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Abstract

In this paper, we will touch on some interesting types of rings and domains. We are
going to study principal ideal domains where we will use special properties of principal
ideals and will generalize that to study euclidean domains and almost euclidean domains.
Furthermore, we will study Unique Factorization Domains which are essentially just do-
mains that satisfy unique factorization. Building off of these ideas we will see how these
generalizations can be used to describe certain rings and why we can prove that certain
rings have unique factorization once it can be shown that there is some sort of division
algorithm.

1. Preliminary Definitions

In the tradition of writing a good expository paper, we will start off with a list of
extensive definitions. First, let’s define an integral domain.

Definition 1.1. An Integral Domain is a commutative ring that as unity and no 0 divisors.

Definition 1.2. A Divisor is an element b of an integral domain D so that if there is
some a ∈ D then b|a, or in other words ∃c ∈ D such that a = b · c.

Building off of this definition we see that divisors have some interesting properties in
integral domains. If D is an integral domain, then the divisors have the reflexive and
transitive properties. In addition, a|b ⇐⇒ ac|bc for some nonzero c ∈ D. Similarly,
every element of D divides 0, 1 divides every element of D and lastly if 0 divides an
element of D, then that element must also be 0.

Another special type of element of an integral domain is a unit, which we will define
next.

Definition 1.3. A unit of an integral domain D is any element that is a divisor of the
multiplicative identity.

The set of all units of D can be written as D× or occasionally some mathematicians or
textbooks will write U(D).

Next, we will discuss prime and irreducible elements which are two ways of describing
elements that cannot be split apart.

Definition 1.4. A prime element of an integral domain is an element p ∈ D such that if
p|ab then p|a or p|b.

On the other hand, an irreducible element can be described in the following manner.
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Definition 1.5. An irreducible element of an integral domain is one such that if a = bc
then either b or c is a unit where a is the irreducible element.

It is easy to see from every that any prime element of an integral domain is irreducible;
however, it is not necessarily the case that every irreducible element is prime.

Now that we have these definitions related to elements of integral domains down we’ll
move on to definitions related to ideals.

First we’ll define a proper ideal.

Definition 1.6. An ideal I of an integral domain D is called a proper ideal of D if
I 6= 〈0〉, 〈1〉

Moving on, we’ll reiterate the concepts of principal, prime and maximal ideals.

Definition 1.7. An ideal I of an integral domain D is a Principal Ideal is there exists
a ∈ I such that I = 〈a〉.

In this case, we get that the element a generates the ideal I.

Definition 1.8. A prime ideal is an ideal I such that if ab ∈ I, then a ∈ I or b ∈ I.

Next we’ll define a very similar ideal, a maximal ideal.

Definition 1.9. A maximal ideal of a ring R is a proper ideal I such that if J such that
I ⊆ J then either J = I or J = R.

Finally, we’ll define one more term which is the Legendre symbol.

Definition 1.10. The Legendre Symbol is denoted
(
a
p

)
where p is a prime, then

(
a
p

)
= a

p−1
2

where this essentially means that the Legendre symbol is 0 if a ≡ 0 mod p, 1 if a is a
quadratic residue modulo p and −1 if a is a non-residue modulo p.

2. Principal Ideal Domains

In this section we’ll go over the basics of principal ideal domains.

Definition 2.1. A Principal Ideal Domain is an integral domain in which every ideal is
principal.

One example of this is the integers, Z, where every ideal is principal. Now, let’s look
at a few properties of principal ideal domains.

Theorem 2.2. In a Principal Ideal Domain, an irreducible element is prime.

Now, let’s prove this theorem.

Proof. Let p be an irreducible element and let it be an element of the principal ideal
domain D. Now, suppose p|ab given a, b ∈ D. Now, if p 6| a call I = 〈p, a〉 ∈ D. Because
D is a principal ideal domain it most be so that our ideal I can be written in the form
of I = 〈c〉 where c is an element of D and generates I. Because a, p ∈ I it must be so
that c|a, p. Now, assume that c = up where u is a unit. This would mean that p|a which
is a contradiction so it cannot be possible that c is a unit multiple of p. Because p is
irreducible then c has to be a unit. Hence, ∃d ∈ D s.t, cd = 1. Next, c ∈ 〈a, p〉 so it
must be so that c = xa + yp for some x, y ∈ D. Thus, 1 = cd = dxa + dyp and thus
b = (dx) · ab+ (bdy) · p. Now, becomes p|ab we can pull out a p proving that p|b showing
that p is prime in D. �
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Now, we know that in a PID an irreducible is prime. However, unlike in most rings we
can see that all prime elements in a PID are also irreducible.

Theorem 2.3. In a Principal Ideal Domain if an element is prime then it is also irre-
ducible.

When we introduced this idea we know that in all integral domains that all prime
elements are irreducible proving that an element of a PID is irreducible if and only if it
is prime which we can see more formally in this next theorem.

Theorem 2.4. Given an element a ∈ D where D is a principal ideal domain, we have
that a is irreducible if and only if a is prime.

Now that we understand principal ideal domains, let’s learn about a new concept called
the greatest common divisor.

Definition 2.5. If D is a principal ideal domain and {a1, ..., an}

And for our final theorem in this section we’ll learn about the relationship between
maximal and prime ideals in principal ideal domains.

Theorem 2.6. Let D be an integral domain. Let a ∈ D be such that a 6= 0 and a 6∈ U(D).
Then, 〈a〉 is a maximal ideal of D if and only if a is irreducible in D.

From this theorem, we get this final result.

Theorem 2.7. If D is a Principal Ideal Domain and if I is a proper ideal of D, then, I
is maximal if and only if I is prime.

3. Euclidean Domains

Definition 3.1. A Euclidean function is a function φ : D → Z if D is an Integral domain
if φ(ab) ≥ φ(a)∀a, b that are non-zero, and if a, b ∈ D not equal to 0 then q, r ∈ D so that
a = b · q + r and φ(b) > φ(r).

Let’s now look at a few examples of what a Euclidean Function looks like.

• φ(a) = |a| with a ∈ Z
• φ(p(x)) = deg(p(x)) where p(x) is some polynomial.

Let’s now look at some properties of Euclidean functions on an integral domain that follow
from our definition.

Proposition 3.2. If a and b are unit multiples, then φ(a) = φ(b).

Proof. We know that there is some u ∈ D× and u−1 ∈ D× such that a = ub and b = u−1a
which means that φ(a) ≥ φ(b) and φ(b) ≥ φ(a) implying that φ(a) = φ(b) �

Rattling off a few other properties we get the following set of results.

Proposition 3.3. If φ(a) = φ(b) then a and b are unit multiples.

Proposition 3.4. φ(a) = φ(1) if and only if a ∈ D×

And for our final basic property we get that

Proposition 3.5. ∀x ∈ D/{0} it is true that φ(x) > 0.
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Now that we understand the definition of a Euclidean Function we’ll introduce a new
type of ring that is equipped with a Euclidean Function called a Euclidean Domain.

Definition 3.6. If D is an integral domain with a Euclidean Function φ then D is called
a Euclidean Domain (with respect to φ).

Going back to our other examples we can see that Z is a Euclidean domain as well as
Z[x]. The rationals could also be considered a Euclidean Domain along with the Gaussian
Integers {a+ bi : a, b ∈ Z}, denoted Z[i].

If you rattle through a few more examples you’ll come to see that the one thing that all
Euclidean Domains have in common is that they are all Principal Ideal Domains. Let’s
look at this in a more formal sense now and try to prove this idea.

Theorem 3.7. If D is a Euclidean Domain then D is also a principal ideal domain.

Proof. Obviously if I = {0} then I = 〈0〉 and is a principal ideal domain. On the other
hand if I is a non-zero proper ideal then let S = {φ(x) : x ∈ I} where S is non-zero. By
the well-ordering principle there is a lower bound to S call it φ(x0) given x0 ∈ I. Then,
if x1 ∈ I there are some q, r such that x1 = qx0 + r so φ(r) < φ(x1). Because x1 ∈ I
and x0 ∈ I we get that −qx0 ∈ I and then x1 − qx0 ∈ I. However, φ(x0) is the smallest
element of S so it must be so that r = 0 showing that x1 = qx0 so every element of I
is a multiple of x0 showing that I = 〈x0〉 showing that because every non-zero ideal is
principal and the 0-ideal is principal we get that D is a principal ideal domain. �

In the proof we used the property that given a, b we can write a = bq + r with
φ(b) > φ(r). This is a very interesting property that gives way to an algorithm called the
Euclidean Algorithm. If there is a Euclidean Function in your domain then your domain
has the Euclidean Algorithm and is a Euclidean Domain. In any Euclidean domain you
can complete the Euclidean algorithm so given a, b we get that a = bq + r and then we
also see that because φ(b) > φ(r) we can write b = q0r+r0 and then because φ(r) > φ(r0)
it is true that r = q1r0 + r2. Continuing down this rabbit hole we’ll eventually get some
ri = 0. Then, ri−1 is the last non-zero remainder and ri−1 is the greatest common divisor
of (a, b).

4. Unique Factorization Domains

In this section we are going to study unique factorization domains. Let’s begin with
the definition.

Definition 4.1. A unique factorization domain (UFD) is an integral domain D such that
every element r ∈ R we get that r can be written as a finite number of irreducibles in a
unique manner up to units.

Let’s look at a few examples of UFD’s.

• Z is a unique factorization domain by the fundamental theorem of algebra.
• Z[x] is a unique factorization domain.
• Every field is a unique factorization domain as every element is a unit in a field.
• Given a field F , F [x] is a UFD.
• The Gaussian Integers Z[i] is also a UFD.
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Now that we understand some examples of UFDs let’s look at some examples of domains
which are not UFDs.

• The ring Z[
√
−5] is not a Unique Factorization Domain, for example, 6 = 2 · 3,

however, 6 also equals (1 +
√
−5)(1 −

√
−5). This becomes true as all of these

numbers, 2, 3, 1 +
√
−5 and 1−

√
−5 are all irreducible elements of Z[

√
−5] which

can be shown through some inspection and analysis of the norm in Z[
√
−5].

Let’s now look at some lemmas related to Unique Factorization Domains and see how
their properties relate to other properties that we’ve looked at.

Lemma 4.2. If D is a UFD, then every irreducible is prime.

Proof. Let p be an arbitrary irreducible element of D. Because p is irreducible the fac-
torization of p is just p ·

∏
ei where the ei’s are just units. Now, say the factorization of

ab includes p. Ignoring the trivial case where a or b is in D× we get that if
∏
qi
∏
rj is

ab where a and b are factored into those irreducibles qi and rj respectively, it must be
so that p one of those irreducibles (or a unit multiple of one of those irreducibles) which
means that p|a or p|b but not both. �

We know that if F is a field then F [x] is a UFD. We also know that F is a UFD. So this
begs the question what is the relationship between a UFD and the set of all polynomials
adjoined to that ring? This next theorem answers that question.

Theorem 4.3. If D is a UFD then given n-variables x1, ..., xn we have that D[x1, ..., xn]
is also a UFD.

Proof. To prove this theorem we will only prove that if D is a UFD then D[x] is a UFD
because if we can prove it just for one variable then by a simple induction proof we can
see that the property of being a UFD will hold for any n-variables. I won’t give you the
whole proof just yet, but just to give an outline, the key step is to use the field of fractions
of the UFD to compare factorizations between the field of fractions as a polynomial ring
and the UFD itself as a polynomial ring. �

From this result we can actually do some analysis and inspection to show that if you
have a ring D and a field of fractions FD that if an element of D has a factorization in
FD then it has one in D.

The final theorem in this section before we move on to our main theorem is to show
a lemma called Gauss’s lemma which extends the notion that we just described in the
previous paragraph.

Lemma 4.4. If R is a UFD with a field of fractions F and if f(x) ∈ R[x] then f(x) has
factorization f(x) = g(x)h(x) in F [x] with deg f, h ≥ 1 if and only if f has that same
factorization in R[x].

To prove this theorem we need a new definition of a term we have not yet come across.

Definition 4.5. Given a UFD R and it’s associated polynomial ring, an element f ∈ R[x]
is to be called primitive if all of the coefficients are co-prime.

Now, let’s prove our lemma.
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Proof. Suppose f and g are primitive polynomials with coefficients terms fix
i and gix

i,
respectively. If p is irreducible in R then there is k such that p 6| fk and j such
that p 6| gj. Then when we multiply f · g we get that the coefficient of xk+j is t =
akbj +

∑
i<k aibk+j−i +

∑
r<j brak+j−r. Because of the akbj term we get that p 6| t which

shows us that fg is primitive by the definition of a primitive polynomial.
Suppose f(x) can be factored to fit the form f(x) = φ(x)ψ(x) ∈ F [x] with deg(φ), deg(ψ) ≥

1. Let f(x) = ef1(x), φ(x) = a
b
φ1(x) and ψ(x) = c

d
ψ(x), where f1(x), φ1(x), and ψ1(x)

are primitive in R[x]. Then f(x) = ef1(x) = ac
bd
φ1(x)ψ1(x). The product φ1(x)ψ1(x) is

primitive in R[x] which we will prove next. Because our domain is a UDF, it follows that
ac
bd

= eu, where u ∈ R×. Hence, f(x) factors into the form ueφ1(x)ψ1(x) ∈ R[x]. �

Now, we can prove our theorem on the relationship between Unique Factorization Do-
mains and their associated polynomial rings.

Proof. Let g(x) ∈ R[x]/R[x]× and be non-zero. First, g(x) can be written as d·f(x), where
f is primitive and d ∈ R. Because R is a UFD we get that there is uniqueness. The ele-
ment d has a unique factorization in R, by assumption, so it remains to show that f(x) has
a unique factorization into irreducibles in R[x]. But using the factorization of f(x) ∈ F [x]
and Gauss’s Lemma, we can write f(x) = p1(x)p2(x) · · · ps(x), where the pi(x) are ele-
ments of R[x] that are irreducible in F [x]. Since f(x) is primitive, every pi(x) is primitive
too, and thus is irreducible in R[x]. The uniqueness of this factorization follows from the
uniqueness of irreducible factorization in F [x] together with the uniqueness of the factor-
ization in d

b
f(x). In fact, suppose that f(x) = p1(x)p2(x) · · · ps(x) = q1(x)q2(x) · · · qr(x),

where the pi(x) and qi(x) are irreducible in R[x]. Since f(x) is primitive, each pi(x) and
qi(x) is primitive, and in particular of degree greater than or equal to 1. Then we see that
pi(x) and qi(x) is irreducible in F [x] because it is true that there is irreducibility in R[x]
if and only if it is in F [x]. By the uniqueness of the irreducible factorization in F [x], after
possibly renumbering the qi(x), we have pi(x) = ciqi(x) for each i for some ci ∈ F which
is a unit. But then, by the uniqueness of the decomposition of d

b
f(x), each ci is actually

a unit in R. �

5. Bringing it all together

We proved in earlier chapters that if an integral domain is a euclidean domain than
it is also a principal ideal domain. Now, we are going to prove that if a domain is a
principal ideal domain then it is also a unique factorization domain. We will only prove
the uniqueness of factorization aspect of this theorem as a complete proof proving the
basic fact that there exists a factorization into irreducibles requires using Noetherian
Domains which take up a lot of time to study.

Theorem 5.1. If D is an integral domain equipped with a Euclidean function then D is
a Unique Factorization Domain.

Proof. First of all we know that if D has a euclidean function φ then D is a euclidean
domain with respect to φ. This then implies from our theorem earlier that D is a principal
ideal domain. Now we have to show that being a principal ideal domain implies that that
domain is a unique factorization domain. Now, as I said earlier, we are going to have to
assume that every element of a PID can be factored into irreducibles which would make
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it a factorization domain, now we have to prove that that factorization is unique.
Now, assume for the sake of contradiction that there are two factorizations that are

different to say that n ∈ D can be written as both
∏s pi and

∏r qj and assume that
each pi and qj is irreducible. Because irreducibility implies primality in UFDs we get
that p1 divides some qj (so just assume that it is q1 without loss of generality) and thus
p1 = u1q1, or in other words, they are unit multiples. Thus, p1 · · · ps = u1q1p2 · · · ps
and thus p2 · · · ps = u1q2 · · · qj and continuing down this rabbit hole we get that 1 =
· · ·u1 · · ·us · · · qs+1 · · · qr and thus qs+1, ..., qr ∈ D× but they can’t be because they are
irreducible which gives us a contradiction proving s = r and each pair is a unit multiple.

�
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