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1 Introduction

In November 1933, a sculpture was unveiled in the Mathematical Science
Research Institute (MSRI), Berkley. It was a commission from the math-
ematical sculptor Ferguson. The sculpture is a three dimensional visual of
the Klein Quartic, known as the Eightfold Way. The sculpture depicts the
beautifully unique surface discovered by Felix Klein in 1878, whose equation
is simply given as X3Y + Y 3Z + Z3X = 0.

In this paper, we will look at some of the characteristics of the Klein
Quartic, which will be denoted as X , such as its construction, genus and au-
tomorphisms. An in depth construction of X will be established through the
use of hyperbolic planes and tessellations. Then, we will begin to look at the
quartic’s derivation as a Riemann Surface, before looking into its properties
and uniqueness as a Hurwitz curve.

2 Preliminary Details

The following terms are important to understand, before studying X .

Definition 2.1. A Riemann surface is a surface that covers the complex
plane with several ”sheets” that can have complicated structures and inter-
connections. In more simpler terms, a Riemann surface is a surface that
represents the domain of complex functions.

Definition 2.2. An automorphism is an isomorphism from one group to
itself. In the simplest sense when talking in context of a surface such as X
an automorphism can be considered as the symmetry of the surface.
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Definition 2.3. The automorphism group of an algebraic object O, denoted
Aut(O) is the group of automorphisms of O that preserve the structure of the
object. So, in the case of X , it would be referring to the group of orientation
preserving symmetries.

Definition 2.4. A Reimann surface with maximal number of automor-
phisms, considered an algebraic curve over C is called a Hurwitz Curve.

Definition 2.5. The cyclic group of a surface is the set of rotational sym-
metries.

Definition 2.6. A platonic surface is a Riemann surface that underlies a
regular map so that it vertices, edge-centers and face centers can be consid-
ered.

Definition 2.7. given a ring R, the special linear group, denoted SL(n, r) is
the set of n× n matrices with elements in R and determinant 1.

An extension of this is the projective special linear group.

Definition 2.8. A Projective Space Linear Group the group of n×n matrices
with determinant of 1, which are scalar multiples of q. It is denoted as
PSL(n, q).

3 Basic Characteristics

Before we go any further it’s important that we begin by looking at what
the Klein Quartic actually is. The Klein Quartic is a compact Reimann Sur-
face that can be viewed in P2 as the curve x3y = y3z+z3x = 0. X has a genus
3 classified as automorphism group G, with 168 orientation preserving auto-
morphisms , which is the maximum size of an automorphism group for any
curve of genus 3 (a fact we will look deeper into when looking at Hurwitz
curves). We will look into why the curve has genus 3 and so many auto-
morphisms through a visualization and 3D construction of the curve using
hyperbolic surfaces and tessellations.
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4 Construction of the Curve Using Hyperbolic

Tessellations

We can begin by looking at a tessellation by 2π
3

-heptagons. We can iden-
tify using Euler’s formula the number F of faces, V = 7

3
F of vertices and

E 7
2
F edges. This would then give us F = 24, V = 56, and E = 84. Now, if

we consider the cyclic group of prime order p on a genus 3 surface that has
f fixed points, then the Euler number for the quotient surface gives:

1

p
((V − f)− E + F ) + f =

1

p
(−4− f) + f ∈ {−2, 0, 2}

or in a simpler form,

f ∈ {−2 +
2

p− 1
,

4

p− 1
, 2 +

6

p− 1
} ∩ Z

Hence p = 7 is the maximal prime order, with f = 3 and the quotient
being a sphere. Therefore, a genus 3 surface with an order 7 cyclic group
of automorphisms has a quotient map to the sphere. We can identify the
sphere with C ∪ {∞}, and send the three fixed points to 0, 1,∞.

If we were to look at a surface with p = 2, or an involution, then we must
have f = 0, 4 or 8 fixed points. It’s important to note that an involution
by 2π/3-heptagons cannot have fixed points at vertices or centers of faces,
meaning that the fixed points must be at edge midpoints. Then, is this case
f must divide E or the number of edges, meaning that f = 8 cannot occur
when E = 84, therefore showing that the quotient is not a sphere, meaning
that X is not hyperelliptic.

Since the desired cyclic symmetry group is of order 7, we can start by
arranging 14 triangles to form a 2π/7-fourteengon as seen in figure 1. In
order to provide a smooth hyperbolic surface, all of the even and odd vertices
need to be identified, which leaves us with three possibilities: identify edge
1 through 4, 6, or 8. The last option has 180◦-rotation around the center
and f = 8 fixed points, meaning that the quotient is a sphere. Hence, this
example is a hyperelliptic surface and not the solution we are looking for.
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Figure 1: hyperbolic fourteengon

If we were to choose the option of identification of edge 1 to 4, we would
have the same hyperelliptic surface, so that leaves the identification of edge
1 through 6 as the only option for a platonic surface, which we will show is
X . Now, if we start by coloring the fourteen triangles alternating black and
white, each black edge can be identified by the white edge five counterclock-
wise steps ahead. Then, we can call the center vertex 1, the left endpoint of
the black edge 2, and the right endpoint vertex 3. However as can be seen
in figure 1, translation of a black edge to a white one is done by rotating
vertex 2 by 2 ∗ 2π/7; and similarly, vertex 3 by 3 ∗ 2π/7 around the center.
To express this in simpler terms,

2 ∗ {1, 2, 4} = {2, 4, 1} mod 7

and
4 ∗ {1, 2, 4} = {4, 1, 2} mod 7

By this identification rule, we can see that high symmetry in X is apparent
in the fact that the rule remains the same (mod 7) if we cyclically permute
the vertices. From here, we can see the formation of sphere that is thrice
punctured.

Now, to apply the new identification rule we consider the tessellation of
the hyperbolic plane by the black and white π/7 triangles. If we look at
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the equivalence classes of the triangles and vertices, we can see that the rule
allows us to pick any arbitrary triangle from each class and know how to
identify it. Additionally we also saw that a 120◦ rotation around any cen-
ter that cyclically permutes the equivalence classes of the vertices, does not
affect the identification rule. The same goes for the reflection in a triangle
edge. Such reflections simply generate the order 7 symmetry and hence pass
to the quotient sphere. This means that we can once again understand the
quotient map through a Riemann mapping problem. We want to map a black
triangle to the upper half plane, so that the vertices 3,2,1 go to 0, 1,∞ and
extend by reflection.

We can define a function with the Riemann mapping theorem, bu map-
ping one of the black triangles to a spherical domain bounded by two circles
from 0 to ∞ with the angle 3 ∗ π/7 at ∞. Additionally, there is a slit from 0
dividing the angle at 0 as 2 : 1 with the bigger angle first counterclockwise.
Then if we analytically extend this map using reflection in the edges to en-
compass the sphere three times, the slits in the three sheets are such that
there is a slit in two sheets above each other, but not in the third. This form
of forced identification of the slits is also compatible with the identification
on the edges of the fourteengon since the rotational angles at the vertices of
the black triangle are the same as the rotational angles at the vertices of the
spherical domain. Then, if we compare the divisors of the function w and
the quotient function z, we find that w7 and z(z − 1)2 are proportional, and
that we can scale w to give the the following equation:

w7 = z(z − 1)2

From this we can define the famous quartic equation that exhibits the order
7 symmetry.

If we start by defining the following: x := (1 − z)/w2 = −v−1, and
y := −(1− z)/w3 = +u.
The first equation then implies the quartic equation w3y + y3 + x = 0.
However, the substitution can also be inverted as follows w = −x/y, z =
1− x3/y2. Additionally we can also define the functions x, y as quotients of
holomorphic 1-forms:

x = ξ/ω, y = η/ω

This then leads us to the equation in its homegeneous form

ξ3η + η3ω + ω3ξ = 0
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At this point, the heptagon tessellation can be introduced to our previous
picture to easily prove platonicity. One 2π/3 heptagon can be tessellated by
fourteen (2, 3, 7) - triangles and that fit around its center. We now want to
tessellate one of the black triangles by 24 of the small triangles. If we take
half of a heptagon that is tessellated by seven small triangles, to the left of the
diameter and reflect the lowest (2, 3, 7)-triangle, we get eight small triangles.
Since the are of the big triangle is equal to 24 of the smaller triangles, we have
now tessellated one third of the big triangle. Now, if we do 120◦ rotations
around the heptagon vertex 2, we can complete the tessellation of the big
triangle. Then we can extend this by reflection to get Klein’s tessellation of
the hyperbolic plane. If we look closely, we can also notice that we can group
the tessellation by either heptagons or big triangles.

Figure 2: tessellation using heptagons/big triangles

As we can see above, we have now tessellated the above Riemann surface
by 24 regular heptagons. The identification translations are compositions of
involutions around midpoints of the edges of the heptagon’s edges, which is
another indication that the surface at hand is platonic.

We now need to check that all eight of the segment geodesics, or straight
lines on the sphere, that connect midpoint of the edges of the heptagons
also connect equivalent points under the deck group, since that is the last
condition to be met in order for the Riemann surface to be platonic (the
deck group is generated by the identification translations).If we look at the
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modulo reflections in the symmetry lines through the center, there are only
four different eight segment geodesics that meet the fundamental domain.
Then, with the 120◦-rotations, these can be rotated into the ones that were
used to define the identifications. Our hyperbolic definition is now complete
enough to see platonicity since the 180◦-rotations around the midpoints of
the edges always sends equivalent points to equivalent points.

Now that we have a well defined tessellation of 24 regular heptagons, we
can now warp this surface to form a three dimensional visualization of the
quartic. If we refer to the below picture,we can see that that the tessellation
has been number one through twenty four.

Figure 3: tessellation using heptagons/big triangles with numbers

Now, we can warp this into by making sure that all heptagons with same
numbers are attached together. Another way of warping this tessellation, is
by taking the edges of the 14 big triangles and connecting them in a specific
order. To be exact, we want to connect edges 2n + 1 and 2n + 16 mod 14
This will then result in a three hold torus that looks similar to the figure
below.
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Figure 4: a visualization of the warped tessellation

When we look at the original tessellation, we can visualize the 24 × 7-
fold symmetry of the quartic. This is what gives us 168 symmetries.

5 X as a Riemann Surface and Hurwitz Theorem

The Klein Quartic belongs to the infinite family PSL(2, 7) and PSL(3, 2).
However, from how Klein studied it, the main focus is PSL(2, 7). Klein’s
approach to studying this, the group and Riemann Surface, was by studying
the group T (1) of all functions:

z 7→ pz + q

rz + s

where p, q, r, s ∈ Z, and ps−qr = 1, which are the permutations of the upper
half plane U : +{z ∈ C|i(z̄ − z) > 0} However,T (1) is a discontinuous group
of maps, since the integers are a discrete subset of the real numbers. Hence,
U is a Riemann surface, so its quotient, U/T (1) is also a Riemann Surface.
Specifically, the quotient surface is a sphere with a puncture, or one missing
point. However, to find more interesting Riemann surfaces, we can also look
at subgroups of T (1).

We can start by looking at the congruence subgroups.
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Definition 5.1. The congruence subgroups T (n) consists of mappings such
that (

p q
r s

)
≡ ±Id mod n

The hidden treasure here, is T (7). It is a surface with genus 3, 24 punc-
tures that are removable singularities, and 168 automorphisms. This quotient
group is the result of replacing the integers in our initial mapping with their
residue classes modulo 7, which we denoted PSL(2, 7). This group acts as
the symmetries of Klein’s quartic curve.

Now that we have a clearer idea of X as a Riemann surface, we can start
looking at one of it’s special characteristics as a Hurwitz curve.

Theorem 1. A classical theorem of Hurwtiz states that if a Reimann Sur-
face has a genus g > 1, then it can have at most 84(g − 1) automorphisms
(orientation preserving symmetries).

Since when g = 3, the maximum value is 168, the Klein’s quartic has a
maximal automorphism group making it a Hurwitz curve. However, when
looking at the theorem the appearance of the number 84 seems somewhat
random, but, there is in fact a reason why such a number appears in this
fundamental result. It’s because in order to get Riemann surfaces that are
as symmetrical as possible, we would start with tiling the hyperbolic plane
with triangles with vertex angles π/p, π/q, π/r for p, q, r ∈ Z. In the case of
X , we take p = 2, q = 3, r = 7. Now, if we want to tile a torus with genus
g, Euler’s formula states the following: V −E + F = 2− 2g (Recall that we
used this earlier in the paper). However, E = 3

2
F since each face has 3 edges,

but 2 faces share each edge. We can also figure out the number of vertices
base on the number of faces. In highly symmetric tilings, there are vertices
where 2p triangles meet, 2q triangles meet and 2r triangles meet. Hence,
that would give us V = ( 1

2p
+ 1

2q
+ 1

2r
)F . Then, by combining the previous

three equations, we get
4(g − 1)

1− ( 1
2p

+ 1
2q

+ 1
2r

)

. In order to maximize this value, we need to minimize the denominator,
which we can get by using p = 2, q = 3, r = 7. This would then give us
a denominator of 1

42
. Then going back to our combined equation, we get a

maximum of 42× 4(g− 1) = 168(g− 1). However, these symmetries include
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reflection which are usually excluded, as we stated in the theorem earlier.
Hence, we have to divide our expression by two, giving us

84(g − 1).

Hence, thid explains the beautiful symmetricity of the quartic and it’s max-
imal automorphism group, according to the Hurwitz theorem.

6 Summary

Through this paper, we have developed a deeper understanding of what
may initially seem as a simple curve. We looked at an in depth construction
of the curve using hyperbolic surfaces and tessellations. We also examined X
in the context of Riemann surfaces and explored a little bit about Hurwitz
curves, using X as an example. Though we didn’t explore these in our paper,
the Klein Quartic also has many other purposes. For example, in the field of
number theory, X and some properties of its automorphism group can be used
in a proof of Fermat’s theorem for exponent 7. Other areas of math where
the quartic is used, includes representation theory and homology theory. It
can also be used to prove Stark-Heegner theorem on imaginary quadratic
number fields of class number 1.
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