppose we have the group from Example 2.2 H = {I, A,A2} acting on C[x, y, z].
Recall that 1 + ω + ω2 = 0 and ω3 = 1. Then we have

det(I3 − Iz) =

∣∣∣∣∣∣
1− z 0 0

0 1− z 0
0 0 1− z

∣∣∣∣∣∣ = (1− z)3

det(I3 −Az) =

∣∣∣∣∣∣
1− z 0 0

0 1− ωz 0
0 0 1− ω2z

∣∣∣∣∣∣ = (1− z)(1− ωz)(1− ω2z) = 1− z3

det(I3 −A2z) =

∣∣∣∣∣∣
1− z 0 0

0 1− ω2z 0
0 0 1− ωz

∣∣∣∣∣∣ = (1− z)(1− ω2z)(1− ωz) = 1− z3

And so we have

ΦH(z) =
1

3

(
1

(1− z)3
+

2

1− z3

)
The maclaurin series of 1

1−z3 is simply 1 + z3 + z6. . . . For 1/(1− z)3, we first consider the following

1

1− z
= 1 + z + z2 + z3 + z4 + z5 + . . .

Twice-differentiating both sides, we obtain

1

(1− z)3
= 1 + 3z + 6z2 + 10z3 + . . .

Combining both series in accordance with the mentioned formula, we get that

ΦH(z) = 1 + z + 2z2 + 4z3 + . . .

Note that we are not concerned about terms with degree greater than 3 since the Noether bound
states that the fundamental invariants are of degree less than |G| ≤ 3. From the Hilbert Series,
we can gather that there is one invariant of degree 0, one invariant of degree 1, two invariants of
degree 2, and four invraiants of degree 3. This matches the results obtained using the Reynolds
operator in Example 6.1, since we obtained the list of invariants {x, yz, x2, xyz, x3, y3, z3}.

Example 6.3. Let us look at an implementation of this algorithm for finding the invariant ring
of C[x, y] under action by the dihedral group D3, which represents the group of symmetries of the
equilateral triangle. The matrix representation of the dihedral group is

D3 = {r0, r1, r2, s0, s1, s2}
where rk and sk can be represented by the following 2× 2 matrices

rk =

(
cos 2kπ

3 − sin 2kπ
3

sin 2kπ
3 cos 2kπ

3

)
, sk =

(
cos 2kπ

3 sin 2kπ
3

sin 2kπ
3 − cos 2kπ

3

)
We first calculate the Hilbert Series ΦD3(z) using Molein’s Formula to find the number of invari-

ants of each degree. First, for any sk,

det(I− skz) =

∣∣∣∣1− z cos 2kπ
3 −z sin 2kπ

3
−z sin 2kπ

3 1 + z cos 2kπ
3

∣∣∣∣ = (1− z2 cos2 2kπ

3
)− z2 sin2 2kπ

3
= 1− z2

As for rk, we require a more case-by-case evaluation of the determinants,

det(I− r0z) =

∣∣∣∣1− z 0
0 1− z

∣∣∣∣ = (1− z)2
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det(I− r1z) =

∣∣∣∣1− z cos 2π
3 z sin 2π

3
−z sin 2π

3 1− z cos 2π
3

∣∣∣∣ = (1 +
z

2
)2 +

3z2

4
= z2 + z + 1

det(I− r2z) =

∣∣∣∣1− z cos 4π
3 z sin 4π

3
−z sin 4π

3 1− z cos 4π
3

∣∣∣∣ = z2 + z + 1

And so we have

ΦD3(z) =
1

6

(
3

1− z2
+

1

(1− z)2
+

2

1 + z + z2

)
=

1

6

[
3(1 + z2 + z4 + . . . ) + (1 + 2z + 3z2 + 4z3 + . . . ) + 2(1− z)(1 + z3 + z6 + . . . )

]
= 1 + z2 + z3 + z4 + z5 + 2z6 +O(x7)

And so we must have one invariant for degrees 2 to 5 and two invariants for degree 6.

The general case of invariants of Dn is worth analyzing. Note that Dn would be generated by
elements r and s that are

r =

(
cos 2π

n − sin 2π
n

sin 2π
n cos 2π

n

)
, rk =

(
cos 2kπ

n − sin 2kπ
n

sin 2kπ
n cos 2kπ

n

)

s =

(
cos 2π

n sin 2π
n

sin 2π
n − cos 2π

n

)
, sk =

(
cos 2kπ

n sin 2kπ
n

sin 2kπ
n − cos 2kπ

n

)
Then our group Dn of order 2n is as follows: Dn = {1, r, r2, r3, . . . . rn−1, s0, s, s2, s3, . . . sn−1}. We
take a similar approach to that used in finding the distribution of invariants by degree under action
by D3, and so we first compute the Hilbert Series for each using Molien’s Formula.

det(I− sz) =

∣∣∣∣1− z cos 2kπ
n −z sin 2kπ

n
−z sin 2kπ

n 1 + z cos 2kπ
n

∣∣∣∣ = 1− z2

The process is a little more involved in the case of rk,

det(I− rkz) =

∣∣∣∣1− z cos 2kπ
n z sin 2kπ

n
−z sin 2kπ

n 1− z cos 2kπ
n

∣∣∣∣ = (1− 2z cos
2kπ

n
+ z2)

Next, we wish to factor the expression obtained for det(I − rkz). Setting the polynomial equal to
zero, we find

(1− 2z cos
2kπ

n
+ z2) = 0, z = cos

2kπ

n
±
√

cos2
2kπ

n
− 1 = cos

2kπ

n
± i sin

2kπ

n
= e±i

2kπ
n

Let λ ≡ e
2π
n , so then det(I− rkz) = (z− λk)(z− λ−k). Consequently, we have our expression for

the Hilbert Series as

ΦDn(z) =
1

2n

[
n

1− z2
+

n−1∑
k=0

1

(z − λk)(z − λ−k)

]
The series representation of the latter term is

1

(z − λk)(z − λ−k)
=

∞∑
n=0

λkn(zn + z−n)

1− z2
=

1

1− z2

(
1

1− zn
+

1

1− z−n

)
=

1

1− z2
· 1 + zn

1− zn

So our Hilbert series is simplified to

ΦDn(z) =
1

2n

[
n

1− z2
+

n

1− z2
· 1 + zn

1− zn

]
=

1

(1− z2)(1− zn)
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From here, it can be shown that the invariant ring C[x, y]Dn can be generated by two fundamental
invariants (See [Ver]). These invariants, of degree 2 and degree k, are

f1 = x2 + y2, f2 =

n−1∏
k=0

(x cos
2kπ

n
+ y sin

2kπ

n
)

Note that the f1 as an invariant is an expected outcome: in the rotation of a point P (x, y), we
observed that the distance is an invariant quantity; the polynomial f1 is just the square of that.
[Bor12] provides a relatively straightforward reasoning behind the occurence of these invariants by
considering the geometry of the transformations. If we consider the action of the dihedral group
on C, a complex number z = x+ iy and its conjugate z = x− iy are transformed in the following

way: r1 (rotation) moves z to ηz and z to ηz for η = e
2kπ
n , whereas s0 (reflection) exchanges z and

z. Then two invariant quantities zz and zn+zn emerge. Their equivalence to the invariants f1 and
f2 can be shown.

And thus we can compute the invariants of any finite group by a combination of the Reynolds
operator method and the Molien Series method.

Algorithm 6.2 (Completeness of Fundamental Invariants). The Invariant ring is equal to a pro-
posed subalgebra of fundamental invariants iff

ΦG(z)− 1

|G|
∑
g∈G

1

det(In − gz)
= 0

Otherwise, the remaining invariants can be computed using the Reynolds operator and be appended
to the set of fundamental invariants.
In general, we can use the Molien Series to determine the distribution of invariants by degree upto
the Noether Bound and then use the Reynolds operator to find invariants in those degrees.

7. Applications to Coding Theory

A striking application of invariant theory comes in the study of error-correcting codes, realized
mostly because of [Slo77]. The paper explores a connection between coding theory and invariant
theory of finite groups. We provide a brief overview of Sloane’s work along with the basics of coding
theory in order to demonstrate the applicability of invariants.

Consider a telegraph line from New York to Boston which transmits only 0’s and 1’s, except it
is faulty in that a 1 is ocassionally received as a 0 in Boston and vice versa. The solution to this
problem relies in sending certain code words; for the sake of simplicity, say 00000 for NO and 11111
for YES. Then if Boston receives 01010, it is more likely that the message was actually 00000 than
11111 since the faulty code was closer to 00000 in that it had more 0s than 1s.
This leads to the notion of a Hamming distance dist(u,v) between vectors v = 〈v1, v2, . . . vn〉
and u = 〈u1, u2, . . .un〉, which is the number of places where ui 6= vi. A binary code is a collection
of code words represented by [n, k, d], where n is called the length of the code, k the dimension
and d is the minimum Hamming distance between two code words. Good codes are often
characterized by small n for faster transmission, large k for more efficiency, and large d so that
deviations from an original code word can be corrected with less nuances.
A useful method of analyzing code comes from its weight enumerator, which is a bivariate poly-
nomial giving the number of code words of a certain weight. The weight wt(u) measures the number
of non-zero ui. So then the Weight enumerator of a code C is given by

WC(x, y) =

n∑
i=0

Nix
n−iyi
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where Ni is the number of codes of a weight i.
The weight enumerator leads to invariants when one considers codes that are self-dual. A dual
code C∗ is a code consisting of all vectors orthogonal to a code C. That is,

C∗ = {v :
n∑
i=1

uivi = 0 for all u ∈ C}

A code for which C = C∗ is called a self-dual code. This particular class of codes are of special
interest because restrictive conditions like the Gilbert-Varshamov bound are met by such codes
(See [MST72]). Furthermore, self dual codes are often the optimal possible option for a class of
codes (See [Slo77] for examples) and the self duality of a certain code can be used to simplify the
decoding process in certain situations. We refer the reader to [Slo77] and [NRS06] for more on the
utility of self-dual codes.
As a consequence of the MacWilliams Identity (proof in [Slo77] for binary case), there is a direct
relationship between the weight enumerator of a code and that of its dual. To study the relationship
of invariants and weight enumerators, we consider the following corollary of the MacWilliams
Identity stated in [Stu08]: the weight enumerator of a self-dual binary code satisfies the following

W(x, y) =W(
x+ y√

2
,
x− y√

2
)

W(x, y) =W(x,−y)

This corollary clearly links to the invariant theory in this paper: this invariance ofW is occuring
under transformations by matrices

r =
1√
2

(
1 −1
1 1

)
, s =

(
1 0
0 −1

)
which are the generators of the D8 group. So then our task becomes to find polynomials invariant
under action by the group of symmetries of the octagon. This specific group was considered in
Example 6.3, and so we have invariant polynomials

W1 = x2 + y2, W2 =
7∏

k=0

(x cos
kπ

4
+ y sin

kπ

4
) = x2y2(x2 − y2)2

Properties that are often desired in codes can be quantified in terms of weight enumerators. The
main application of the work in [Slo77] was that it showed the sparseness of codes that satisfied
desired properties. One can show that the weight enumerators, which are invariant under transfor-
mations, often do not exist when it comes to certain types of codes. Thus, the methods in Invariant
theory prove useful in assessing the possibility of certain types of codes.

8. Further Research

While this expository paper covers most major topics in Invariant Thoery, there are multiple
avenues in which one can further explore this field. To a certain extent, the finiteness theorem
marked the end of Classical Invariant Theory as no substantial problems remained to be solved.
However, the theory was revived by Mumford through his book Geometric Invariant Theory, which
broadly deals with constructing quotient groups of algebraic varieties through some linear group
action. While the theory greatly broadens the scope of Invariant Theory, it is technical in nature
and accessible only with a considerable background in category theory and homological algebra,
and hence has not been discussed in this paper. Apart from Mumford’s own book [MF82], [Dol03]
is another great source for learning GIT.
Lastly, while the algorithms mentioned in Section 6 work well for finite groups, they clearly involve
heavy and complex calculations. With the deeper understanding of computational techniques today,
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better algorithms for computing invariants have been developed. We refer the reader to [Stu08],
[PD14], and [DK09] for more research into these algorithms.
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[Hil93] David Hilbert. Über die vollen invariantensysteme. Mathematische annalen, 42(3):313–373, 1893.
[KP] H Kraft and C Procesi. A primer in invariant theory (unpublished). Text available from http://www. math.

unibas. ch/˜ kraft/Papers/KP-Primer. pdf.
[KR84] Joseph PS Kung and Gian-Carlo Rota. The invariant theory of binary forms. Bulletin of the American

Mathematical Society, 10(1):27–85, 1984.
[Lor18] G Loria. Elliot, eb-an introduction to the algebra of quantics. 1918.
[MF82] D Munford and J Fogarty. Geometric invariant theory, ergeb springer, berlin, heidelberg, new york, math.

grenzgeb.(3), vol. 34, 1982.
[Mil12] James S Milne. Reductive groups. Courses Notes, Version, 1, 2012.
[MST72] F Jessie MacWilliams, Neil JA Sloane, and John G Thompson. Good self dual codes exist. Discrete Math-

ematics, 3(1-3):153–162, 1972.
[Nag59] Masayoshi Nagata. On the 14-th problem of hilbert. American Journal of Mathematics, 81(3):766–772,

1959.
[NRS06] Gabriele Nebe, Eric M Rains, and Neil James Alexander Sloane. Self-dual codes and invariant theory,

volume 17. Springer, 2006.
[PD14] Mihaela Ileana Popoviciu Draisma. Invariants of binary forms. PhD thesis, University of Basel, 2014.
[Slo77] Neil JA Sloane. Error-correcting codes and invariant theory: new applications of a nineteenth-century

technique. The American Mathematical Monthly, 84(2):82–107, 1977.
[Stu08] Bernd Sturmfels. Algorithms in invariant theory. Springer Science & Business Media, 2008.
[Ver] Verma. Ring of invariants of finite groups.


