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0. Introduction

This expository paper is to present what I’ve learned about Riemann
surfaces from [Mir97] for the Euler Circle Algebraic Geometry class.
The main purpose is to supply the necessarily background and present
the Riemann-Hurwitz Formula as well as the Riemann-Roch Theorem.
Here’s a summary of contents in each section (mainly following the
progresses of [Mir97]):

• In Section 1, we define Riemann surfaces and present a number
of examples;
• In Section 2, we define holomorphic and meromorphic functions

on Riemann surfaces, as well as orders of meromorphic func-
tions at a point. Meromorphic functions, specifically, deserve
special attention for further discussions towards the Riemann-
Roch Theorem, so we present them in a separate section;
• In Section 3, we define holomorphic maps between Riemann

surfaces as well as multiplicities of holomorphic maps at a point.
We will see that this local concept relates to a global behavior
of holomorphic maps, characterized by degrees. Finally, we
present the Riemann-Hurwitz Formula, relating the genera of
the domain and range of a holomorphic map between compact
Riemann surfaces;
• In Section 4, we first introduce 1-forms and 2-forms on Rie-

mann surfaces, which are necessary for defining integration on
Riemann surfaces. We then present two important theorems
regarding integration: Stoke’s Theorem and the Residue Theo-
rem;
• In Section 5, we introduce divisors, which packs local infor-

mation of Riemann surfaces and maps on them into a single
object. We then define the space L(D), which is a measure of
meromorphic functions with certain local behaviors on a com-
pact Riemann surface and is the subject of the Riemann-Roch
Theorem;
• In Section 6, we introduce algebraic curves, which are compact

Riemann surfaces equipped with a decent supply of nontrivial
meromorphic functions. We then focus on the Mittag-Leffler
Problem, which asks for the existence of meromorphic func-
tions with prescribed local behaviors while being holomorphic
everywhere else. The Mittag-Leffler Problem can be measured
by the space H1(D), which we identify with L(1)(D) via Serre
Duality. Finally, we present the Riemann-Roch Theorem, which
measures the dimension of L(D).
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1. Riemann Surfaces

1.1. Preliminaries: Holomorphic Functions on C. Holomorphic
functions on the complex plane are essential objects of one-variable
complex analysis. Since they’re so important, we will briefly go through
them. Holomorphic functions on C have a wealth of beautiful proper-
ties, but we will only reference them when we use the specific results.

Definition 1.1.1 (Holomorphic Functions on C). A complex-valued
function f : C → C is said to be complex-differentiable at a point
z0 ∈ C, if its derivative at z0, defined as the limit

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
,

exists. f is said to be holomorphic at z0 if it is complex-differentiable
in a an open subset containing z0 (which is often called a neighborhood
of z0). f is said to be holomorphic in an open set U if f is holomorphic
at any point of U .

Examples 1.1.2.

(1) Any polynomial function f(z) =
∑n

k=0 akz
k is holomorphic in

all of C with derivative f ′(z) =
∑n

k=1 kaka
k−1.

(2) The function g(z) = 1/z is holomorphic in C \ {0} with deriv-
ative g′(z) = −1/z2 for z 6= 0.

(3) The function h(z) = |z| is complex differentiable only at 0, so
it is not holomorphic at any point.

A fundamental characterization of holomorphic functions on C are
the Cauchy-Riemann equations (we only work with C∞, or infinitely
differentiable, functions, so we present a weak version; in particular,
any holomorphic function in V ⊂ C is C∞ on V ):

Theorem 1.1.3 (Cauchy-Riemann equations). A C∞ function f(x +
iy) = u(x, y) + iv(x, y), where u and v are R × R → R functions, on
some open set V ⊂ C is holomorphic in V iff u and v satisfies the
Cauchy-Riemann equations:

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.
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1.2. Charts and Atlases. Roughly speaking, Riemann surfaces are
surfaces on which we may conduct complex analysis. Surfaces locally
look like the real plane R2, and we want Riemann surfaces to locally
look like the complex plane C so we can associate points on the plane
with complex variables.

Definition 1.2.1 (Complex charts). Let X be a topological space. A
complex chart (or simply chart) on X is a homeomorphism1.1 φ : U →
V , where U is an open set in X and V is an open set in C. The open
set U is called the domain of the complex chart φ. The chart φ is said
to be centered at p ∈ U if φ(p) = 0.

Complex charts gives a local complex coordinate system on its do-
main, namely z = φ(x) for x ∈ U.

Figure 1. A complex chart φ on X

Examples 1.2.2.

(1) Let X = R2 and U be any open subset of X. The chart φU :
U → C defined by φU(x, y) = x + iy is a complex chart on R2.
It is centered at 0 iff 0 ∈ U.

(2) Again let X = R2 and U be any open subset of X. The charts

φU(x, y) =
x

1 +
√
x2 + y2

+ i
y

1 +
√
x2 + y2

is also a complex chart on R2. It is also centered at 0 iff 0 ∈ U.
1.1A homeomorphism is a continuous bijection with a bijective inverse.
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(3) Let φ : U → V be a complex chart on X and ψ : V → W be
a holomorphic bijection between two open sets of the complex
plane. Then the composition ψ ◦φ : U → W is a complex chart
on X. The composition by ψ can be intuitively thought of as a
change of local coordinates; namely, we change from z = φ(x)
to w = (ψ ◦ φ)(x) for x ∈ U .

(4) Given a complex chart φ : U → V on X, suppose U1 is an open
subset of U , then φ

∣∣
U1

: U1 → φ(U1) is a complex chart on X.

This is called a sub-chart of φ.

We do not want to expect essentially different structures of functions
and forms on open sets U when using different charts on U . In other
words, we want locally coordinates of any point p to be “similar” when
we use different charts containing p. It turns out that we want the
following notion for this similarity:

Definition 1.2.3 (Compatibility of charts). Two complex charts φ1 :
U1 → V1 and φ2 : U2 → V2 on X are said to be compatible if either
U1 ∩ U2 = ∅, or the transition map

T = φ2 ◦ φ−11 : φ1(U1 ∩ U2)→ φ2(U1 ∩ U2)

is holomorphic.

Figure 2. Transition map and compatibility of charts

Examples 1.2.4.

(1) Any two charts in (1) of Examples 1.2.2 are compatible. When
U1∩U2 is nonempty, the transition map is the identity on U1∩U2,
which is holomorphic.
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(2) Any two charts in (2) of Examples 1.2.2 are compatible.
(3) No chart from (1) of Examples 1.2.2 is compatible with any

chart from (2), unless their domains are disjoint.
(4) The charts φ and ψ ◦ φ from (3) of Examples 1.2.2 are compat-

ible.
(5) Any two sub-charts of a common complex chart are compatible.
(6) Let S2 denote the unit 2-sphere in R3, i.e.

S2 = {(x, y, w) ∈ R3 : x2 + y2 + w2 = 1}.
The stereographic projection from the north pole (0, 0, 1) to the
plane w = 0 (viewed as a copy of C) and the projection from
(0, 0,−1) followed by a complex conjugation are two compatible
charts. Specifically, projection from (0, 0, 1) is the chart φ1 :
S2 \ {(0, 0, 1)} → C defined by

φ1(x, y, w) =
x

1− w
+ i

y

1− w
with inverse φ−11 : C→ S2 \ {(0, 0, 1)} given by

φ−11 (z) =

(
2 Re(z)

|z|2 + 1
,
2 Im(z)

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
.

Similarly, the projection from (0, 0,−1) followed by a complex
conjugation is the chart φ2 : S2 \ {(0, 0,−1)} → C defined by

φ2(x, y, w) =
x

1 + w
− i y

1 + w

with inverse

φ−12 (z) =

(
2 Re(z)

|z|2 + 1
,
−2 Im(z)

|z|2 + 1
,
1− |z|2

|z|2 + 1

)
.

The common domain is S2 \ {(0, 0,±1)}, mapped by both φ1

and φ2 homeomorphically onto the open set C× = C \ {0}.
The transition map φ2 ◦ φ−11 is the map z 7→ 1/z, which is
holomorphic on C×. φ1 ◦φ−12 is its inverse and also holomorphic
on C×, so the two charts are compatible.

Our ultimate goal is to produce complex coordinates (via complex
charts) on any given point of X. Moreover, we want these charts to be
compatible.

Definition 1.2.5 (Complex atlases). A complex atlas (or simply atlas)
A on X is a collection

A = {φα : Uα → Vα}
of pairwise compatible complex charts where

⋃
α Uα = X.
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w = 0 ∼= C

φ1(x, y, w)

(x, y, w)

(0, 0, 1)

<

=

Figure 3. Stereographic projection from the north
pole: tikz code modified from https:

//tex.stackexchange.com/questions/538970/

how-to-improve-this-stereographic-projection

Sometimes two different atlases give the same local coordinates for
X, and we should consider these atlases as essentially the same. The
way to do this is to focus on equivalence classes of complex atlases on
X.

Definition 1.2.6 (Complex structures). Two complex atlases A and
B are equivalent if every chart of one is compatible with every chart of
the other. This gives an equivalence relation on complex atlases on X.
A complex structure on X is an equivalence class of complex atlases on
X.

Examples 1.2.7.

(1) The collection of complex charts in (1) of Examples 1.2.2 is an
atlas on C.

(2) The collection of complex charts in (2) of Examples 1.2.2 is also
an atlas on C. This atlas induces a different complex structure
from the previous atlas.

(3) If A = {φα : Uα → Vα} is an atlas on X, and Y ⊂ X is open,
then AY = {φα

∣∣
Y ∩Uα

: Y ∩Uα → φα(Y ∩Uα)} is an atlas on Y .

(4) The collection {φ1, φ2} in (5) of Examples 1.2.4 is an atlas on
S2, since the domains of φ1 and φ2 cover S2. This atlas induces
a complex structure on S2.

https://tex.stackexchange.com/questions/538970/how-to-improve-this-stereographic-projection
https://tex.stackexchange.com/questions/538970/how-to-improve-this-stereographic-projection
https://tex.stackexchange.com/questions/538970/how-to-improve-this-stereographic-projection
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1.3. Definition and Examples of Riemann Surfaces. Now we’re
almost ready to present the definition of Riemann surfaces. We only
require two more conditions, mainly to exclude pathological examples:
a topological space X is said to be Hausdorff if for every pair of distinct
points in X there are disjoint neighborhoods of them. X is said to be
second countable if it admits a countable basis for its topology; we note
that X is guaranteed to be second countable if there exists a countable
union of open sets which cover X.

Definition 1.3.1 (Riemann surfaces). A Riemann surface is a second
countable connected Hausdorff topological space X with a complex
structure.

Examples 1.3.2.

(1) C is a Riemann surface with topological properties of R2 and
the complex structure induced by the atlas in (1) of Examples
1.2.7. This Riemann surface is called the complex plane.

(2) S2 is a Riemann surface with its topological properties as a real
2-manifold and the complex structure induced by the atlas in (3)
of Examples 1.2.7. This Riemann surface is called the Riemann
Sphere. The Riemann Sphere is often written as C∞ or C∪∞,
because under either of φ1 or φ2 the image of S2 is the entire
complex plane, with the “point at infinity” ∞ representing the
single extra point not in the domain. Unlike C, C∞ is a compact
Riemann surface.

(3) Any connected open subset of a Riemann surface is a Riemann
surface, using the atlas in (6) of Examples 1.2.7.

Remark 1.3.3. Note that instead of taking a space with defined topol-
ogy and impose a complex structure on it, we can often use a given
atlas of a topological space X to define a topology on X: assume that
we are given a collection of subsets {Uα} of set X whose union cover
X (the atlas), and a set of bijections φα : Uα → Vα where Vα is an
open subset of C (the charts). Each Vα inherits a subspace topology
from C, so we can declare a subset U of Uα to be open iff φα(U) is
open in Vα. This defines a topology on each Uα. Finally, we can define
a topology on all of X by declaring a set U to be open in X iff each
intersection U ∩ Uα is open in Uα. It suffices to check that X is con-
nected and Hausdorff, and each Uα is open in X, which is equivalent
to the condition that φα(Uα ∩ Uβ) is open in Vα for all α, β. Note that
it is guaranteed that X is second countable if Uα is a countable set.

Using this knowledge we can provide more examples of Riemann
surfaces.
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(4) Let CP1 (or simply P1) be the complex projective line, the set
of 1-dimensional subspaces of C2. Here we denote the span of
(z, w) ∈ C2 by (z : w).

Let U0 = {(z : w) : z 6= 0} and U1 : {(z : w) : w 6= 0}. Note
that U0 ∪U1 = P1. We define an atlas on P1 by π0 : U0 → C by

π0(z : w) =
w

z
and π1 : U1 → C by

π1(z : w) =
z

w
.

Both π0 and π1 are bijections and πi(U0 ∩ U1) = C×, which
is open in C. Therefore we can define the topology on P1 as
remarked above. The transition π1 ◦π−10 is the map s 7→ 1/s, so
the two charts are compatible and form an atlas on P1. Finally,
we may check that P1 is connected and Hausdorff, so P1 is a
Riemann surface. It is called the complex projective line. Note
that for any (z : w) ∈ P1, its image under π0 is in the closed
unit disk

D = {z ∈ C : |z| ≤ 1}
if |z| ≥ |w|; otherwise, its image under π1 is in D. Thus P1 =
π−10 (D) ∪ π−11 (D), so P1 is compact since D is compact.

(5) Let ω1 and ω2 be two complex numbers which are linearly in-
dependent over R (i.e. they’re not scalar multiples as vectors
in R2). Define L to be the lattice

L = Zω1 + Zω2 = {m1ω1 +m2ω2 : m1,m2 ∈ Z}.
L is a subgroup of the additive group of C, so we may define
X = C/L as the quotient, equipped with the projection group
homomorphism π : C→ X and the quotient topology; namely,
a set U ⊂ X is open iff π−1(U) is open in C.
L is a discrete subset of C, so there exists ε > 0 such that
|ω|> 2ε for every nonzero ω ∈ L. Fix such an ε and fix a point
z0 ∈ C. The open ε-neighborhood Uz0 = Vε(z0) of z0 therefore
contains at most one point of L. One can check that π

∣∣
Uz0

:

Uz0 → X is injective, and its inverse from π(Uz0) to Uz0 is a
complex chart on X; the collection of such charts of all z0 ∈ C
forms an atlas on X. One may also check that X is connected,
Hausdorff, and second-countable, so X is a Riemann surface.
It is indeed compact, since it is also the image of the closed
parallelogram

P = {λ1ω1 + λ2ω2 : λ1, λ2 ∈ [0, 1]}
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under π, and P is compact.
In fact X is topologically a torus by considering it as the im-

age of P : the opposite sides of P are identified together and no
other identifications are made, which is exactly the identifica-
tion space of the torus. All these Riemann surfaces (depending
on the choice of L) are called complex tori.

Figure 4. A complex torus, where opposite sides of the
parallelogram are identified together

(6) Let f(z, w) ∈ C[z, w] be a polynomial over complex variables.
Its locus of zeros X is called an affine plane curve. We say that
f is nonsingular if for all p ∈ X, either the partial derivative
∂f/∂z or ∂f/∂w is nonzero at p. The curve X is smooth if f is
nonsingular.

Theorem 1.3.4. If f(z, w) is a nonsingular and irreducible
polynomial, then its locus or roots X is a Riemann surface. X
is called an irreducible smooth affine plane curve.

Proof. We obtain complex charts on a smooth affine plane curve
(not necessarily irreducible) by using the Implicit Function The-
orem1.2.

1.2The Implicit Function Theorem states that: let f(z, w) ∈ C[z, w], X be its
zero locus, and p = (z0, w0) ∈ X. Suppose that ∂f/∂w(p) 6= 0. Then there exists
a function g(z) defined and holomorphic in a neighborhood of z0, such that X is

equal to the graph w = g(z) near p. Moreover g′ = −∂f∂z /
∂f
∂w near z0.
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Let X be a smooth affine plane curve defined by f(z, w) and
p = (z0, w0) ∈ X. If ∂f/∂w

∣∣
p
6= 0, then we find a holomorphic

function gp(z) such that X is the graph w = gp(z) in a neighbor-
hood U of p. The projection πz : U → C mapping (z, w) 7→ z is
a homeomorphism from U to its image in V , which is open in
C. If instead ∂f/∂z is nonzero at p, we make the similar con-
struction and use the other projection πw mapping (z, w) 7→ w
near p.

We check that any two charts are compatible. If both are
projections using πz or πw, then the transition map is the iden-
tity, which is holomorphic. Now assume that one chart is πz
and the other is πw. Choose a point p = (z0, w0) in the com-
mon domain U . Near p, X is locally of the form w = g(z) for
some holomorphic function g, and indeed πw ◦π−1z = g on πz(U)
near z0, which is holomorphic.
X is second countable and Hausdorff as a subspace of C2,

and it is connected when f is irreducible. Thus X is a Riemann
surface. �

Figure 5. The image of the irreducible smooth affine
curve V (x3 − (xy + 1)2) in R2; it’s image in C2 is
connected

Finally, Riemann surfaces are 1-dimensional complex manifolds, but
we might also think of them topologically as 2-dimensional real mani-
folds (which are often called surfaces), so we immediately inherit much
information about their topological structures from the theory of sur-
faces.
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Proposition 1.3.5. Every Riemann surface is an orientable path-
connected smooth 2-dimensional real manifold. Every compact Rie-
mann surface is diffeomorphic to the surface of genus g, for some
unique integer g, which is called the genus of the Riemann surface.

Proof. Every Riemann surface is a 2-dimensional real manifold since it
is locally homeomorphic to an open set of C, hence homeomorphic to
an open set of R2. It is smooth since all transition maps are holomor-
phic, hence C∞. in its real variables. It is orientable because holomor-
phic maps preserves small angles and thus orientations on the complex
plane; if we orient the complex plane and induce local orientations on
a Riemann surface, the local orientations are well defined and induces
a global orientation. Finally, the statement of compact Riemann sur-
faces follows from the Classification Theorem of Compact Orientable
2-Manifolds. �
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2. Holomorphic and Meromorphic Functions on Riemann
Surfaces

2.1. Definition of Holomorphic and Meromorphic Functions.
Having defined Riemann surfaces as our fundamental objects, we wish
to study maps between the Riemann surfaces. As it turns out, we will
generalize the notion of holomorphic functions C→ C to holomorphic
maps between Riemann surfaces; this would make a category out of Rie-
mann surfaces with the holomorphic maps as the morphisms between
them. But before we do so, let’s first examine holomorphic functions
from Riemann surfaces to C. This is easily done since complex charts
give a complex coordinate around any point, on which holomorphic
functions are readily defined.

Definition 2.1.1 (Holomorphic Functions on Riemann Surfaces). Let
X be a Riemann surface, let p be a point of X, and let f be a complex-
valued function defined in a neighborhood W of p. We say that f is
holomorphic at p if there exists a chart φ : U → V with p ∈ U , such
that the composition f ◦ φ−1 : V → C is holomorphic at φ(p) ∈ V . We
say that f is holomorphic in W if it is holomorphic at every point of
W .

Figure 6. A holomorphic function on X, with f ◦ φ−1
holomorphic at φ(p) ∈ V

We are also interested in the functions that are almost holomorphic,
that is, functions that are holomorphic away from a discrete set of
points:

Definition 2.1.2 (Meromorphic Functions on Riemann Surfaces). Let
f be holomorphic in a punctured neighborhood of p ∈ X, i.e. a neigh-
borhood of p excluding p. We say that f is meromorphic at p if it is
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either holomorphic, has a removable singularity at p or has a pole at
p. Here, we say f has a removable singularity (resp. pole) at p if there
exists a chart φ : U → V with p ∈ U such that the composition f ◦φ−1
has a removable singularity2.1 (resp. pole2.2) at φ(p).

One can quickly check that the above definitions does not depend
on the choice of the chart. Namely, f is holomorphic at p iff f ◦ φ−1
is holomorphic at φ(p) for every chart φ whose domain contains p.
Similarly, f has a removable singularity (resp. pole) iff f ◦ φ−1 has a
removable singularity (resp. pole) at φ(p).

Remark 2.1.3. Since removable singularities of a meromorphic function
f are quite irrelevant to the behavior of f , we simply remove them and
freely assume that f is holomorphic at z0. Thus, we assume that mero-
morphic functions only contain poles as their sole type of singularity
in the ensuing discussions.

Examples 2.1.4.

(1) Any complex chart φ, considered as a complex-valued function
on its domain, is a holomorphic function on its domain, since
the composition φ ◦ φ−1 = id .

(2) If f and g are both holomorphic at p ∈ X, then f ± g and fg
are holomorphic at p. If g(p) 6= 0, f/g is holomorphic at p.

(3) If f and g are both meromorphic at p ∈ X, then f±g and fg are
meromorphic at p. If g is not identically zero in a neighborhood
of p, then f/g is meromorphic at p.

(4) Let f be a complex-valued function on C∞ defined in a neigh-
borhood of ∞. Then f is holomorphic at ∞ iff f(1/z) is holo-
morphic at z = 0, and f is meromorphic at ∞ iff f(1/z) is
meromorphic at z = 0.

Here is some notation: let U ⊂ X be an open subset of a Riemann
surface X, we denote the set of holomorphic functions on U by OX(U)
(or simply O(U)) and set of meromorphic functions on U by MX(U)
(or simply M(U)). We note that both are C-algebras.

2.1A function f : U \ {p} → C holomorphic on a punctured neighborhood of
p ∈ C is said to have a removable singularity at p if there is a holomorphic function
g : U → C that coincides with f on U \ {p}, i.e. we can “remove” the singularity
by assigning it an appropriate value.

2.2A function f holomorphic on a punctured neighborhood of p ∈ C is said to
have a pole at p if p is a zero of 1/f.
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2.2. Laurent Series and Order of a Meromorphic Function at a
Point. We can translate the notion of Laurent Series on the complex
plane to Riemann surfaces as well, again using local coordinates.

Definition 2.2.1 (Laurent Series about a Point on a Riemann Sur-
face). Let f be holomorphic in a punctured neighborhood of p in a
Riemann surface X and let φ : U → V be a chart on X with p ∈ U .
φ gives a local coordinate on U (say z = φ(x) near p), and f ◦ φ−1 is
holomorphic in a punctuated neighborhood of z0 = φ(p). Thus we may
expand f ◦ φ−1 in a Laurent Series about z0 for points z near z0:

(f ◦ φ−1)(z) =
∞∑

n=−∞

cn(z − z0)n.

This is called the Laurent Series for f about p with respect to φ.

Definition 2.2.2 (Order of a Meromorphic Function at a Point). Let
f be meromorphic at p ∈ X and nonconstant near p, whose Laurent
series in a local coordinate z is

∑
n cn(z − z0)n. The order of f at p,

denoted by ordp(f), is the minimum exponent actually appearing (with
nonzero coefficient) in the Laurent series:

ordp(f) = min{n ∈ Z : cn 6= 0}.

Proposition 2.2.3. ordp(f) is well defined. That is, it is independent
of the choice of the local coordinate used to define the Laurent series
about p.

Proof. Suppose that ψ : U ′ → V ′ is another chart on X containing
p in its domain, giving the local coordinate w = ψ(x) for x ∈ U ′.
Suppose that ψ(p) = w0. The transformation map T (w) = φ ◦ ψ−1 is
holomorphic and is the change of coordinates z = T (w).

Since T is in particular bijective, say S is the inverse to T , then
S(T (w)) = w for all w ∈ U ′. Thus S ′(T (w))T ′(w) = 1, showing that
T ′(w) is never zero on U ′. This means that if we expand

z = T (w) = z0 +
∑
n≥1

an(w − w0)
n,

the coefficient a1 is nonzero.
Suppose now that f(φ−1(z)) = cn0(z − z0)n0 + (higher order terms)

is the Laurent series for f about p w.r.t. φ, where n0 is the order of f
w.r.t. coordinates z, so cn0 6= 0. The composition of this series with
z − z0 =

∑
n≥1 an(w − w0)

n gives the Laurent series w.r.t. ψ. We
immediately see that the lowest degree term in the composition has
degree n0 as well, so n0 is also the order of f w.r.t. coordinates w. �
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The order function behaves nicely with algebraic operations on mero-
morphic functions: we quickly have

• ordp(fg) = ordp(f) + ordp(g),
• ordp(f/g) = ordp(f)− ordp(g), and
• ordp(1/f) = − ordp(f)

for any functions f and g that are meromorphic at p. Moreover, the
order at a point is enough to determine much of the behavior of the
meromorphic at this point:

Lemma 2.2.4. Let f be meromorphic at p. Then f has a pole at p
iff ordp(f) < 0 and f is holomorphic at p iff ordp(f) ≥ 0. f has a
zero at p iff ordp(f) > 0 and f has neither a zero nor a pole at p iff
ordp(f) = 0.

We say that f has a zero of order n at p if ordp(f) = n > 0 and that
f has a pole of order n at p if ordp(f) = −n < 0.
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2.3. Some Theorems about Holomorphic and Meromorphic
Functions. Here are several useful results concerning holomorphic and
meromorphic functions inherited immediately from ones in one-variable
complex analysis. We get two useful corollaries: the first saying that
a meromorphic on a compact Riemann surface is has order 0 away
from a finite set, and the second one determines all possible globally
holomorphic functions on a compact Riemann surface.

Theorem 2.3.1 (Discreteness of Zeroes and Poles). Let f be a mero-
morphic function defined on a connected open set W of a Riemann
surface X. If f is not identically zero, then the zeros of poles of f form
a discrete subset of W .

Corollary 2.3.2. Let f be a meromorphic function on a compact Rie-
mann surface. If f is not identically zero, then f has a finite number
of zeroes and poles.

Theorem 2.3.3 (The Maximum Modulus Theorem). Let f be holo-
morphic on a connected open set W of a Riemann surface X. If there
is a point p ∈ W such that |f(x)| ≤ |f(p)| for all x ∈ W, then f is
constant on W.

Corollary 2.3.4. Let X be a compact Riemann surface. If f is holo-
morphic on all of X, then f is a constant function.

Proof. Since f is holomorphic, |f | is continuous. Since X is compact,
|f | achieves a maximum at point of X. It then follows from the Maxi-
mum Modulus Theorem that f is constant. �
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2.4. Meromorphic Functions on the Riemann Sphere. As a con-
crete example, we will examine the meromorphic functions on the Rie-
mann Sphere. While the previous subsection shows that holomorphic
functions on it are not so interesting, this is not the case for meromor-
phic functions.

Theorem 2.4.1. Any meromorphic function on the Riemann Sphere
is a rational function.

Proof. Let f be a meromorphic function on C∞, then it has finitely
many zeroes and poles since C∞ is compact. Let {λi} be the set of
zeroes and poles of f in C, and ordλi(f) = ei. Consider the following
rational function

r(z) =
∏
i

(z − λi)ei ,

which has the same zeroes and poles as f to the same orders in C. Let
g(z) = f/r(z), then g is a meromorphic function on C∞ with no poles
or zeros in C, and we wish to prove that g is a constant.
g is holomorphic on all of C, so its Taylor series

g(z) =
∞∑
n=0

cnz
n

converges everywhere in C. g is also meromorphic at ∞, so

g

(
1

z

)
=
∞∑
n=0

cn

(
1

z

)n
is meromorphic at 0. Thus the Taylor series has only finitely many
terms; that is, g is a polynomial in z. If, however, g is not constant,
then it necessarily has a zero in C, which is a contradiction. Thus g is
a constant and f = gr is a rational function like r. �

Note that ord∞(f) = ord∞(r) = −
∑

i ei.

Corollary 2.4.2. Let f be any meromorphic function on the Riemann
Sphere, then ∑

p

ordp(f) = 0.

As we will see, this is true for all meromorphic functions on any
compact Riemann surfaces.

Similarly, every meromorphic function on P1 is a ratio of homoge-
neous polynomials in z, w of the same degree. As we will see, this can
follow from the fact that P1 is isomorphic to C∞, although one can
certainly show it solely using properties of P1.
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3. Holomorphic Maps Between Riemann Surfaces

3.1. Definition of Holomorphic Maps. The holomorphic maps be-
tween Riemann surfaces are defined again using local coordinates.

Definition 3.1.1 (Holomorphic Maps Between Riemann Surfaces).
Let X and Y be Riemann surfaces. A mapping F : X → Y is holo-
morphic at p ∈ X if there exists charts φ1 : U1 → V1 on X with p ∈ U1

and φ2 : U2 → V2 on Y with F (p) ∈ U2 such that the transition map
T = φ2 ◦ F ◦ φ−11 is holomorphic at φ1(p). We say F is holomorphic on
W for an open set W ⊂ X if F is holomorphic at each point of W . F
is a holomorphic map if F is holomorphic on all of X.

Figure 7. Holomorphic map between Riemann surfaces

Again one can check that the above definitions does not depend on
the choice of the charts on X and Y .

Examples 3.1.2.

(1) Any holomorphic function on a Riemann surface X is a holo-
morphic map from X to C.

(2) The identity mapping id : X → X is holomorphic for any Rie-
mann surface X. For any p ∈ X, we find chart φ : U → V
where p ∈ U and thus φ ◦ id ◦φ−1 is the identity map on U , so
id is holomorphic at p.

(3) The composition of holomorphic maps F : X → Y and G :
Y → Z is a holomorphic map G ◦ F : X → Z.

(4) The composition of a holomorphic map F : X → Y with a
holomorphic function g on W ⊂ Y is a holomorphic function
g ◦ F on F−1(W ).
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(5) The composition of a holomorphic map F : X → Y with a
meromorphic function g on W ⊂ Y is a meromorphic function
g ◦ F on F−1(W ), when the image F (X) is not a subset of the
poles of g.

Remark 3.1.3. The previous two examples states, if F : X → Y
is a holomorphic map between Riemann surfaces, then for every
open set W ⊂ Y, F induces C-algebra homomorphisms

F ∗ : OY (W )→ OX(F−1(W ))

and

F ∗ :MY (W )→MX(F−1(W ))

given by F ∗(g) = g ◦ F . Note the similarity to induced homo-
morphisms on coordinate rings by morphisms between algebraic
sets. Indeed, we have a contravariant functor from Riemann
surfaces to rings.

(6) The map F : P1 → C∞ defined by

F (z : w) =

(
2 Re(zw)

|z|2 + |w|2
,

2 Im(zw)

|z|2 + |w|2
,
|z|2 − |w|2

|z|2 + |w|2

)
∈ S2

is a holomorphic map from the complex projective line to the
Riemann Sphere. F is holomorphic on U0 = {(z : w) : z 6= 0}
using the complex charts π0

3.1 on P1 and φ2
3.2 on C∞. The

transition map T = φ2 ◦F ◦π−10 is computed to be the identity.
Similarly, F is holomorphic on U1 = {(z : w) : w 6= 0} and thus
holomorphic on all of P1.

(7) The map G : C∞ → P1 defined by

G(x, y, w) =

{
(x+ yi : 1− w) if w 6= 1

(1 : 0) if w = 1

is a holomorphic map from the Riemann Sphere to the complex
projective line. G is holomorphic on C∞ \ {(0, 0, 1)} using the
complex charts φ1 on C∞ and π1 on P1. The transition map
T = π1 ◦G ◦ φ−11 is the identity. Similarly, G is holomorphic on
C∞ \ {0, 0,−1} using the complex charts φ2 on C∞ and π0 on
P1. The computation of the transition map T = π0 ◦ G ◦ φ−12

3.1See (4) of Examples 1.3.2.
3.2See (6) of Examples 1.2.4.
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involves casework, but it again turns out to be the identity:

T (φ2(x, y, w)) = π0(G(x, y, w))

=

{
π0(x+ yi : 1− w) if w 6= 1

π0(1 : 0) if w = 1

=

{
(1− w)/(x+ yi) if w 6= 1

0 if w = 1

=
x− yi
1 + w

= φ2(x, y, w).

With the notion of holomorphic maps it is easy to define isomorphism
on Riemann surfaces.

Definition 3.1.4 (Isomorphism of Riemann Surfaces). An isomor-
phism between Riemann surfaces is a bijective holomorphic map F :
X → Y whose inverse is also holomorphic.

Example 3.1.5. The holomorphic maps F : P1 → C∞ and G : C∞ →
P1 described above are inverses, thus they are isomorphisms between
the complex projective line P1 is isomorphic to the Riemann Sphere
C∞.
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3.2. Discreteness of Preimages of a Holomorphic Map. We have
seen that given a meromorphic function f on a Riemann surface X, the
set of zeroes and poles of f is a discrete set and is finite when X is
compact. This is a nice property since finiteness allows us to easily
keep track of the “bad points” when we make a statement that applies
to most of the “good points” on X. It also enables us to put together
finite formal sum involving points, which we will see in the case of
divisors. Therefore, we want to get a similar result for holomorphic
maps between Riemann surfaces, this time concerning preimages. First,
we inherit the following theorem from one-variable complex analysis.

Theorem 3.2.1 (Open Mapping Theorem). Let F : X → Y be a
nonconstant holomorphic map between Riemann surfaces. Then F is
an open mapping, i.e. F sends open subsets of X to open subsets of Y .

Proposition 3.2.2. Let X be a compact Riemann surface, and let
F : X → Y be a nonconstant holomorphic map. Then Y is compact
and X is onto.

Proof. We shall proof that F (X) is both open and closed in Y . F (X)
is open by the Open Mapping Theorem. F (X) is compact as it is the
image of X, which is compact, and is hence closed in Y since Y is
Hausdorff. Finally, F (X) is nonempty, so it must be all of Y . �

Theorem 3.2.3 (Discreteness of Preimages). Let F : X → Y be a non-
constant holomorphic map between Riemann surfaces. Then for every
y ∈ Y , the preimage F−1(y) is a discrete subset of X. In particular, if
X is compact, then F−1(y) is a nonempty finite set.

Proof. For y ∈ Y and x ∈ F−1(y), choose local coordinates w centered
at x and z centered at y. Then the map F , written in these local coor-
dinates, is a nonconstant holomorphic function z = g(w) with g(0) = 0.
Since zeroes of nonconstant holomorphic functions are discrete, we can
select a neighborhood U of x such that x is the only preimage of y in U .
Thus F−1(y) is a discrete subset of X. If X is compact, then F−1(y) is
finite; it is nonempty since F is onto by the previous proposition. �
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3.3. Multiplicity at a Point of a Holomorphic Map. Before study-
ing the global behaviors of holomorphic maps, we first investigate a
local behavior, which would be of significance shortly. Essentially, the
following proposition says that every holomorphic map in local coor-
dinates look like a power map, and the degree of this power map is
unique and independent of the local coordinates we choose.

Proposition 3.3.1 (Local Normal Form). Let F : X → Y be a non-
constant holomorphic map defined at p ∈ X. Then there is a unique
integer m ≥ 1 such that: for every chart φ2 : U2 → V2 on Y centered
at F (p), there exists a chart φ1 : U1 → V1 on X centered at p such that
T = φ2 ◦ F ◦ φ−11 is the power map z 7→ zm.

Proof. Fix the chart φ2 on Y centered at F (p), and choose any chart
ψ : U → V on X centered at p. Then the Taylor series of the transition
map T = φ2 ◦ F ◦ ψ−1 has the form

T (w) =
∞∑
i=m

ciw
i

where cm 6= 0 and m ≥ 1 since T (0) = 0. Thus we have T (w) =
wmS(w) where S(w) is a holomorphic function at w = 0 and S(0) 6= 0.
There exists a function R(w) holomorphic near 0 with R(0) 6= 0 such
that R(w)m = S(w) so T (w) = (wR(w))m. Let η(w) = wR(w), then
η′(0) = R(0) 6= 0 so η is invertible and holomorphic near 0.

I claim that φ1 = η ◦ ψ is the desired chart on X. It is a chart
centered at p since composition by η is a coordinate change. We have a
new coordinate z under φ1 near p and it is related to w by z = η(w) =
wR(w). Thus,

(φ2 ◦ F ◦ φ−11 )(z) = (φ2 ◦ F ◦ ψ−1 ◦ η−1)(z)

= T (η−1(z))

= T (w)

= (wR(w))m

= zm.

The integer m is unique since, given a point near F (p) in Y , it has
exactly m preimages near p in X. Thus m is a topological feature of
the map F and is independent of the choice of local coordinates. �

Definition 3.3.2 (Multiplicity). The unique integer m in the setting
above is called the multiplicity of F at p and is denoted multp(F ).

Note that multp(F ) ≥ 1 always. Also, notice in the proof we have
discovered that if z and w are any local coordinates centered at p and
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F (p), respectively, then the lowest term in the power series expansion
of the transition map always has degree multp(F ). Thus we have a
relationship between the multiplicity of a holomorphic map and the
order of its derivative (which is at least meromorphic).

Lemma 3.3.3. Let F : X → Y be a nonconstant holomorphic map
defined at p ∈ X. Take local coordinates z near p and w near F (p), and
say that p is taken to z0 and F (p) to w0. In terms of these coordinates, F
has the form w = T (z) where T is the transition map: it is holomorphic
and w0 = T (z0). Then we have the following relation:

multp(F ) = 1 + ordz0(dT/dz).

In particular, the multiplicity is the exponent of the lowest positive term
of the power series for T about z = z0.

Proof. Note that z − z0 and w − w0 are local coordinates centered at
p and F (p), so multp(F ) is the degree of the lowest term appearing in
the power series of w−w0 = T (z)−T (z0). A quick check of the power
series shows that this degree is 1 + ordz0(dT/dz). �

Thus, since multp(F ) ≥ 2 implies that dT/dz has strictly positive
order at z0, i.e. it has a zero at z0, by Lemma 2.2.4. The points p
where F has multiplicity at least two is thus a discrete set. These are
“bad points” where easy conclusions about global behaviors fail and
thus require additional attention.

Definition 3.3.4 (Ramification and Branch Points). Let F : X → Y
be a nonconstant holomorphic map. A point p ∈ X is a ramification
point for F if multp(F ) ≥ 2. A point y ∈ Y is a branch point for F if
it is the image of a ramification point for F .

We sense that notion of the order (defined for a meromorphic func-
tion) is defined very similarly to that of the multiplicity (defined for
a holomorphic map). In fact, they are related more than just via the
transition map. We will see this once we can associate a meromorphic
function to a reasonable holomorphic map.

Proposition 3.3.5. Let f be a meromorphic function on a Riemann
surface X. We define a function F : X → C∞ by

F (x) =

{
f(x) if x is not a pole of f

∞ if x is a pole of f .

Then F is a holomorphic map between the two Riemann surfaces. In
fact, the operation defines a bijection between the set of meromorphic
functions on X and the set of holomorphic functions X → C∞ which
are not identically ∞.
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Proposition 3.3.6. With the setting of the previous proposition, and
assuming that f is not constant, for any p ∈ X, multp(F ) and ordp(f)
are related in the following ways:

(1) If p is a zero of f , then multp(F ) = ordp(f).
(2) If p is a pole of f , then multp(F ) = − ordp(f).
(3) If p is neither a zero nor a pole of f , then multp(F ) = ordp(f −

f(p)).

Proof. If p is not a pole of f , then the function f−f(p) has a zero at p.
By Lemma 3.3.3, we see that multp(F ) = ordp(f − f(p)); specifically,
f has the power series

f(z) = f(p) +
∞∑

i=multp(F )

(z − p)i

near p, so f − f(p) has order multp(F ). In particular, if f(p) = 0,
then multp(F ) = ordp(f). If p is a pole of f , then p is a zero of 1/f .
Therefore multp(F ) = ordp(1/f) = − ordp(f). �
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3.4. Degree of a Holomorphic Map. As said, multiplicity of a holo-
morphic map is a local behavior, but it relates to the global behavior
of a holomorphic map by the following proposition.

Proposition 3.4.1. Let F : X → Y be a nonconstant holomorphic
map between compact Riemann surfaces. For each y ∈ Y, the sum of
the multiplicities of F at the preimages of y, i.e.∑

p∈F−1(y)

multp(F ),

is a constant, independent of y.

Proof. The idea is to show that the function y 7→ dy(F ) is a locally
constant function from Y to Z. Since Y is connected, any locally
constant map is globally constant, and we will be done.

First consider the power map f : D → D given by z 7→ zm, where
D = {z ∈ C : |z| < 1} is the open unit disc in C. The map f is
holomorphic with the only ramification point being 0. Splitting into
cases of w = 0 (w has one preimage with multiplicity m) and w 6= 0
(w has m preimages each with multiplicity 1), we see that the sum of
multiplicities of the preimage is constantly m.

Fix y ∈ Y . We want to show that for any nonconstant holomorphic
map F , it is locally a disjoint union of these power maps on the neigh-
borhoods of preimages of y. This is where apply Local Normal Form:
let F−1(y) = {x1, · · · , xn} and choose a local coordinate w centered at
y in Y . By the Local Normal Form Proposition, we may choose coordi-
nates {zi} with zi centered at xi for each i, such that in a neighborhood
of xi F is the power map w = zmii .

It suffices to check that, for points near y, they have no other preim-
ages which are not in the neighborhoods of the xi’s. Assume for con-
tradiction that we may find points arbitrarily close to y with some
preimages not in any of the neighborhoods of xi’s. This is equivalent
to saying that we may find a sequence of points {pi} of X, none of
which lie in any of the neighborhoods of xi’s, such that the images of
these points converge to y. Since X is compact, we have a convergent
subsequence {pni} which converges to a point x ∈ X and the images
{F (pni)} converges to y. Since F is continuous, we have F (x) = y, so
x is some xi, which is a contradiction since the pni ’s are not in any of
the neighborhoods of xi’s. �

Definition 3.4.2 (Degree of a Holomorphic Map). The constant sum
in the previous proposition is a property of the map F itself and is
called the degree of F , denoted deg(F ).
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Corollary 3.4.3. A holomorphic map between compact Riemann sur-
faces is an isomorphism iff it has degree one.

Proof. Note that a degree-one map is injective, since any point in the
range cannot have more than one preimage, and surjective, since any
point in the range has a preimage. The inverse is automatically holo-
morphic. �

Remark 3.4.4. Note that if q ∈ Y is not a branch point, then multp(F ) =
1 for all p ∈ F−1(q), so q has precisely deg(F ) preimages. In fact, if
we delete the branch points of F in Y as well as their preimages in X,
we obtain a covering map π : M → M ′ between 2-manifolds: every
point of the target M ′ has an open neighborhood V ⊂ M ′ such that
π−1(M ′) breaks into a disjoint union of open sets Ui ⊂ M , each sent
homeomorphically onto V by π. Thus, the map F itself is a branched
covering, a covering map away from finitely many “bad points” (the
branch points).

The with the degree as a tool, and having understood the relation
between the order of a meromorphic function and the multiplicity of
the induced holomorphic map onto C∞, we can prove the following im-
portant result, which would again show up in our discussion of divisors:

Proposition 3.4.5. Let f be a nonconstant meromorphic function on
a compact Riemann surface X. Then∑

p∈X

ordp(f) = 0.

Proof. Let F : X → C∞ be the associated holomorphic map to the
Riemann Sphere. Let {xi} = F−1(0) and {yj} = F−1(∞). Then we
have ∑

i

multxi(F ) =
∑
j

multyj(F ),

since both are both deg(F ). The only points of X where ordp(f) 6= 0
are the zeroes and poles of f , which are exactly the xi’s and yj’s, thus∑

p

ordp(f) =
∑
i

ordxi(f) +
∑
j

ordyj(f)

=
∑
i

multxi(F )−
∑
j

multyj(F )

= 0,

where in the second-to-last equality we’ve used Proposition 3.3.6: multxi(F ) =
ordxi(f) for each i and multyj(F ) = − ordyj(f) for each j. �
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3.5. The Euler Characteristic. The Euler characteristic of a com-
pact Riemann surface is inherited from that of compact 2-manifolds.

Definition 3.5.1 (Euler Characteristic). Let S be a compact 2-manifold
(possibly with boundary), and suppose that a triangulation3.3 of S is
given, with v vertices, e edges, and t triangles. Then the Euler char-
acteristic of S (w.r.t. this triangulation) is given by χ(S) = v − e+ t.

The main result for compact Riemann surfaces is that they can be
triangulated. The main result for Euler characteristic is that it’s inde-
pendent of the choice of triangulation.

Proposition 3.5.2. The Euler characteristic is independent of the
choice of triangulation. For a compact orientable 2-manifold without
boundary of genus g, the Euler characteristic is 2− 2g.

The usually argument for a proof is to show that the Euler char-
acteristic is unchanged when one refines a triangulation, i.e. further
“subdivide” the existing triangles by some elementary refinements, and
that any two triangulations have a common refinement. One then iden-
tifies the Euler characteristic of a genus-g 2-manifold with 2− 2g.

3.3A triangulation of a compact 2-manifold is a decomposition of S into closed
subsets, each homeomorphic to a triangle, such that any two of these subsets are
disjoint, meet only at a single vertex, or meet only along a single edge.



30 ZEYU WANG

3.6. The Riemann-Hurwitz Formula. Here we introduce our first
major result, relating, for a holomorphic map F between compact Rie-
mann surfaces, the genera of its domain and range (which are indepen-
dent of F ) with the degree (the “global behavior” of F ) and ramification
(the “bad points”) of F .

First we examine the case where F : X → Y is any covering map
between compact Riemann surfaces. Recall that a covering map π :
M → M ′ between manifolds is such that every point of its target M ′

has an open neighborhood V ⊂ M ′ such that π−1(V ) breaks into a
disjoint union of open sets Ui ⊂ M , each sent homeomorphically onto
V by π. We first see that, let n ∈ Z≥0, then the set of points in M with
precisely n preimages is both open and close in M , thus it is either
empty or all of M . This set is exactly all of M for a unique n, which
we call the degree of the covering π, denoted deg(π). This is somehow
compatible with the notion of degree of holomorphic functions due to
Remark 3.4.4.

We will use the following lemma from the theory of covering spaces:

Lemma 3.6.1. Let π : M → M ′ be a covering between manifolds,
p0 ∈ M , p′0 ∈ π−1(p0), and g : [0, 1] → M a path3.4 with g(0) = p0.
Then g can be lifted to a unique path g′ : [0, 1] → M ′ with g′(0) = p′0,
i.e., that

π ◦ g′ = g.

Proposition 3.6.2. Let F : X → Y be a covering between triangulable
2-manifolds. Then χ(X) = deg(π)χ(Y ).

Proof. Given a triangulation of Y with v vertices, e edges, and v ver-
tices, we view it as a collection of path on Y . Lift each path uniquely to
a path on X via π, then we have a triangulation on X with deg(π)v ver-
tices, deg(π)e edges, and deg(π)v vertices. The result thus follows. �

As we’ve noted, a general holomorphic map is a ramified covering,
so we must slightly adjust the identity above to account for the differ-
ences, which the Riemann-Hurwitz Formula does by counting carefully
at ramification points.

The Riemann-Hurwitz Formula. Let F : X → Y be a nonconstant
holomorphic map between compact Riemann surfaces. Then

χ(X) = deg(F )χ(Y )−
∑
p∈X

[multp(F )− 1],

3.4A path on space X is a continuous function g : [0, 1]→ X.
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or, equivalently,

2g(X)− 2 = deg(F )(2g(Y )− 2) +
∑
p∈X

[multp(F )− 1].

Proof. First we note that the sum is a finite sum since X is compact
and the set of ramification points of F is finite.

Take a triangulation of Y with v vertices, e edges, and t triangles
such that each branch point of F is a vertex. We can similarly lift this
triangulation back to X except for at branch points in Y . However,
for a branch point q ∈ Y and ramification point p0 ∈ F−1(q), we may
select local coordinates centered at p0 and q under which F has the
form z 7→ zm, where m = multp(F ). Now for any edge on Y viewed as
a path on Y starting at q, it is a function h : [0, 1] → C under these
local coordinates. We take all m-th degree roots of h as lifted paths
of g on X starting at p0. One can show that we have subsequently
obtained a triangulation of X by lifting.

Now we count the number of vertices, edges, and triangles of the
triangulation on X. Call these values v′, e′ and t′, respectively. Sim-
ilar to the argument above, we have t′ = deg(F )t and e′ = deg(F )e.
Vertices are where we need to be careful, and multiplicity comes in as
they characterize what happens at ramification points: for any vertex
q ∈ Y ,

|F−1(q)| =
∑

p∈F−1(q)

1

= deg(F ) +
∑

p∈F−1(q)

[1−multp(F )].

Now we can calculate

v′ =
∑

vertex q of Y

deg(F ) +
∑

p∈F−1(q)

[1−multp(F )]


= deg(F )v −

∑
vertex q of Y

∑
p∈F−1(q)

[multp(F )− 1]

= deg(F )v −
∑

vertex p of X

[multp(F )− 1].
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Finally, putting everything together,

χ(X) = v′ − e′ + t′

= deg(F )v −
∑

vertex p of X

[multp(F )− 1]− deg(F )e+ deg(F )t

= deg(F )χ(Y )−
∑

vertex p of X

[multp(F )− 1]

= deg(F )χ(Y )−
∑
p∈X

[multp(F )− 1],

where the last equality holds because every ramification point of F is
a vertex of X so that multp(F ) = 1 for any non-vertex of X. �
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4. Integration on Riemann Surfaces

4.1. Holomorphic and Meromorphic 1-Forms. For the purpose
of this paper, the main objective of this section is to prove the Residue
Theorem. However, the proof would require Stoke’s Theorem on Rie-
mann surfaces, which would require a thorough look into integration
theory on Riemann surfaces.

First, we need to define objects to integrate. These objects are called
forms. Again, the usual approach to define objects on Riemann surfaces
is to first define them on open subsets of C, which can be carried over
via charts.

Definition 4.1.1 (Holomorphic 1-Forms on C). A holomorphic 1-form
on an open set V ⊂ C is an expression ω of the form

ω = f(z) dz,

(note that we write formally dz instead of dz) where f is a holomorphic
function on V . We say that ω is a holomorphic 1-form in the coordinate
z.

Now we wish to associate holomorphic 1-forms ωφ for each chart
φ : U → V on a Riemann surface X; however, as we’ve seen in the
example of complex charts, we want to pose some sort of compatibility
condition on the 1-forms.

Definition 4.1.2 (Transformation of 1-Forms). Suppose that ω1 =
f(z) dz and ω2 = g(w) dw are holomorphic 1-forms defined on open
sets V1, V2 of C, respectively, and let z = T (w) be the holomorphic
transition map from V2 to V1. We say that ω1 transforms to ω2 under
T if

g(w) = f(T (w))T ′(w).

Note that, however, T : V2 → V1 goes in the opposite direction of the
transformation.

The above definition is made exactly so that

g(w) dw = f(T (w))T ′(w) dw = f(z) dz

when one sets dz = T ′(w) dw. Now we’re ready to define a holomorphic
1-form on a Riemann surface.

Definition 4.1.3 (Holomorphic 1-Forms on Riemann Surfaces). Let
X be a Riemann surface. A holomorphic 1-form ω on X is a collection
of holomorphic 1-forms {ωφ} on C, one for each chart φ : Uφ → Vφ
and each ωφ is on Vφ. Moreover, if two charts φ1, φ2 have overlapping
domains, then their associated 1-forms ωφ1 transforms to ωφ2 under the
change of coordinates T = φ1 ◦ φ−12 .
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Remark 4.1.4. The definition requires that we give a holomorphic 1-
form for each chart of X, but it suffices to do so for an atlas A of X.
Indeed, if ψ is a chart of X not in A, we find a point p in its domain and
a chart φ in A containing p in its domain. Say ψ has local variable w
and φ has local variable z, and say ωφ = f(z) dz is the holomorphic 1-
form associated with φ. Then we simply define ωψ = f(T (w))T ′(w) dw,
where T = φ ◦ ψ−1.

We can define meromorphic 1-forms on Riemann surfaces using the
exact same approach, only with f(z) in Definition 4.1.1 being a mero-
morphic (instead of holomorphic) function on V . The set of holomor-
phic 1-forms on a open subset U ⊂ X is denoted by Ω1(U) and the
set of meromorphic 1-forms is denoted by M(1)(U). Both are modules
over O(U), the set of holomorphic functions on U .

Example 4.1.5. We define a meromorphic 1-form ω on the Riemann
Sphere C∞ using charts from (7) of Example 1.2.4; we mandate that
the south pole is 0 and the north pole is ∞. We define ω = dz in
φ1, the chart whose domain is near 0. Recall that the transition map
T (w) = φ2 ◦ φ−11 is T (w) = 1/w, thus we must define

ω = f(T (w))T ′(w) dw = −1/w2 dw

near ∞. This gives a meromorphic 1-form on C∞.
Remark 4.1.6. As we’ve seen in the previous example, in the case of
meromorphic 1-forms, it’s most convenient to define ωφ for a single
chart φ and then extend it to a global meromorphic 1-form. The data
on the single chart φ is sufficient to determine the global 1-form, since
if two meromorphic functions agree on an open set, they must be iden-
tical4.1.

However, it’s not clear that such an ω exists. For example, the mero-
morphic 1-form ez dz on C ⊂ C∞ does not extend to all of C∞. Another
problem is that the local expression might not transform uniquely to
other points of X; for example, the meromorphic 1-form

√
z dz defined

on the complex plane with the negative real axis removes (where we
choose

√
1 = 1) does not extend uniquely to the negative real axis.

So when we use a single formula for one chart to define a meromor-
phic 1-form ω, the burden falls to the reader to check that the formula
transforms uniquely to all of X.

4.1This is the content of the Identity Theorem, which states that if f and g
are two meromorphic functions defined on a connected open set W of a Riemann
surface X. Suppose that f = g on a subset S ⊂ W which has a limit point in W ,
then f = g on W . In particular, if W is taken to be all of X, any two meromorphic
functions on X that agree on an open subset of X are the same.
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We want the notion of the order, previously defined for meromorphic
functions, to be defined for meromorphic 1-forms as well.

Definition 4.1.7 (Order of Meromorphic 1-Forms). Let ω be a mero-
morphic 1-form defined in a neighborhood of point p. Under some
local coordinate z centered at p, we may write ω = f(z) dz where f is
a meromorphic function at z = 0. Then the order of ω at p, denoted
ordp(ω), is defined to be ord0(f), the order of the function f at 0.

One can easily check that ordp(ω) is independent of the choice of the
local coordinate. Familiar properties of meromorphic functions also
transform easily to meromorphic 1-forms (which are, after all, “formal
expressions” involving meromorphic functions).



36 ZEYU WANG

4.2. C∞ 1-Forms. We can relax the holomorphic or meromorphic con-
ditions for 1-forms and obtain a notion of C∞ 1-forms, which are the
most general objects we wish to contour integrate. We could define
C∞ 1-Forms similarly as the expressions f(x, y) dx + g(x, y) dy, where
z = x+ iy is the local variable and f, g are of class C∞ with respect to
x and y.

However, it is often more profitable to abandon the real and imagi-
nary parts x and y for z and its complex conjugate z. Namely,

x =
z + z

2
and y =

z − z
2i

and (manually defiend)

dx =
dz + dz

2
and dy =

dz − dz

2i
.

Thus the form f(x, y) dx+g(x, y) dy can be written instead as r(z, z) dz+
s(z, z) dz. We note that it’s possible to go the other direction as well.

Definition 4.2.1 (C∞ 1-Forms). A C∞ 1-form on an open set V ⊂ C
is an expression ω of the form

ω = f(z, z) dz + g(z, z) dz,

where f and g are C∞ functions on V . We say that ω is a C∞ 1-form
in the coordinate z.

The transformation rule is what makes sense:

Definition 4.2.2 (Transformation of C∞ 1-Forms). Suppose that ω1 =
f1(z, z) dz + g1(z, z) dz and ω2 = f2(w,w) dw + g2(w,w) dw are C∞ 1-
forms defined on open sets V1, V2 of C, respectively, and let z = T (w)
be the holomorphic transition map from V2 to V1. We say that ω1

transforms to ω2 under T if

f2(w,w) = f1(T (w), T (w))T ′(w)

and

g2(w,w) = g1(T (w), T (w))T ′(w).

Then one can define C∞ 1-forms on a Riemann surface as in Defini-
tion 4.1.3.

We will need the notations of partial derivatives for defining differ-
entials of functions and 1-forms. Given a C∞ function f(x, y), by the
chain rule we have

∂f

∂z
=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z
=

1

2

∂f

∂x
+

1

2i

∂f

∂y
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and
∂f

∂z
=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z
=

1

2

∂f

∂x
− 1

2i

∂f

∂y
.

Lemma 4.2.3. A C∞ function f is holomorphic on its domain iff

∂f

∂z
= 0

Proof. Recall from Theorem 1.1.3 that if f(x+ iy) = u(x, y) + iv(x, y),
then f is holomorphic iff it satisfies the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

This is equivalent to

∂f

∂z
=

1

2

∂f

∂x
− 1

2i

∂f

∂y

=
1

2

(
∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x

)
− 1

2i

(
∂f

∂u

∂u

∂y
+
∂f

∂v

∂v

∂y

)
=

1

2

(
∂u

∂x
+ i

∂v

∂x

)
− 1

2i

(
∂u

∂y
+ i

∂v

∂y

)
=

1

2

(
∂u

∂x
− ∂v

∂y

)
− 1

2i

(
∂u

∂y
+
∂v

∂x

)
= 0.

�



38 ZEYU WANG

4.3. Differential 2-Forms and Differentials of Functions and
1-Forms. C∞ 1-forms are objects for contour integrals, but we also
need the ability to do surface integrals on Riemann surfaces for the
Stoke’s Theorem. The objects that we’ll integrate, in this case, are
C∞ 2-forms. In surface integrals on C, we use differentials like dx dy.
We can translate these into dz and dz, but we cannot multiply these
formal expressions. The solution is to introduce a “formal product” -
the wedge product.

Definition 4.3.1 (C∞ 2-Forms on C). A C∞ 2-form on an open set
V ⊂ C is an expression η of the form

η = f(z, z) dz ∧ dz

where f is a C∞ function on V . We say that η is a C∞ 2-form in the
coordinate z.

We mandate that wedge product formally behaves as follows:

• dz∧dz = −dz∧dz, since changing the order in the wedge prod-
uct should correspond to reversing the orientation of the surface
during integration, thus changing the sign of the integral, and
• dz ∧ dz = dz ∧ dz = 0, since one cannot have a surface integral

using only one variable.

The transformation rule is, again, what makes sense:

Definition 4.3.2 (Transformation of C∞ 2-forms). Suppose that η1 =
f(z, z) dz ∧ dz and η2 = g(w,w) dw ∧ dw are C∞ 2-forms defined on
open sets V1, V2 of C, respectively, and let z = T (w) be the holomorphic
transition map from V2 to V1. We say that η1 transforms to η2 under
T if

g(w,w) = f(T (w), T (w))|T ′(w)|2

(note that |T ′(w)|2 = T ′(w)T ′(w)).

Then one can define C∞ 2-forms on a Riemann surface as in Defini-
tion 4.1.3.

Now, we also need differentials of C∞ functions and 1-forms. Their
definitions are mainly formality and defining what makes sense. It is
routine to check that they’re well-defined, and we’ll skip the details.

Definition 4.3.3 (Differential of C∞ Functions). Let f be a C∞ func-
tion on a Riemann surface X, we define a a C∞ 1-form df . For any
chart φ : U → V giving a local coordinate z, we define

df =
∂f

∂z
dz +

∂f

∂z
dz

on V . The collection of df for every chart of X is a C∞ 1-form on X.
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Definition 4.3.4 (Differential of C∞ 1-Forms). Let ω be a C∞ 1-form
on a Riemann surface X, we define a C∞ 2-form dω. For any chart φ :
U → V giving a local coordinate z, we write ω = f(z, z) dz+ g(z, z) dz
on V , then we define

dω =

(
∂g

∂z
− ∂f

∂z

)
dz ∧ dz

on V . The collection of dω for every chart of X is a C∞ 2-form on X.

There is a useful remark to make:

Lemma 4.3.5. If ω is a holomorphic 1-form, then dω = 0.

Proof. Since ω is a holomorphic 1-form, under a local coordinate z it
has the form ω = f(z) dz, so g = 0. Thus

dω =

(
∂g

∂z
− ∂f

∂z

)
dz ∧ dz = 0,

where ∂g/∂z = 0 since g = 0, and ∂f/∂z = 0 by Lemma 4.2.3. �
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4.4. Integration Along Paths. We have stated that C∞ 1-forms are
the general objects that we will contour integrate. We thus also need
a notion of paths. Recall that a path on a topological space X is a
continuous function [0, 1] → X. In the case of Riemann surfaces, we
want the path to possess just a bit more structure - that it is piecewise
smooth. We also relax the domain to be any close interval of R: in
algebraic topology we were mainly concerned with homotopy classes of
closed paths so we could reparametrize all paths to be defined on [0, 1],
while here we wish to be more flexible.

Definition 4.4.1 (Paths on Riemann Surfaces). A path on a Riemann
surface X is a continuous and piecewise C∞ function γ : [a, b] → X.
The point γ(a) is called the initial point of γ and γ(b) is called the
terminal point of γ. We say that γ is closed if γ(a) = γ(b).

Examples 4.4.2.

(1) Let γ : [a, b] → X be a path on X and α : [c, d] → [a, b]
is a continuous function with α(c) = a and α(d) = b, then
γ ◦α : [c, d]→ X is a path on X with same initial and terminal
points. This is called a reparametrization of the path γ. Any
path may be reparametrized so that its domain is [0, 1].

(2) Let γ : [a, b] → X be a path on X, then the path sending
t ∈ [a, b] to γ(a+b− t) is called the reversal of γ and is denoted
−γ. Its initial point is γ’s terminal point, and its terminal point
is γ’s initial point.

(3) If F : X → Y is a C∞ map (in particular if it is a holomorphic
map), then F ◦γ is a path on Y . The path F ◦γ is often denoted
F∗γ.

(4) Let γ1 and γ2 be two paths on X with the terminal point of
γ1 coinciding with the initial point of γ2, then there is a path
γ on X with domain [0, 1] such that γ

∣∣
[0,1/2]

and γ
∣∣
[1/2,1]

are

reparametrizations of γ1 and γ2 respectively. This process is
called the concatenation of the two paths and it can be gener-
alized to any finite number of paths.

(5) If γ is a path on X with domain [a, b], then any partition a =
a0 < a1 < · · · < an = b of the interval gives a decomposition of
γ into n paths, and γ is their concatenation. This is called a
partitioning of the path γ.

(6) Let p ∈ X be a point, and let S be a subset of X whose closure
does not contain the given point p. Then there is a closed path
γ on X with the following properties:
• γ is injective and its image lies completely in the domain
U of a chart φ.
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• The closed path φ ◦ γ on C has winding number 1 about
the point φ(p)4.2.
• For any point s ∈ S∩U , the winding number of φ◦γ about
φ(s) is 0.

We say that such a path γ is a small path enclosing p and not
enclosing any point of S. The closed curve image(γ) divides X
into two connected components, and we call the one containing
p the interior of γ.

To define the integral of a C∞ 1-form along a path, we also need the
following:

Lemma 4.4.3. Let γ : [a, b]→ X be a path on a Riemann surface X.
Then γ may be partitioned into a finite number of paths {γi}, such that
each γi is C∞ with image contained in a single chart domain of X.

Proof. It suffices to prove for the case where γ is C∞ on all of [a, b]
instead of piecewise C∞, and the result follows from the compactness
of the closed interval. For any c ∈ [a, b], γ(c) is in the domain of some
chart φc : Uc → Vc of X, so take some neighborhood U ′c ⊂ Uc containing
γ(c), then the preimage φ−1c (U ′c) is a open subset of [a, b]. The collection

{φ−1c (U ′c)}c∈[a,b]
forms an open cover of [a, b], so there is a finite subcover

{φ−1ci (U ′ci)}.
Then we partition [a, b] into subintervals such that every subinterval
is completely in some φ−1ci (U ′ci), showing that images of corresponding
partitioned paths is completely in the domain of φc. �

Now let ω be a C∞ 1-form on a Riemann surface X and γ be a path
on X. We can partition γ into paths {γi} such that each γi is C∞ on its
domain [ai−1, ai] and has image contained in the domain Ui of a chart φi.
With respect to each chart φi, we write ω as ω = fi(z, z) dz+gi(z, z) dz,
where the local variable z may be written z = (φi ◦ γi)(t) := zi(t) for
t ∈ [ai−1, ai].

Definition 4.4.4 (Integral of C∞ 1-Forms Along Paths). With the
above notations, we define the integral of ω along γ to be the complex
number∫

γ

ω =
∑
i

∫ ai

ai−1

[fi(zi(t), zi(t))z
′(t) + gi(zi(t), zi(t))z′i(t)] dt.

4.2Intuitively, this says that φ◦γ goes around φ(p) exactly once counterclockwise
in the complex plane.
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Note that this makes sense since for each i where the image of γi is
contained in the domain of a single chart φi : Ui → Vi, if ω = f dz+g dz
in this chart, then ∫

γi

ω =

∫
φiγi

f dz + g dz

is the familiar contour integral of the path φiγi in Vi ⊂ C.
We need to check that the above definition is independent of the

choice of the coordinate charts. It follows from our definition of the
transformation of C∞ 1-forms in Definition 4.2.2 and the fact that the
integral is an invariant under refinement of partitions. Since any two
partitions of γ have a common refinement, the integral is indeed well
defined, depending only on the path γ and the C∞ 1-form ω.

We make the following immediate remarks:

Lemma 4.4.5.

(1) The integral is independent of the choice of parametrization. In
other words, ∫

γα

ω =

∫
γ

ω

for any reparametrization α of the domain of γ.
(2) The integral is linear under partition of the path, i.e., if γ is

partitioned into paths {γi}, then∫
γ

ω =
∑
i

∫
γi

ω.

(3) The integral is C-linear in ω:∫
γ

(λω1 + µω2) = λ

∫
γ

ω1 + µ

∫
γ

ω2

for all λ, µ ∈ C.
(4) The Fundamental Theorem of Calculus holds: if f is a C∞ func-

tion defined in a neighborhood of the image of the path γ, then∫
γ

df = f(γ(b))− f(γ(a)).

(5) If one reverse the direction of a path, the sign of the integral
changes: ∫

−γ
ω = −

∫
γ

ω.
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4.5. Surface Integrals and Stoke’s Theorem. Mimicking Defini-
tion 4.4.4 where we’ve defined contour integrals on Riemann surface,
to define surface integrals through a triangulable closed set D ⊆ X, we
subdivide D into triangles, each of which lies inside the domain of a
single chart. We define the integration on one triangle in one chart as
follows:

Definition 4.5.1 (Integral of 2-Form through a Triangle). Let T be a
triangle on the Riemann surface X contained in the domain of a chart
φ : U → V . Let η be a C∞ 2-form onX with the form η = f(z, z) dz∧dz
in this chart. Then we define∫∫

T

η =

∫∫
φ(T )

f(z, z) dz ∧ dz

=

∫∫
φ(T )

(−2i)f(x+ iy, x− iy) dx dy,

which is the usual surface integral in C.

One may check that, when this definition is used to define surface
integrals on the triangulable closed set D as mentioned, the integral∫∫

D
η is well defined.

We need one more ingredient for the Stoke’s Theorem.

Definition 4.5.2 (Boundary Chains). Let T be a triangle on X. We
construct the closed path ∂T by traversing the boundary of T counter-
clockwise, with the initial point and parametrization arbitrary.

Now let D by any triangulable closed set on X, we may decompose
D into triangles {Ti} and set ∂D =

∑
i ∂Ti, which is a chain4.3, called

the boundary chain of D.

This definition depends on the triangulation of D, but only up to
partitions and reparametrizations. By Lemma 4.4.5, these won’t mat-
ter when we integrate over ∂D. Thus the path integral

∫
∂D
ω is well

defined whenever ω is a C∞ 1-form on X. Now we are ready to present
the Stoke’s Theorem on Riemann surfaces:

Stoke’s Theorem. Let D be a triangulable closed set on a Riemann
surface X, and let ω be a C∞ 1-form on X. Then∫

∂D

ω =

∫∫
D

dω.

4.3A chain on a Riemann surface X is a finite formal sum of paths, with integer
coefficients, on which integration of C∞ 1-forms is defined simply by extending path
integrals by linearity.
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Proof. Since both sides are additive with respect to the triangles com-
posing a triangulation of D (by definitions of path and surface integrals
as well as the boundary chain), it suffices to check for the case where D
is a triangle contained inside the domain of a chart. At this point we
may use the chart to transfer both integrals to the complex plane, where
the theorem is simply Green’s Theorem4.4 in the complex plane. �

4.4The Green’s Theorem states that, let C be a piecewise smooth, simple closed
path in a plane oriented counterclockwise, and let D be the region bounded by C.
If L and M are C∞ functions of x, y defined on an open subset containing D, then∫

C

(Ldx+M dy) =

∫∫
D

(
∂M

∂x
− ∂L

∂y

)
dx dy.

One can translates this into the language of dz and dz’s.
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4.6. The Residue Theorem. The Residue Theorem4.5 in C relates
a contour integral around a point with the residue at that point. We
define residues on Riemann surfaces with Laurent series, which we will
first define on 1-forms easily: let ω be a 1-form on a Riemann surface
X, which is meromorphic at a point p ∈ X. Under a local coordinate
z centered at p, ω has the Laurent series

ω = f(z) dz =

(
∞∑

n=−∞

cnz
n

)
dz.

Definition 4.6.1 (Residue). The residue of ω at p, denoted by Resp(ω),
is the coefficient c−1 in a Laurent series for ω at p.

Resp(ω) is well defined by the following lemma, which is simply the
Residue Theorem (applied to one point) in C when everything is trans-
formed to C by a complex chart:

Lemma 4.6.2. Let ω be a meromorphic 1-form defined in a neigh-
borhood of p ∈ X. Let ω be a small path on X enclosing p and not
enclosing any other pole of ω4.6. Then

Resp(ω) =
1

2πi

∫
γ

ω.

With some manipulation of series, we can relate the residue to the
order.

Lemma 4.6.3. Suppose f is a meromorphic at p ∈ X, then df/f is a
meromorphic 1-form at p, and

Resp(df/f) = ordp(f).

Proof. This follows from a straightforward examination of the respec-
tive Laurent series. Choose a local coordinate z centered at p, and
assume that ordp(f) = n. Then f = czn+(higher order terms) near p
with c 6= 0. Thus 1/f = c−1z−n+(higher order terms) near p and df =
(nczn−1+(higher order terms)) dz near p. Thus df/f = (n/z+(higher
order terms)) dz, and Resp(df/f) = n = ordp(f). �

4.5In one-variable complex analysis, the Residue Theorem states that, given an
open subset U ⊂ C containing a finite number of points a1, · · · , an, a function
f holomorphic on U \ {a1, · · · , an}, and a closed path curve γ in U which does
not pass through any of the ak’s and has winding number 1 around all ak’s in its
interior, then the contour integral∮

γ

f(z) dz = 2πi
∑

ak inside γ

Res(f, ak).

4.6See (6) of Examples 4.4.2.
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The Residue Theorem in C states that the sum of residues at some
points is equal to some integral. We also have the Residue Theorem
for compact Riemann surfaces, which is even simpler:

The Residue Theorem. Let ω be a meromorphic 1-form on a com-
pact Riemann surface X. Then∑

p

Resp(ω) = 0.

Proof. Firstly, note that this is indeed a finite sum since Resp(ω) = 0
unless p is a pole of ω. Let p1, p2, · · · , pn be the poles of ω. For each
pi, choose a small path γi enclosing pi and no other pole of ω, and let
Ui be the interior of γi

4.7. By Lemma 4.6.2, we have∫
γi

ω = 2πiRespi(ω)

for each i. Let D = X\
⋃
i Ui, then D is triangulable, and ∂D = −

∑
i γi

is a chain on X4.8. Therefore,∑
i

Respi(ω) =
1

2πi

∑
i

∫
γi

ω

= − 1

2πi

∫
−

∑
i γi

ω

= − 1

2πi

∫
∂D

ω

= − 1

2πi

∫∫
D

dω

= 0,

where the last equality follows from Lemma 4.3.5 because ω is holo-
morphic in a neighborhood of D. �

Applying the Residue Theorem to df/f , and using Lemma 4.6.3, we
have proven the following corollary again:

Corollary 4.6.4. Let f be a nonconstant meromorphic function on a
compact Riemann surface X. Then∑

p∈X

ordp(f) = 0.

4.7See (6) of Examples 4.4.2 for the interior of an enclosing path.
4.8See (2) of Examples 4.4.2 for −γ, the reversal of γ. This notion is extended

to chains under linearity.
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5. Divisors

5.1. Definition and Examples of Divisors. Divisors are some sort
of formal objects that packages the different points on a Riemann sur-
face as well as values associated to them (for example, the zeroes and
poles of a meromorphic function as well as their degrees, or the branch-
ing points of a holomorphic map as well as their multiplicities).

Definition 5.1.1 (Divisors). A divisor on a Riemann surface X is a
function D : X → Z that is whose support5.1 is a discrete subset of
X. The divisors on X form a group (a subgroup of ZX , the group of
all functions X → Z, indeed) under pointwise addition, denoted by
Div(X).

However, we will usually denote a divisor D using a summation no-
tation, and write

D =
∑
p∈X

D(p) · p,

where the set of p such that D(p) 6= 0 is discrete. Still keep in mind
that divisors are defined as functions, though.

Definition 5.1.2 (Degree of Divisors). The degree of a divisor D on a
compact Riemann surface is the finite sum

deg(D) =
∑
p∈X

D(p).

Let X be a Riemann surface. We will see a lot of examples of divisors,
all of which correspond to concepts that we’ve seen:

Examples 5.1.3.

(1) Let f be a nonzero meromorphic function on X. The divisor
of f , denoted by div(f), is the divisor defined by the order
function:

div(f) =
∑
p

ordp(f) · p.

Any divisor of this form is called a principal divisor on X. The
set of principal divisors form a subgroup of Div(X), denoted by
PDiv(X).

The result that we’ve seen twice (Proposition 3.4.5 and Corol-
lary 4.6.4) translates to

Lemma 5.1.4. If f is a nonzero meromorphic function on a
compact Riemann surface, then deg(div(f)) = 0.

5.1The support of D is the set of points p ∈ X where D(p) 6= 0.
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(2) Again let f be a nonzero meromorphic function on X, the di-
visor of zeroes of f , denoted by div0(f) is the divisor

div0(f) =
∑

p zero of f

ordp(f) · p.

Similarly, the divisor of poles of f , denoted by div∞(f), is the
divisor

div∞(f) =
∑

p pole of f

(− ordp(f)) · p.

Both of these divisors are nonnegative functions with disjoint
support, such that

div(f) = div0(f)− div∞(f).

(3) Let ω be a nonzero meromorphic 1-form on X. The divisor of ω,
denoted by div(ω), is the divisor defined by the order function:

div(ω) =
∑
p

ordp(ω) · p.

Any divisor of this form is called a canonical divisor on X. The
set of canonical divisors on X is denoted by KDiv(X).

Since the ratio of two meromorphic functions is meromorphic,
it’s easy to see that given two meromorphic 1-forms ω1 and
ω2 on X, with ω1 not identically zero, we can find a unique
meromorphic function f on X with ω2 = fω1. This exactly
translate to:

Corollary 5.1.5. The set KDiv(X) is exactly a coset of the
subgroup PDiv(X). In other words, the difference of any two
canonical divisors is principal.

In fact, the Riemann-Hurwitz Formula allows us to compute
the degree of a canonical divisor on a compact Riemann surface
as well:

Proposition 5.1.6. If X is a compact Riemann surface with
genus g, then any canonical divisor on X has degree 2g − 2.

Proof. From the previous corollary, we see that the degree of any
two canonical divisors on X have the same degree, thus we just
want to select an easy one to compute. However, note that we
know nothing about X while we have a complete knowledge of
meromorphic functions on C∞, we want a method to transform
between meromorphic functions (and 1-forms) between X and
C∞.
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Way back in Remark 3.1.3, we have seen that given a noncon-
stant holomorphic map F : X → Y between Riemann surfaces,
any meromorphic function f on Y may be “pulled back” to a
nonconstant meromorphic function f ◦ F on X. We will use a
similar idea here for meromorphic 1-forms. The pullback of a
meromorphic 1-form ω via F , denoted F ∗ω), is defined by

F ∗ω = f(h(w), h(w))h′(w) dw + g(h(w), h(w))h′(w)dw,

where ω = f(z, z) dz + g(z, z) dz in local variables z in Y . The
key is that we can track associated series and conclude that

ordp(F
∗ω) = (1 + ordF (p)(ω)) multp(F )− 1,

the proof of which is very similar to that of Lemma 4.6.3.
Now consider the easiest meromorphic 1-form ω on C∞ that

we’ve defined in Example 4.1.5, with ω = dz near 0 and ω =
−1/w2 dw near ∞. We have ord∞(ω) = −2 and ordp(ω) = 0
anywhere else, so deg(div(ω)) = −2. We want to pull this mero-
morphic 1-form back to X.

Although highly nontrivial, we are going to assume that there
exists a nonconstant meromorphic function f on X. Therefore
we get the associated nonconstant holomorphic map F : X →
C∞, via which we pull back ω to X. Let η = F ∗ω, a meromor-
phic 1-form on X, whose divisor’s degree we now calculate:

deg(div(η)) =
∑
p∈X

ordp(η)

=
∑
p∈X

ordp(F
∗ω))

=
∑
p∈X

[(1 + ordF (p)(ω)) multp(F )− 1]

=
∑
q 6=∞

p∈F−1(q)

[multp(F )− 1] +
∑

p∈F−1(∞)

[−multp(F )− 1]

=
∑
p∈X

[multp(F )− 1]− 2
∑

p∈F−1(∞)

multp(F )

=2g − 2 + 2 deg(F )− 2 deg(F )

=2g − 2,

�

where the second last equality follows from the Riemann-
Hurwitz Formula.
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(4) Let F : X → Y be a nonconstant holomorphic map, and let
q be a point of Y . The inverse image divisor of q, denoted by
F ∗(q), is the divisor on X defined by

F ∗(q) =
∑

p∈F−1(q)

multp(F ) · p.

Moreover, we may extend this definition to any divisor D on Y .
The pullback of the divisor D =

∑
q∈Y D(q) · q is simply

F ∗(D) =
∑
q∈Y

D(q)F ∗(q) =
∑
q∈Y

D(q)

 ∑
p∈F−1(q)

multp(F ) · p

 .
In function form, we have

F ∗(D)(p) = multp(F )D(F (p))

for all p ∈ X.
(5) Let X → Y be a nonconstant holomorphic map. The ramifica-

tion divisor of F , denoted by RF , is the divisor on X defined
by

RF =
∑
p∈X

[multp(F )− 1] · p.

The branch divisor of F , denoted by BF , is the divisor on Y
defined by

BF =
∑
y∈Y

 ∑
p∈F−1(y)

(multp(F )− 1)

 · y.
If X and Y are compact, then both sums are finite, as we’ve
seen. It’s immediate that deg(RF ) = deg(BF ). The Riemann-
Hurwitz Formula translates to

χ(X) = deg(F )χ(Y )− deg(RF ).
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5.2. Structures on Divisors: the Partial Ordering, the Spaces
L(D) and L(1)(D). Having seen a lot of examples of divisors, we will
start to place more structures on them. There is an intuitive way
to place a partial ordering on Div(X), if we think about divisors as
functions. We write D ≥ 0 if D(p) ≥ 0 for all p, D > 0 if D ≥ 0 and
D 6= 0, D1 ≥ D2 if D1 − D2 ≥ 0, and similarly for >. The relations
< and ≥ are also defined similarly. Note that every divisor D can be
uniquely written in the form

D = P −N
where P and N are nonnegative divisors with disjoint support; an
important example is

div(f) = div0(f)− div∞(f)

when f is a meromorphic function.
With this language we will define a very important notion which is

used to organize meromorphic functions on a Riemann surface:

Definition 5.2.1 (The Space L(D)). The space of meromorphic func-
tions with poles bounded by D, denoted by L(D), is the set of mero-
morphic functions

L(D) = {f ∈M(X) : div(f) ≥ −D}.
To deal with the zero function, we assume that ordp(f) = ∞ if f is
constantly zero on a neighborhood of p.

We note that L(D) is a complex vector space. The terminology of
L(D) is used because if D(p) = n > 0 then f cannot have a pole at p
with order more than n, and if D(p) = −n < 0 then D(p) must have a
zero at p with order more than n.

It is obvious that if D1 ≤ D2, then D2 poses a stricter condition on
the poles and zeros of f , thus

L(D1) ⊆ L(D2) if D1 ≤ D2.

A meromorphic function is holomorphic if it has no poles, i.e. div(f) ≥
0, thus

L(0) = O(X).

In particular, if X is compact, then

L(0) = {constant functions on X} ∼= C,
by Corollary 2.3.4.

We also have the following quick result:

Lemma 5.2.2. Let X be a compact Riemann surface. If D is a divisor
on X with deg(D) < 0, then L(D) = 0.
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Proof. Assume for contradiction that f ∈ L(D) and f is not identically
zero, then the divisor E = div(f)+D ≥ 0 but deg(E) = deg(div(f))+
deg(D) = deg(D) < 0, which is a contradiction. �

We also have a very similar construction for meromorphic 1-forms:

Definition 5.2.3 (The Space L(1)(D)). The space of meromorphic 1-
forms with poles bounded by D, denoted by L(1)(D), is the set of mero-
morphic 1-forms

L(1)(D) = {ω ∈M(1)(X) : div(ω) ≥ −D}.

We note that when D = 0, the space L(1)(0) contains all meromor-
phic 1-forms with nonnegative orders everywhere, which is exactly the
space of holomorphic 1-forms, Ω1(X).

Since the div function inherits the property div(fω) = div(f) +
div(ω) from the order function on meromorphic functions and 1-forms,
we have an isomorphism:

Proposition 5.2.4. Fix a canonical divisor K = div(ω) and another
divisor D. Then the multiplication map

µω : L(D +K)→ L(1)(D)

defined by f 7→ fω is an isomorphism of vector spaces. In particular,
dimL(1)(D) = dimL(D +K).

Proof. First we need to verify that whenever f ∈ L(D + K), fω ∈
L(1)(D), but this follows from the property above. The map is clearly
linear and injective. Surjectivity follows from Corollary 5.1.5: given
ω′ ∈ L(1)(D), the difference

div(ω′)− div(ω) = div(ω′)−K

is a principal divisor, say div(f). Therefore,

div(f) +D +K = div(ω′)−K +D +K = div(ω′) +D ≥ 0,

so f ∈ L(D +K). �

We are very interested in the dimension of L(D), since it measures
the size of the space of meromorphic functions on X with certain prop-
erties (bounded poles and zeros). The rest of this subsection would be
devoted to proving that any L(D) is finite-dimensional.

Lemma 5.2.5. Let X be a Riemann surface and D a divisor on X.
For any point p of X, whether L(D − p) = L(D) or dimL(D − p) =
dimL(D)− 1.
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Proof. Choose a local coordinate z centered at p and let n = −D(p).
Every function f in L(D) has order at least n at p, so its Laurent series
at p has the form czn+(higher order terms), where c is allowed to be
zero. Define a map

α : L(D)→ C
f 7→ c,

then α is a linear map with kernel L(D − p). α is either identically 0
or surjective; in the former case L(D − p) = L(D), and in the latter
case dimL(D − p) = dimL(D)− 1. �

Proposition 5.2.6. Let X be a compact Riemann surface and let D
be a divisor on X, then the space L(D) is finite-dimensional.

Proof. WriteD = P−N uniquely as a different between nonnegative di-
visors with disjoint support; we will show that dimL(D) ≤ 1+deg(P ).
We will induct on the degree of the positive part P of D. For the base
case where deg(P ) = 0, we have P = 0 and dimL(P ) = 1. Since D ≤
P , we have L(D) ⊆ L(P ) so dimL(D) ≤ dimL(P ) = 1 = 1 + deg(P ),
as required.

Now suppose the positive part P of D has degree k ≥ 1. Choose a
point p in the support of P , so P (p) ≥ 1. Consider the divisor D − p;
its positive part is P − p, which has degree k − 1. By the induction
hypothesis,

dim(D − p) ≤ deg(P − p) + 1 = deg(P ),

and by the previous lemma, we have

dimL(D) ≤ 1 + dimL(D − p) ≤ deg(P ) + 1,

as required. �
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5.3. More Structures on Divisors: Linear Equivalence and
Complete Linear Systems. In this subsection we present the def-
inition of linear equivalence of divisors and complete linear systems.
While L(D) is a space of certain meromorphic functions on X, the
complete linear system is a space of certain divisors on X; as we will
see, the size of the two are tightly related.

Definition 5.3.1 (Linear Equivalence). Let X be a Riemann surface.
Two divisors D1 and D2 on X are said to be linearly equivalent, denoted
D1 ∼ D2, if their difference is a principal divisor, i.e. their difference
is the divisor of a meromorphic function.

It is easy to check that linear equivalence is an equivalence relation
on the set Div(X), and that if D1 ∼ D2 then deg(D1) = deg(D2).

Examples 5.3.2.

(1) Let f be a nonzero meromorphic function on a Riemann surface
X, then div0(f) ∼ div∞(f), since their difference is simply
div(f).

(2) Any two canonical divisors on X are linearly equivalent, since
their difference is the divisor of the ratio of two meromorphic
1-forms, which is a meromorphic function.

(3) Any two points on the Riemann Sphere C∞, considered as di-
visors on C∞, are linearly equivalent. More generally, we have
the following proposition for C∞:

Proposition 5.3.3. Let D1 and D2 be two divisors on the Rie-
mann Sphere. Then D1 ∼ D2 iff deg(D1) = deg(D2).

Proof. Let D = D1 − D2, then it suffices to prove that D is a
principal divisor iff deg(D) = 0. We have seen that the con-
dition is necessary. For see that it’s sufficient, suppose that
deg(D) = 0, so

D =
∑
i

ei · λi + e∞ · ∞

where the λi are points on C and e∞ = −
∑

i ei. Then D =
div(f), where

f(z) =
∏
i

(z − λi)ei

is a meromorphic function on C∞. �

Now we present the definition of complete linear systems of divisors:
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Definition 5.3.4 (Complete Linear Systems of Divisors). Let X be a
Riemann surface and D a divisor on X. The complete linear system of
D, denoted |D|, is the set of all nonnegative divisors E ≥ 0 which are
linearly equivalent to D:

|D| = {E ∈ Div(X) : E ∼ D and E ≥ 0}.
As we’ve noted in the beginning of the subsection, the size of |D| is

closely related to that of L(D). In fact, consider the following map:

Proposition 5.3.5. Define a map

S : P(L(D))→ |D|
from the projectivization5.2 of L(D) to the complete linear system of D
by sending the span of a meromorphic function f ∈ L(D) to the divisor
div(f) + D. Then S is well defined and a bijection between P(L(D))
and |D| when X is a compact Riemann surface.

Proof. It’s easy to see that S is well defined, since div(λf) = div(f)
for any nonzero constant λ. Now, we prove that S is a bijection.

Suppose that S(f) = S(g) for functions f, g ∈ L(D). Thus div(f) +
D = div(g) + D and div(f) = div(g). Therefore div(f/g) = 0, and
since X is compact, f/g is a nonzero constant function. This shows
that f and g have the same span in L(D), i.e. S is injective. On the
other hand, given a divisor E ∈ |D|. Since E ∼ D, there exists a
meromorphic function f such that E = div(f) + D; moreover, E ≥ 0,
so div(f) ≥ −D and f ∈ L(D). Thus S(f) = E, so S is surjective. �

Therefore, we define dim|D| of a divisor D on a compact Riemann
surface to be dimL(D)− 1.

Sometimes it’s useful to be able to select divisors from a linear system
with support away from the prescribed points, so we will need one more
piece of definition.

Definition 5.3.6 (Base Points of Linear Systems). Let |D| be a com-
plete linear system on a Riemann surface X. A point p is a base point
of |D| if every divisor E ∈ Q contains p. A complete linear system |D|
is said to be base-point-free if it has no base points.

Recall that Lemma 5.2.5 says dimL(D − p) is either dimL(D) or
dimL(D)− 1. This is exactly related to whether p is a base point of D
or not; intuitively, if p is in every divisor of |D|, removing p wouldn’t
change the size of L(D) and vice versa.

5.2The projectivization of a complex vector space V , denoted P(V ), is set of all
1-dimensional subspaces of V . In particular, if dimV = n+1, then P(V ) is bijective
to Pn.
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Proposition 5.3.7. A point p is a base point of the complete linear
system |D| iff L(D − p) = L(D). Therefore, |D| is base-point-free iff
dimL(D − p) = dimL(D)− 1 for all p ∈ X.

Proof. p is a base point of |D| iff D′(p) ≥ 1 for all divisors D′ ∈ |D|.
Since D′ = div(f) +D for some meromorphic function f ∈ L(D), this
is equivalent to

D′(p) = ordp(f) +D(p) ≥ 1

⇔ ordp(f) ≥ −D(p) + 1

⇔ div(f) ∈ L(D − p).
Since D− p ≤ D as divisors, L(D− p) ⊆ L(D), so p is a base point iff
the other inclusion holds and L(D − p) = L(D). �

Given a complete linear system |D|, we can also decompose it to the
sum of a fixed divisor and a part that has no base points. In specific,
let F = min{E : E ∈ |D|} and write |D| = F + |D − F |. F is a
nonnegative divisor and is called the fixed part of |D|, while |D − F |
has no fixed points and is called the moving part of D.
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6. Algebraic Curves and the Riemann-Roch Theorem

6.1. Algebraic Curves. As we’ve mentioned, the fact that compact
Riemann surfaces have nonconstant meromorphic functions is highly
nontrivial. The proof, by producing meromorphic functions for an un-
known compact Riemann surface, is mostly technical and involves a lot
of functional analysis. And the end of the section, the Riemann-Roch
Theorem will help us compute the dimension of the vector space L(D),
and thus quantitatively show that there exist a wealth of nontrivial
meromorphic functions on a compact Riemann surface.

Once we assume that every compact Riemann surface has noncon-
stant meromorphic functions, our theory will be mostly algebraic. Thus
in the following definition we will assume our Riemann surface is equipped
with reasonably handy meromorphic functions:

Definition 6.1.1 (Algebraic Curves). Let S be a set of meromorphic
functions on a compact Riemann surface X. We say that S separates
points of X if for every pair of distinct points p and q in X there is
a meromorphic function f ∈ S such that f(p) 6= f(q). We say that S
separates tangents of X if for every point p ∈ X there is a meromor-
phic function f ∈ S whose associated function to C∞ has multiplicity
one at p. A compact Riemann surface X is an algebraic curve if the
field M(X) of global meromorphic functions separates the points and
tangents of X.

In fact, the basic result that we will not prove is the following, which
shows that all compact Riemann surfaces are supplied with point-
separating and tangent-separating meromorphic functions. We will,
however, continue to distinguish the two notions and make it explicit
when results only apply to algebraic curves.

Theorem 6.1.2. Every compact Riemann surface is an algebraic curve.

Remark 6.1.3. There is actually an equivalence between the category
of compact Riemann surfaces (morphisms are nonconstant holomor-
phic maps) and the category of smooth irreducible projective alge-
braic curves over C (morphisms are non-constant regular maps). Thus
having studied Riemann surfaces and their morphisms (non-constant
holomorphic maps), we know quite a lot about algebraic curves as well,
actually.

Having access to some reasonably useful meromorphic functions, we
are able to show the existence of a lot more meromorphic functions
with desirable functions. Our ultimate goal would be the Laurent Se-
ries Approximation Lemma, which roughly says that we can construct
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meromorphic functions on X that has prescribed local behavior at a
finite number of points.

A Laurent polynomial r(z) =
∑m

i=n ciz
i is called a Laurent tail of

a Laurent series h(z) if the Laurent series starts with r(z), i.e. if all
terms of h−r are of degree higher than m. A Laurent tail thus roughly
captures the essence of the behavior of a Laurent series (e,g. the order
of poles and zeroes) at 0, since all higher-degree terms become irrelevant
near 0.

The remainder of the section would be dedicated to proving the Lau-
rent Series Approximation Lemma. We will do this in a series of lemmas
that build off each other. Mostly it will be a rush through technicalities,
and we only highlight the key construction in each lemma.

Lemma 6.1.4. Let X be an algebraic curve, and let p ∈ X. Then
for any integer N there is a global meromorphic function f on X with
ordp(f) = N .

Proof. First we find a meromorphic function g whose associated holo-
morphic map to C∞ has multiplicity 1 at p, then g is either holomorphic
at p or g has a simple pole at p. In the former case, g − g(p) has or-
der 1 at p, and in the latter case, 1/g does. In either case we have a
meromorphic function h with ordp(h) = 1. Then

f = gN

has order N at p. �

Lemma 6.1.5. Let X be an algebraic curve. Fix a point p on X and a
local coordinate z centered at p. Fix any Laurent polynomial r(z) in z,
then there exists a global meromorphic function f on X whose Laurent
series at p has r(z) as a Laurent tail.

Proof. We will induct on the number of terms of r(z). The case where
r(z) is a monomial czm is handled by the previous lemma. Now sup-
pose that r(z) =

∑m
i=n ciz

i has at least two terms. We can find a global
meromorphic function h with cnz

n as a Laurent tail, and by the induc-
tion hypothesis we can also find a global meromorphic function g with
the tail of h − r at p (since this tail has less terms than r(z). The
function

f = h− g
then has r as a Laurent tail. �

Now we begin to approximate simultaneously at multiple points.

Lemma 6.1.6. Let X be an algebraic curve. Then for any two points
p and q in X, there is a global meromorphic function f on X with a
zero at p and a pole at q.
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Proof. Since M(X) separates points of X, there is a global meromor-
phic function g on X such that g(p) 6= g(q). By replacing g by 1/g if
necessarily, we can make that p is not a pole of g. By replacing g by
g − g(p), we can make p a zero of g. If q is a pole of g, we are done;
otherwise,

f = g/(g(q)− g)

has a pole at q and maintains a zero at p. �

Lemma 6.1.7. Let X be an algebraic curve. Then for any finite num-
ber of points p, q1, · · · , qn in X, there is a global meromorphic function
f on X with a zero at p and a pole at each qi.

Proof. We will induct on the number n. The n = 1 case is the previous
lemma. Suppose that n ≥ 2, and the induction hypothesis gives us a
global meromorphic function g on X with a zero at p and a pole at
q1, · · · , qn−1. Let h be a global meromorphic function on X with a zero
at p and a pole at qn, then we claim that

f = g + hm

for large m has the required zeroes and poles.
Certainly f has a zero at p. For any i = 1, 2, · · · , n− 1, g has a pole

at qi. If h is holomorphic at qi, then f has a pole at qi for every m; if h
has a pole at qi, for large m the pole of hm at qi would be greater than
the order than the pole of g, so the sum f = g + hm has a pole at qi.
Finally, since h has a pole at qn, f has a pole at qn for large m for the
same reasons. �

Lemma 6.1.8. Let X be an algebraic curve. Then for any finite num-
ber of points p, q1, · · · , qn in X, and any N ≥ 1, there is a global
meromorphic function f on X with ordp(f − 1) ≥ N and ordqi ≥ N
for each i.

Proof. Let g be a global meromorphic function with a zero at p and a
pole at each qi, then

f = 1/(1 + gN)

has the required properties. �

Lemma 6.1.9 (Laurent Series Approximation). Suppose that X is an
algebraic curve. Fix a finite number of points p1, · · · , pn in X, choose
a local coordinate zi at each pi, and finally choose Laurent polynomials
ri(zi) for each i. Then there exists a global meromorphic function f on
X such that f has ri as a Laurent tail at pi for every i.
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Proof of the Laurent Series Approximation Lemma. By Lemma 6.1.5,
there are global meromorphic functions gi on X such that gi has ri as a
Laurent tail at pi. Now we wish to piece the gi’s together in a suitable
way. We do this by taking a combination of their product with suitable
functions hi, where each hi is very close to 1 near pi but very close to
0 near other pj’s.

Fix an integer N larger than the degree of every ri. For a global
meromorphic function f on X to have ri as a Laurent tail at pi is
equivalent to saying ordpi(f − ri) ≥ N . Let M be the minimum of the
orders ordpi(ri), which is the same as the minimum of ordpi(gi). By by
previous lemma, there are global meromorphic functions hi on X such
that for each i, ordpi(hi − 1) ≥ N −M and ordpj(hi) ≥ N ≥M for all
j 6= i.

Now consider the function

f =
∑
i

higi.

At each pi, the term higi has ri as its Laurent tail, and all other hjgj
where j 6= i is zero up through order N − 1. Thus f has ri as its
Laurent tail at each pi. �

Corollary 6.1.10. Let X be an algebraic curve. Fix a finite number of
points p1, · · · , pn in X, and a finite number of integers mi. Then there
exists a global meromorphic function f on X such that ordpi(fi) = mi

for every i.
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6.2. Laurent Tail Divisors and Finite-Dimensionality of H1(D).
The Laurent Series Approximation Lemma implies at the need for an
object capturing the Laurent series tails defined on a finite set of points
of a compact Riemann surface X. Divisors are exactly made for this,
only that we now associate Laurent polynomials instead of integers to
points:

Definition 6.2.1 (Laurent Tail Divisors). Let X be a compact Rie-
mann surface. For each point p in X, fix a local coordinate zp centered
at p, so we can associate a Laurent series in the coordinate zp to any
meromorphic function defined near p. Now, a Laurent tail divisor on
X is a finite formal sum ∑

p

rp(zp) · p,

where rp(zp) is a Laurent polynomial in the coordinate zp. The set of
Laurent tail divisors on X forms a group under formal addition, and
will be denoted by T (X).

Furthermore, given an ordinary divisor D on X, we have the sub-
group

T [D](X) =

{∑
p

rp · p : for all p with rp 6= 0, the top term of rp

has degree strictly less than −D(p)

}
.

Note that Laurent tail divisors are not divisors that we have defined,
since their target spaces as functions is the space of Laurent polynomi-
als instead of Z.

There is natural truncation map from T (X)→ T [D](X) that takes
each nonzero Laurent polynomial rp and removes all terms of degree
−D(p) and higher. Likewise, if D1 ≤ D2 are divisors, then there is a
truncation map

tD1
D2

: T [D1](X)→ T [D2](X)

defined by removing from each rp all terms of degree −D2(p) and
higher.

Given a meromorphic function f and a divisor D, we also have the
multiplication map

µDf : T [D](X)→ T [D − div(f)](X)

defined by sending each rp to the suitable truncation of frp. Note that

µDf is an isomorphism with inverse µ
D−div(f)
1/f .
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Finally, given a divisor D, we have a map

αD :M(X)→ T [D](X)

defined by sending the meromorphic function f to the Laurent tail
divisor

∑
p rp ·p, where each rp is the suitable truncation of the Laurent

series of f at p using coordinates zp. This map apparently behaves
well with truncation maps and multiplication maps. If D1 ≤ D2 are
divisors, then αD2 is the composition tD2

D1
◦ αD1 :

M(X) T [D1](X) T [D2](X).
αD1

αD2

t
D1
D2

And if f an g are meromorphic functions on X and D is any divisor,
then

µf (αD(g)) = αD−div(f)(fg).

In language of Laurent tail divisors and this map αD, we have some
restatement of existing results. If D(p) = 0 for point p (which happens
at all but finitely many points), then (αD(f))(p) = 0 iff the Laurent
series of f at p contains only terms of nonnegative degrees, which is
equivalent to that f is holomorphic at p. Also, the space L(D) is the
space of meromorphic functions on X with order at least −D(p) at
each p, thus

L(D) = ker(αD).
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6.3. The Mittag-Leffler Problem and H1(D). If we take a Laurent
tail divisor Z ∈ T [D](X), we want to ask whether it is in the image
of αD. This is equivalent to asking if there is a global meromorphic
function with precisely these tails; since Laurent series tails largely
captures the local behavior of functions, we are asking if the given
local conditions induces a global meromorphic function. Note that
this is much harder than what we have accomplished in the Laurent
Series Approximation Lemma: where D(p) = 0 (this happens at all
but finitely many points), the absence of a Laurent tail rp in Z implies
that f is holomorphic at p. The problem of constructing functions with
specified Laurent tails at a finite number of points, and no other poles,
is called the Mittag-Leffler Problem for the Riemann surface X.

Algebraically, the Mittag-Leffler Problem of constructing images to
αD is measured by the cokernel6.1.

Definition 6.3.1 (H1(D)). Given a divisor D on a compact Riemann
surface X, we have the map αD :M(X)→ T [D](X) and define

H1(D) = coker(αD) = T [D](X)/ image(αD).

What we mean by H1(D) “measures” the Mittag-Leffler Problem is
this: by definition, a Laurent tail divisor Z ∈ T [D](X) is in the image
of αD iff its coset in H1(D) is zero.

It’s crucial to compute the dimension of H1(D), since H1(D) = 0
implies that all Laurent tail divisors in T [D](X) have preimages. Exact
sequences6.2 facilitate the investigation of the dimension of H1(D). We
have the following exact sequence

0→ L(D)
ι−→M(X)

αD−−→ T [D](X)
π−→ H1(D)→ 0,

where ι is the inclusion of L(D) in M(X) and π is the projection
homomorphism to quotient groups. This may be written as the short
exact sequence6.3

0→M(X)/L(D)
αD−−→ T [D](X)

π−→ H1(D)→ 0,

6.1Cokernels are duals to kernels in category theory. In terms of groups, the
cokernel coker(φ) for a group homomorphism φ : G→ H is H/ image(φ).

6.2A sequence of linear transformations

U
φ−→ V

ψ−→W

between C-vector spaces is said to be exact at V if ker(ψ) = image(φ). A longer
sequence of maps is exact if it is exact at each interior space.

6.3An exact sequence is short if it has five spaces and four maps, with the first
and last spaces being 0.
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where here αD : M(X)/L(D) → T [D](X) is simply the familiar αD :
M(X)→ T [D](X) applied to any element of a coset; it is well defined
since ker(αD) = L(D).

Suppose now D1 ≤ D2, then we have two short exact sequences
associated to each, a truncation map t = tD1

D2
: T [D1](X)→ T [D2](X),

and L(D1) ⊆ L(D2). Since truncation commutes with the αD maps,
we obtain induced maps between the short exact sequences

0 M(X)/L(D1) T [D1](X) H1(D1) 0

0 M(X)/L(D2) T [D2](X) H1(D2) 0

αD1

φ

π1

t ψ

αD2 π2

where the two squares in the diagram commute. The vertical maps are
all onto, so by the Snake Lemma6.4 we get a short exact sequence for
the kernels of these vertical maps (since cokernels of them are all 0):

0→ ker(φ)→ ker(t)→ ker(ψ)→ 0.

Firstly, ker(φ) is simply L(D2)/L(D1); therefore,

dim ker(φ) = dimL(D2)− dimL(D1).

Recall that L(D) is always finitely-dimensional due to Proposition
5.2.6.

Secondly, ker(t) is the space of those Laurent tail divisors
∑

p rp · p
such that the top term of rp has degree less than −D1(p) (for it to be in
T [D1](X)) and the bottom term has degree at least −D2(p) (for it to
be in the kernel of t). Thus we have D2(p)−D1(p) possible monomials
in zp which are allowed to appear for p; the conditions at each p are
independent, so in total we have∑

p

(D2(p)−D1(p)) = deg(D2)− deg(D1)

degrees of freedom, which is the dimension of ker(t):

dim ker(t) = deg(D2)− deg(D1).

Finally, let us denote ker(ψ) by H1(D1/D2). We have a short exact
sequence of kernels

0→ L(D2)/L(D1)→ ker(t)→ H1(D1/D2)→ 0,

so H1(D1/D2) is finite-dimensional. Indeed, we can easily calculate its
dimension.

6.4The Snake Lemma says, given a commutative diagram like the one we have,
there is an exact sequence relating the kernels and cokernels of the vertical maps.
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Lemma 6.3.2. Suppose that D1 and D2 are ordinary divisors on a
compact Riemann surface X with D1 ≤ D2, then

dimH1(D1/D2) = [deg(D2)− dimL(D2)]− [deg(D1)− dimL(D1)].

We shall skip the proof of the following result; however, the proof is
where the Laurent Tail Approximation Lemma comes in, so we note
that the following results apply only to algebraic curves, at least for
the moment:

Proposition 6.3.3. For any divisor D on an algebraic curve X, H1(D)
is a finite-dimensional C-vector space.

This allows us to write

dimH1(D1/D2) = dimH1(D1)− dimH1(D2).

Plugging back into Lemma 6.3.2 we see that

dimL(D1)−deg(D1)−dimH1(D1) = dimL(D2)−deg(D2)−dimH1(D2)

when D1 ≤ D2. When D1 and D2 are not necessarily ordered, we can
find a common maximum D and apply D1 ≤ D and D2 ≤ D; thus, we
have shown that the quantity

dimL(D)− deg(D)− dimH1(D)

is constant over all divisors D.
Intuitively, this says that the larger deg(D) is, the larger the space

L(D) can be. This makes sense since −D imposes conditions on zeroes
and poles of the meromorphic functions in L(D), and a larger deg(D)
means a loosening of the constraints. Also, the larger H1(D) is, the
larger the space L(D) can be. This also makes sense since a larger
dimH1(D) = dim coker(αD) roughly says that more functions can have
coinciding images under αD, thus allowing for more functions in L(D).

In particular, we can calculate this quantity by plugging in the zero
divisor. Since dimL(0) = 1 (recall that L(0) ∼= C) and deg(0) = 0, we
have the following formula.

The Riemann-Roch Theorem: Form I. Let D be a divisor on an
algebraic curve D. Then

dimL(D)− dimH1(D) = deg(D) + 1− dimH1(0).

However, this is not very useful yet since it merely shifts the burden of
calculating dimL(D) to calculating dimH1(D) and dimH1(0), which
are also directly related to the existence of meromorphic functions.
However, since both are H1 spaces, we will get a much more powerful
result once we identity H1 spaces with something we’ve been familiar
with.
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6.4. The Residue Map and Serre Duality. We have been inter-
ested in the Mittag-Leffler Problem, asking whether a Laurent tail di-
visor Z can be the truncation of some meromorphic function f on a
compact Riemann surface X. We have seen that H1(D), the cokernel
of map αD, measures this problem: Z is such a truncation iff its coset in
H1(D) is 0. However, the Residue Theorem gives us another measure.
Suppose that we’re given a Laurent tail divisor Z ∈ T [0](X), and there
is a meromorphic function f on X such that α0(f) = Z =

∑
rp · p.

Given any holomorphic 1-form ω on X, fω can only have poles at the
poles of f , and locally the negative terms of the Laurent series for fω
is only determined by the negative terms of f , which are exactly rp.
Thus,

α0(fω) =
∑
p

rpω · p.

Now since the Residue Theorem states that∑
p

Resp(fω) = 0,

we must have ∑
p

Resp(rpω) = 0,

which poses a necessarily condition on Z for it to be in image(α0).
The Serre Duality Theorem states that these conditions, suitably

generalized for any divisor D, are necessarily and sufficient for the ex-
istence of the function f ; moreover, note that we may give different ω’s,
and Serre Duality Theorem states that linearly independent ω’s give
independent conditions. Therefore, the space H1(D) can be identified
with a space of 1-forms. However, we will see that it’s not the space
of all meromorphic 1-forms, but those that are sufficiently bounded by
the divisor D; in specific, the space

L(1)(−D) = {ω ∈M(1)(X) : div(ω) ≥ D}.

To generalize the idea to cases where D 6= 0, we start with an ar-
bitrary divisor D on X and a meromorphic 1-form ω in the space
L(1)(−D). By definition div(ω) ≥ D, i.e. ordp(ω) ≥ D(p) for all p.
Therefore we are justified to write

ω =

 ∞∑
n=D(p)

cnz
n
p

 dzp

in local coordinates zp near p for every p.
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Next suppose that f is a meromorphic function on X. Write f =∑
k akz

k
p near p, then the residue of fω at p is

Resp(fω) = coefficient of z−1p dzp in

∑
k

akz
k
p ·

∞∑
n=D(p)

cnz
n
p

 dzp

=
∞∑

n=D(p)

cna−1−n.

Note that the residue only depends on the coefficients ai for f where
i < −D(p), which is completely encoded by the Laurent tail divisor
αD(f). This Laurent tail divisor lies in T [D](X), so the computation
of the residue is actually a map

Resω : T [D](X)→ C for ω ∈ L(1)(−D),

defined by

Resω

(∑
p

rp · p

)
=
∑
p

Resp(rpω).

We call this map a residue map index by ω.
We have just seen that∑

p

Resp(fω) = Resω(αD(f)) when ω ∈ L(1)(−D),

which is always 0 by the Residue Theorem. In other words, Resω van-
ishes on all Laurent tail divisors Z ∈ T [D](X) that are truncations of
meromorphic functions, i.e., on image(αD). Resω is linear and vanishes
on image(αD), so its image of Z is determined on the coset of Z in
T [D](X)/ image(αD), which is exactly H1(D). Thus, Resω descends
to a linear map

Resω : H1(D)→ C,
which is an element of the dual space6.5 H1(D)∗. Since ω ∈ L(1)(−D)
was fixed until now and Resω : H1(D)→ C is a linear map determined

6.5The dual space of a linear space V , denoted by V ∗, is the space of all linear
functions on V (i.e. functions from V to its base field). V ∗ is a linear space by
pointwise addition and scalar multiplication.

A key result is that when V is finite-dimensional with dimV = n and a basis
B = {v1, · · · , vn}, then the set B∗ = {v∗1 , · · · , v∗n} is a basis of V ∗, where v∗i is a
linear function on V defined by its image on B:

v∗i (vj) = δi,j =

{
1 if i = j

0 if i 6= j.

Thus dimV ∗ = dimV when V is finite-dimensional.
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by ω, we have obtained a linear map, also called the residue map,

Res : L(1)(−D)→ H1(D)∗,

sending ω ∈ L(1)(−D) to the linear function Resω on H1(D).

Remark 6.4.1. The residue map Res is actually the generalization of
the discussion we had in the case when D = 0. Given a Laurent tail
divisor Z ∈ T [D](X), and a meromorphic 1-form ω ∈ L(1)(−D), the
necessary condition ∑

p

Resp(Z(p)ω) = 0

for Z to be in image(αD) is exactly the statement that Resω(Z) = 0, or
that the coset Z + image(αD) in H1(D) is in the kernel of Resω, which
goes from H1(D) → C. The statement that the above conditions are
necessarily and sufficient translates to:

Resω(Z + image(αD)) = 0

for all ω ∈ L(1)(−D) iff Z ∈ image(αD), i.e. iff the coset Z+image(αD)
is 0 in H1(D).

The Serre Duality Theorem states that Res is an isomorphism.

Theorem 6.4.2 (Serre Duality). For any divisor D on an algebraic
curve, the map

Res : L(1)(−D)→ H1(D)∗

is an isomorphism between C-vector spaces. In particular, for any
canonical divisor K on X,

dimH1(D) = dimL(1)(−D) = dimL(K −D)6.6.

6.6The last equality comes from Proposition 5.2.4.
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6.5. The Equality of Three Genera and The Riemann-Roch
Theorem. A first application of the Serre Duality Theorem is to com-
pute the term H1(0) in the first form of the Riemann-Roch Theorem.
We fix a canonical divisor K on an algebraic curve X of genus g, then

deg(K) = 2g − 2

by Proposition 5.1.6. Next, applying Serre Duality to K, we see that

dimH1(K) = dimL(K −K) = dimL(0) = 1.

Lastly, we have
dimH1(0) = dimL(K).

Applying the first form of the Riemann-Roch Theorem, we have

dimL(K)− dimH1(K) = deg(K) + 1− dimH1(0),

and using the previous relations we deduce that

dimH1(0) = dimL(1)(0) = dimL(K) = g.

The term dimH1(0) is sometimes referred to as the arithmetic genus
of X. The space L(1)(0) is exactly the space Ω1(X) of global holo-
morphic 1-forms on X. The dimension of this space is essentially an
analytic invariant, so the term dimL(1)(0) = dim Ω1(X) is sometimes
called the analytic genus of X.

Thus we see that a beautiful and profound result of algebraic curves:

Proposition 6.5.1. Let X be an algebraic curve. All three genera on
X, namely

• the topological genus g,
• the arithmetic genus dimH1(0), and
• the analytic genus dim Ω1(X) = dimL(1)(0)

are all equal.

The higher-dimensional generalization of this result is called the
Hirzebruch-Riemann-Roch Theorem.

Having identified the dimension of the space H1(D) and H1(0), we
can replace these terms in the Riemann-Roch Theorem to obtain a
much more powerful form:

The Riemann-Roch Theorem: Form II. Let X be an algebraic
curve of genus g. Then for any divisor D and any canonical divisor
K, we have

dimL(D)− dimL(K −D) = deg(D) + 1− g.
Equivalently, in the language of complete linear systems,

dim|D| − dim|K −D| = deg(D) + 1− g.
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6.6. Quick Applications of Riemann-Roch. In conclusion, we will
present some applications of this powerful theorem. The easier appli-
cations comes from the cases where H1(D) = L(K − D) = 0. Notice
that, by Lemma 5.2.2, this happens every time the divisor K −D has
negative degree, and we can get rid of the term L(K − D) to obtain
exact formula for dimL(D). The straightforward case is the following:

Proposition 6.6.1. Let D be a divisor on an algebraic curve X of
genus g with deg(D) ≥ 2g − 1, then H1(D) = 0 and

dimL(D) = deg(D) + 1− g.
We also notice that Riemann-Roch answers the Mittag-Leffler Prob-

lem: if Riemann-Roch holds on compact Riemann surfaces, dimL(D) ≥
deg(D) + 1 − g > 0 whenever deg(D) ≥ g, therefore guaranteeing a
lot of nonconstant meromorphic functions on X. In fact, we are guar-
anteed the pool of desirable meromorphic functions of the algebraic
curves in the following sense:

Proposition 6.6.2. If X is a compact Riemann surface which satisfies
the Riemann-Roch Theorem for every divisor D, then X is an algebraic
curve.

Proof. First we show that M(X) separates the points of X. Fix two
points p and q on X, and consider the divisor D = (g + 1) · p. By
the Riemann-Roch Theorem, we have that dimL(D) ≥ deg(D) + 1 −
g = 2, so there is a nonconstant meromorphic function f ∈ L(D).
This function f must have a pole (all holomorphic functions on X are
constants), and poles are only allowed at p. Thus f has a pole at p and
nowhere else, in particular q, so f separates p and q.

Now we show that M(X) separates the tangents of X. Fix a point
p on X, and consider the divisors Dn = n · p. By Proposition 6.6.1,
dimL(Dn) = n+1−g for large n. Thus there are functions in L(Dn+1)
which are not in L(Dn) for large n, but this means that there are
functions fn with a pole of order exactly n at p and no other poles.
The function fn/fn+1 then has a simple zero at p. �

We are also able to start some classification of algebraic curves; by
doing so we are classifying complex structures on 2-manifolds. For ex-
ample, we will show that there is essentially only one complex structure
on S2, by showing that all algebraic curves of genus zero is isomorphic
to the Riemann Sphere.

Lemma 6.6.3. Let X be a compact Riemann surface. Suppose that
dimL(p) > 1 for some point p ∈ X, then X is isomorphic to the
Riemann Sphere.
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Proof. Since dimL(p) > 1, there is a nonconstant meromorphic func-
tion f in L(p). This function must have a simple pole at p and no other
poles. Therefore, the associated holomorphic map F : X → C∞ has
degree one by considering

∑
p∈F−1(∞) multp(F ). By Corollary 3.4.3, F

is an isomorphism. �

Proposition 6.6.4. Let X be an algebraic curve of genus zero, then
X is isomorphic to C∞.

Proof. Fix any point p ∈ X. Since any canonical divisor K on X has
degree 2g − 2 = −2, the divisor K − p has degree −3, thus again by
Lemma 5.2.2 we have L(K − p) = 0. Applying Riemann-Roch to the
divisor p, we have

dimL(p) = deg(p) + 1− g + dimL(K − p) = 2.

By the previous lemma X is isomorphic to the Riemann Sphere. �

In fact, every genus-one algebraic curve is isomorphic to a complex
torus, and every genus-two algebraic curve is hyperelliptic (which we
have not defined, so we only mention it here).

Lemma 6.6.3 has another consequence.

Lemma 6.6.5. The canonical linear system6.7 |K| on an algebraic
curve X of genus g ≥ 1, consisted of all nonnegative canonical divisors
on X, is base-point-free.

Proof. Fix a point p ∈ X. By Proposition 5.3.7, we need to show that
dimL(K − p) = dimL(K) − 1 = g − 1. Since g ≥ 1, L(p) consists
of only the constant meromorphic functions by the contrapositive of
Lemma 6.6.3. Thus dimL(p) = 1, and applying Riemann-Roch to the
divisor p we have that

1 = dimL(p) = dimL(K − p) + deg(p) + 1− g
which gives dimL(K − p) = g − 1. �

6.7The complete linear system for any canonical divisor K, since all canonical
divisors are linearly equivalent.
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6.7. More Applications of Riemann-Roch: Clifford’s Theorem
and the Existence of Meromorphic 1-Forms. So far, all of our
applications of Riemann-Roch see H1(D) = 0 and gives a formula of
dimL(D). A divisor D is called a special divisor when both dimL(D)
and dimH1(D) are nonzero. Riemann-Roch tells us that the difference
of the two numbers is deg(D) + 1 − g and in this case we can get an
inequality on dimL(D).

Lemma 6.7.1. Let D1 and D2 be two divisors on a compact Riemann
surface X, then

dimL(D1)+dimL(D2) ≤ dimL(min{D1, D2})+dimL(max{D1, D2}).

Proof. By the definition of the space L(D) it’s easy to see that

L(D1) ∩ L(D2) = L(min{D1, D2})

and that

L(D1) + L(D2) ⊆ L(max{D1, D2}).
Recall that

dimW1 + dimW2 = dim(W1 +W2) + dim(W1 ∩W2)

for subspaces W1 and W2 of a vector space, and hence the result. �

We immediately apply this Lemma to D and K −D.

Lemma 6.7.2. Let D be a special divisor on an algebraic curve X of
genus g, then

dimL(D) + dimL(K −D) ≤ g + 1.

Proof. Since dimL(D) ≥ 1, from Proposition 5.3.5 the complete linear
system |D| is nonempty, so we may choose a positive divisor D1 ∼ D.
Similarly we may choose a positive divisor D2 ∼ K − D. We have
min{D1, D2} ≥ 0 and max{D1, D2} ≤ D1 + D2. If D1 and D2 have
disjoint support, both inequalities would be equalities and the result
would follow.

However, it is not always the case that we may select D1 and D2 with
disjoint support. Thus we select D2 arbitrarily from |K−D| as above.
We write |D| = F+|M |, where F is the fixed part of |D| and |M | has no
base points. Thus there is a positive divisor D3 ∈ |M | whose support
is disjoint from D2. Moreover, dimL(D3) = dimL(M) = dimL(D),
and

deg(D3+D2) ≤ deg(F+D3)+deg(D2) = deg(D)+deg(K−D) = deg(K).
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Thus, applying the previous lemma we have

dimL(D) + dimL(K −D) = dimL(D3) + dimL(D2)

≤ dimL(max{D3, D2}) + dimL(min{D3, D2})
= dimL(D3 +D2) + dimL(0)

≤ dimL(K) + dimL(0)

= g + 1.

�

Riemann-Roch gives the exact difference between L(D) and L(K −
D) while the previous lemma bounds their sum; combining the two we
obtain Clifford’s Theorem which bounds dimL(D):

Theorem 6.7.3 (Clifford’s Theorem). Let D be a special divisor on
an algebraic curve X, then

2 dimL(D) ≤ deg(D) + 2.

Equivalently,

dim|D| ≤ 1

2
deg(D).

We’ve been interested in the existence of certain meromorphic func-
tions: the Mittag-Leffler Problem asks for meromorphic functions with
prescribed Laurent tail divisors, and the space L(D) asks for mero-
morphic functions with bounded poles and zeroes. We have seen that
they’re related by the Serre Duality between H1(D), while measures
the Mittag-Leffler Problem, and L(K − D). As a final application of
Riemann-Roch, we ask the similar question for meromorphic 1-forms:
does there exist meromorphic 1-forms with prescribed zeroes and poles,
as measured by divisor D? This is measured by L(1)(D) ∼= L(D + K)
for any canonical divisor K, so it’s the familiar problem.

We can actually do better: while prescribing poles (here we only
consider simple poles) we can associate residues to each pole and having
the meromorphic 1-form achieve the residue there. Of course, the sum
of residues must be zero.

Proposition 6.7.4. Given an algebraic curve X, a finite set of points
{pi} on X, and a corresponding set of complex numbers {ri} such that∑

i ri = 0, there is a meromorphic 1-form ω on X with simple poles at
the pi’s, no other poles, and Respi(ω) = ri for each i.

Proof. Firstly, if the genus g of X is zero, X is the Riemann Sphere,
and we can write down the 1-form explicitly in this case. In specific.
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let p1, · · · , pn be the points on C in {pi}, and there may or may not be
a point pn+1 =∞. Then the meromorphic 1-form defined by

ω = f(z) dz =
n∑
i=1

ri
z − pi

dz

for coordinate z centered at zero, and correspondingly

ω = f

(
1

w

)
· − 1

w2
dw

=
n∑
i=1

riw

1− piw
· − 1

w2
dw

=
n∑
i=1

ri
1− piw

· − 1

w
dw

=

∑
i ri

(∏
j 6=i(1− pjw)

)
∏

i(1− piw)
· − 1

w
dw

for coordinate w centered at ∞. When there is no pn+1 =∞, the sum
of residues

∑n
i=1 ri = 0, which is also the constant term in numerator;

we can cancel w and there will be no pole at ∞, so ω has simple
poles at each pi ∈ C with residues ri and no other poles. When there is
pn+1 =∞,

∑n
i=1 ri = −rn+1, and ω will have a simple pole at pn+1 =∞

with residue rn+1.
When g ≥ 1, we may apply Lemma 6.6.5, so the canonical lin-

ear system is base-point-free, which means that there is a nonnegative
canonical divisor K which has none of the pi’s in its support. Let ω0

be a meromorphic 1-form whose divisor is K; ω0 is in fact holomorphic
since K ≥ 0, and ω0 does not have a zero at any pi. We will find our
desired form ω as fω0, for a suitable meromorphic function f .

Choose a local coordinate zi centered at each pi, and write ω0 =
(ci+zigi) dzi where gi(zi) is holomorphic in zi; moreover ci 6= 0 because
pi is not a zero of ω0. Consider the Laurent tail divisor Z whose value
at pi is the Laurent tail (ri/ci)z

−1
i and is 0 away from the pi’s. We

consider Z as being in the space T [K](X), since K(pi) = 0 for all i.
We claim that a global meromorphic function f in α−1K (Z) would be

the desired meromorphic function; that is, fω0 would have the pre-
scribed simple poles with prescribed residues and no other poles. First
notice that such an f will have no poles at the pi’s and the points in
the support of K. At any point q in the support of K, the order of
the pole allowed is no more than K(q) = ordq(ω), which is the order
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of zero of ω0. Thus the meromorphic 1-form fω0 will not have a pole
at q. On the other hand, the pole of f at pi will be simple since the
Laurent tail is (ri/ci)z

−1
i , so will be the pole of fω0 since ω0 is nonzero

at pi, and the residue of fω0 will be ri.
Finally, we need to show that such an f exists, which is a Mittag-

Leffler Problem. f exists iff the coset of Z is zero in H1(K). By Serre
Duality we have seen that

dimH1(K) = dimL(K −K) = dimL(0) = 1,

so there is exactly one linear condition on Z for the function f to exist.
We already know one such linear condition: the sum

∑
i ri = 0. Hence

this is the only linear condition, and it is sufficient for f to exist. �

There is a more theoretical approach to this problem. First we define
the space of Laurent tail 1-form divisors, which are defined as the
space of Laurent tail divisors T [D](X) but with additional dz’s at
appropriate places. We denote this space by T 1[D](X). Like T [D](X),
there is a natural map α1

D from M1(X) to T 1[D](X) whose kernel is
L(1)(D).

Choose a meromorphic 1-form ω0 whose canonical divisor is K, then
we can induct a natural map from T [K](X) to T 1[0](K) by multipli-
cation by ω0. The diagram

0 L(K) M(X) T [K](X)

0 Ω1(X) M1(X) T 1[0](X)

ι αK

ι α1
K

has exact rows, and vertical maps are all isomorphisms, given by mul-
tiplication by ω0. Since H1(K) = coker(αK) has dimension dimL(K−
K) = 1, so does coker(α1

K). But this map sends a meromorphic 1-form
to the negative parts of its Laurent series at every point, so there is ex-
actly one linear condition on a Laurent tail 1-form divisor in T 1[0](X)
for it to be the Laurent tails of a meromorphic 1-form. This condition
is that the sum of the residues is zero.
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