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§1 Preface
In this expository paper, the end goal is provide a proof Gerbalid’s theorem. He claimed the exis-
tence of six mutually apolar linearly independent nondegenerate ternary quadratic forms. Through-
out this paper, we familiarize the key concepts and definitions required to fully comprehend the
proof. To commence, we offer some basic abstract algebraic definitions on groups and fields and
then we move onto some linear algebra. Finally, we introduce the notion of a bi-algebra, a crucial
structure in the field of mathematics. Of course, since Gerbalid’s theorem is a part of the realm of
projective geometry, it is essential to quickly introduce the intricate world of projective geometry.
For a bit of more interingness, we proceed to state 2 integral theorems on conics, Pascal’s Hexagon
theorem and one of its special cases, Pappus’ theorem. Both are easily proven via Bezout’s theorem
and we let the reader attempt to prove these two on their own. Finally, to conclude the paper, we
present the desired 6 quadratic forms in its monomial and reciprocal form as well.

I really enjoyed writing this paper because it really opened my eyes to the real world of math-
ematics, beyond the confinements of high school math where only BC calculus is the ”roof”. Of
course, I had the oppurtunity to learn about various topics of mathematics, such as projective ge-
ometry, abstract algebra, linear algebra and even algebraic geometry. I am very grateful for this
learning oppurtunity .

There are a few people that have helped me out throughout this journey of writing this paper and
I am very appreciative of their help. Of course, to begin, I must thank Simon Rubinstein-Salzedo
for being a great instructor and helping me so much during the problem sessions. He has helped
me numerous times with LATEXerrors as well. Without him, this paper would be pretty darn bad.
Next, I have to thank Tyler Shibata, for being such an awesome TA. He has helped me throughout
the course with my problem sets and in this paper, has also provided valuable feedback that I have
implemented after the draft.

Without further ado, let us begin with our paper.

2



Gerbaldi’s Theorem Justin Hua

§2 Preliminary Definitions
These definitions form the fundamentals of abstract algebra but are quite basic and elementary as
well. Experienced readers are not required to read through this section and are encouraged to skip
to the part where we start defining a ”bi-algebra”. However, if the reader is not acquainted with
linear algebra, it is recommended that you go over some of the preliminary definitions from the
linear algebra subsection.

2.1 Group Theory and Fields

Definition 1 Groups:

A group(non-abelian) is a set G with both a binary operation ·: G × G→ G(which means
that for any g, h ∈ G, we have a well-defined element g·h ∈G), with the following properties:

• There is an element e ∈ G so that eg = ge = g for all g ∈ G(We call e the identity
element of G)

• If g, h, k ∈ G, then g(hk) = (gh)k (associativity property).

• For every g ∈ G, there is some element h ∈ G so that gh = hg = e. We callh an
inverse of g.

An abelian group is just a group with one further property, described below.

Definition 2 Abelian Groups:

A group is said to be ”abelian” if for all x, y ∈ G, x · y = y · x

Example 1 The most simple example of an abelian group is a cyclic group, which are groups
generated by a single element, where the cyclic group of order n is the group of integers
modulo n.

Now, it is time to define a field. Essentially, it is a mathematical structure with a few properties
which are encompassed below:

Definition 3 Fields:

A field is a set F, together with two binary operations + and × (which are called addition
and multiplication), so that all the following properties hold:

1. F forms an abelian group under addition. We call the identity element with respect to
addition 0.

2. F× = F {0} forms an abelian group under multiplication. We call the identity element
with respect to multiplication 1.

3. The distributive property holds: a(b+ c) = ab+ ac.
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Example 2 The rational numbers Q, the real numbers R, and the complex numbers C are
all fields but the integers Z do not form a field since all non-zero elements do not form a
group under multiplication since they do not have multiplicative inverses.

2.2 A Few Linear Algebra Definitions

Now, it is time for a quick crash course in linear algebra. These are the only definitions we need
from linear algebra in order to comprehend the proof of our main theorem. Note that linear algebra
itself is another elegant subject in its own entirety and to properly learn the basics of linear algebra,
it would take months of studying!
Now, we present another extremely mathematical structure, which forms the fundamentals of linear
algebra.

Definition 4 Vector Space:

Let F be a field. A vector space over F is an abelian group V , formed with a binary operation
· : F × V → V , which is called scalar multiplication, so that for all a, b ∈ F and v, w ∈ V ,
the following holds:

• 0Fv = 0V , where 0F is 0 in F and 0V is the identity of V ,

• 1v = v,

• a(v + w) = av + aw,

• (ab)v = a(bv),

• (a+ b)v = av + bv

Next, we need to know what a k-vector space is. It is essentially the same as a the vector space
defined above but with a few extra properties.

Definition 5 k-Vector Space:

Let k be an arbitrary field. A k-vector space is an abelian group (V,+), equipped with an
external operation

k× V 3 (λ, v)→ λv ∈ V

(once again, called scalar multiplication), with the following properties:

• λ · (v + w) = (λ · v) + (λ · w), for all λ ∈ k and v, w ∈ V (distributive property)

• (λ+ µ)∆v = (λv) + (µv), for all λ,µ ∈ k, v ∈ V (distributive property).

• (λ · µ)v = λ · (µ · v), for all λ,µ ∈ k and v ∈ V (associative property)

• 1 · v = v, forallv ∈ V ( identity element is 1)
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Now, we define linear independance, spans and basis . Indeed, these are definitions that can
be found in any linear algebra book and aer fairly intuitive and straightforward.

Definition 6 ”Linear Independance, Spans and Basis”:

Let F be a field and V a vector space over F.

• We say that v1, ..., vn ∈ V are linearly independent if, whenever we have a1, ..., an ∈ F
with a1v1 + a2v2 + ...+ anvn = 0, then a1 = a2 = ... = an = 0.

• We say that v1, ..., vn ∈ V span V if, for every v ∈ V , there are elements a1, ..., an ∈ F
such that v = a1v1 + a2v2 + ...+ anvn.

• We say that v1, ..., vn ∈ V form a basis for V if they are linearly independent and span
V .

Example 3 {1, x, x2} is a basis of {ax2 + bx+ c|a, b, c ∈ R}

2.3 Bialgebras

Now, we are finally ready to define a bi-algebra. Here is when all the fun starts but hold on tight-
since these definitions are also quite hard to grasp at first as well.

Definition 7 Bialgebra:

LetW be a finite dimensional k-vector space. Then a bialgebra consists of a bimultiplication
law on W(a structure on W) which consists of 2 bilinear maps(which we will denote by square
brackets[]),

W ×W → W ∗, (a, b) 7→ [a, b] ∈ W ∗

W ∗ ×W ∗ → W, (p, q) 7→ [p, q] ∈ W

§3 Conventions
Throughout this expository paper, there are several conventions that will be used. Firstly, the ground
field K is always characterisic zero and algebraically closed. We offer some definitions belows to
ensure that the audience understands:

Remark 1 Ternary Quadratic Forms are polynomials in three variables with all terms of
degree 2.

Example 4 x2 + xy + yz + xz + z2 is a ternary quadratic form.
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Definition 8 Characteristic:

Let R be a ring. The characteristic of a ring R, denoted by char(R), is defined to be the
smallest number of times one must use the ring’s multiplicative identity in a sum to get the
additive identity.

The ring Z/nZ of integers modulo n has characteristic n. (Check this!)

Definition 9 Algebraically Closed:

A field K is said to be algebraically closed if every polynomial with coefficients in K has a
root in K.

LetW be a finite-dimensional K-vector space, we denoteW ∗ to be the dual space of W. Further,
if define a two-dimensional subspace of W or W ∗ to be a pencil. If {a, b} is a basis of a pencil P,
then we will denote the pencil P by (λ+ µb) Finally, let

W ×W ∗ → K, (a, p) 7→< a, p >∈ K
W ∗ ×W → K, (p, a) 7→< p, a >∈ K

be two natural pairings denoted with the same symbol <,>.
Further, we say that two bases e1, ..., en ⊂ W, f1, ..., fn ⊂ W ∗ are projectively dual, if

< e1, fj >= 0 for 6= j, and < ei, f1 >6= 0

§4 A Quick Introduction to Projective Geometry
Projective geometry is another intricate world by itself but to keep it simple and easy to understand,
projective geometry is just an extension of Euclidean Geometry but with a few extra characteristics.
First, we add points at infinity for every set of parallel line. Thus, for every pair of parallel lines,
they would no longer never intersect. Instead, those lines would now intersect at the point at
infinity. Not only, we add a new projective line to the real affine space, the line at infinity which
passes through all the points at infinity.

4.1 Axioms of Projective Geometry

These axioms form the basis (no pun intended) of projective geometry. These axioms may sound
quite simple at first but still play an integral role in the world of projective geometry.

Axiom 1 Whitehead’s Axioms
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1. Every line contains at least 3 points

2. Every two distinct points, A and B, lie on a unique line, AB.

3. If lines AB and CD intersect, then so do lines AC and BD (where it is assumed that A
and D are distinct from B and C).

4.2 The Concept of Projective Duality

The most elegant part of projective geometry is none other than the concept of projective duality. In
short, given any theorem or definition in projective geometry, we can substitute the words point for
line, lie on for pass through, collinear for concurrent, intersection for join, or vice versa, which
results in another theorem or valid definition, the ”dual” of the first.
More formally, we have the following:

Proposition 1 A projective plane C may be defined axiomatically as an incidence structure,
in terms of a set P of points and a set L of lines, and an incidence relation I that determines
which points lie on which lines.Now, for the concept of duality:

We can interchange the role of points and lines in C = (P,L, I) to obtain its dual structure:
C∗ = (L, P, I∗), where I* is the converse relation of I.
We call C∗the dual plane. It also follows by definition that C∗∗ = C, which can be thought
of as an involution.

Example 5 (The dual of Whitehead’s Axiom #2)

Every 2 distinct lines, l1 and l2, pass through(intersect) at a unique point, A.
The proof is trivial and follows immediately by adding a point at infinity. Indeed, if the lines
are parallel, they intersect at the point at infinity. If the lines are not parallel, then the result
follows from ”regular” Euclidean Geometry.

4.3 More Definitions in Projective Geometry

Definition 10 Apolarity

Two elements a, b ∈ Wof an arbitrary symmetric bialgebra (W,[,]) are mutually apolar, if
and only if < a, b̂ >=< b, â >= 0. Futhermore, a, b are called nondegenerate mutually
apolar elements, if they are mutually apolar and

a 6= 0, b 6= 0, â 6= 0, b̂ 6= 0, ˆ̂a 6= 0,
ˆ̂
b 6= 0

Definition 11 Projective Space

Let k be a field. The n-dimensional projective space over Pn
k over k is defined to be the set

of lines passing through the origin in An+1
k
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Figure 1: 6 points on a conic and Pascal’s Theorem

§5 An Interesting Digression
One of the most special parts of projective geometry is arguably the geometry theorems that are
not onyl applicable in projective geometry but also in Euclidean geometry. For example, the famed
Pascal’s Theorem is an elegant theorem on 6 points on a circle, which form a hexagon.

5.1 Two Theorems on Conics

Theorem 12 Pascal’s: Let A,B,C,D,E, F be 6 points on a circle(conic section). Then
H = AB ∩DE,G = BC ∩ EF and J = CD ∩ FA are collinear.See figure 1.

Theorem 13 Pappus’: If A,B,C are three points on a line `1, and A′,B′,C ′ are three points
on a line `2. If the lines AB′ and A′B meet at R, the lines BC ′ and B′C meet at P , and the
lines CA′ and C ′A meet at Q, then the points P,Q and R are collinear. See figure 2.

The morally correct way to prove these two theorems is via Bézout’s Theorem. Indeed, there are
many different proofs of the Pascal’s hexagon Theorem such as using Menelaus repeatedly. How-
ever, this does not accurately represent the derivation of this beautiful theorem since these types of
proofs require many clever insights and may seem very unnatural. For the sake of completeness,
we state the prominent Bezout’s Theorem.

8



Gerbaldi’s Theorem Justin Hua

Figure 2: 2 lines and 6 points, an intriguing collinearity

5.2 Understanding Bézout

Definition 14 Intersection Mulitplicity:

Let C1 = V (f) and C2 = V (g) be 2 curves in P2
C that intersect at a point p ∈ P2

C. Let Rp be
the subring of C[x, y, z] such that s and t are homogeneous of the same degree and such that
t(p) 6= 0. Then the intersection multiplicity m, i(p, f ∩ g), is defined to be the dimension of
the ring Rp/(f, g) as a complex vector space

Theorem 15 Bezout’s:

Let f and g be homogeneous polynomials in C[x, y, z] of degrees d and e, respectively, such
that V (f) and V (g) share no common component(factor). Then∑

p∈P2
C

i(p, f ∩ g) = d · e

where i(p, f ∩ g) is defined to be intersection multiplicity, which is the dimension of the ring
Rp/(f, g) as a complex vector space.
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5.3 A Proof Using Resultants

Indeed, there exists several methods of proving Bezout’s theorem but some require much more
knowledge than others. For example, there exists a method involving Hilbert polynomials. We offer
a more natural and hands-on proof but it may also seem quite long so we omit lots of calculations
as well and treat it more like a ”walkthrough”.
To commence, we require the notion and knowledge of the resultant

Definition 16 The resultant Res (f,g) of 2 polynomials f(x) = anx
n + an−1x

n−1 + ... + a1x + a0
and g(x) = g(x) = bmx

m + bm−1x
m−1 + ...+ b1x+ b0 is defined to be the determinant of the (m+

n) ( m+ n) matrix

Res(f, g) = det



an an−1 · · · a0 0 · · · 0
0 an · · · a1 a0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · an an−1 · · · a0
bm bm−1 · · · b0 0 · · · 0
0 bm · · · b1 b0 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · bm bm−1 · · · b0


Proposition 2 The resultant is zero precisely when the 2 polynomials have a common root.

Now, using 3 lemmas, we can deduce Bezout’s theorem. We prove none of them and leave them
due to length.

Lemma 1 Let f, g ∈ C[x, y, z] be homogeneous polynomials of degrees m and n, respec-
tively. If f(0, 0, 1) and g(0, 0, 1) are nonzero, then Res(f,g;z) is homogeneous degree mn in
x and y

Lemma 2 Let f ∈ C[x, y] be homogeneous, and let V (f) = {(r1, s1), ..., (rt, st)}. Then

f = c(s1x− r1y)m1 ...(stx− rty)mt

where c is a nonzero constant

Lemma 3 Let V (f) and V (G) be curves in P2
C so that the point (0,0,1) is not in V (f) or

V (g) and is not collinear with any two points of V (f) ∩ V (g). Then if p = (u : v : w) is
in V (f) ∩ V (g), then I(p, V (f) ∩ V (g)) is the exponent of (vx− uy) in the factorization of
Res(f, g; z)

Indeed, it would be quite difficult to deduce Bézout’s theorem using these 3 lemmas. If in need
of help, check out [6] for a formal proof which includes computations as well.
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§6 Main Theorem
Now, we are ready to state the most significant and pertinent theorem of this expository paper.

6.1 Gerbadi’s Theorem

Theorem of Gerbaldi:
There exists a set of six mutually apolar linearly independent nondegenerate ternary
quadratic forms.

The main proof consists of Gerbaldi’s list of six conics. This proves the existence of the theo-
rem.

First, we fix a few constants which will be used in Gerbaldi’s list. Let

ω = exp(
2πi

3
) =
−1 + i

√
3

2
, r =

−
√

3 + i
√

5

4
, s =

1 + i
√

15

4

The comples conjugates or these numbers are

ω̄ ==
−1− i

√
3

2
, r̄ =

−
√

3− i
√

5

4
, s̄ =

1− i
√

15

4

6.2 Gerbaldi’s List

Consider the following six ternary quadratic forms f1, ..., f6

f1 = x20 + 2cx1x2

f2 = ω(x21 + 2cx0x2)

f3 = x22 + 2cx0x1

f4 = −1

3
(1 + 2c)ω[x20 + x21 + x22 − c(x1x2 + x2x0 + x0x1)]

f5 = −1

3
(1 + 2c)[x20 + ω2x21 + ωx22 − c(x1x2 + ω2x2x0 + ωx0x1)]

f6 = −1

3
(1 + 2c)ω[x20 + ωx21 + ω2x22 − c(x1x2 + ωx2x0 + ω2x0x1)]

Checking for mutual apolarity and linear independence is merely just a straight-forward com-
putation. However, to check for mutual apolarity, we also need the reciprocal forms of the 6 ternary
quadratics forms listed above. The expressions of the basic quadratic monomials in terms of the 6
forms are also listed below as well.

11



Gerbaldi’s Theorem Justin Hua

The expressions of the basic quadratic monomials in terms of the 6 ternary quadratic
forms f1, f2, ..., f6

x20 =
1

9
(3f1 − 2(1− c))(ω2f4 + f5 + ω2f6)

x21 =
ω2

9
(3f2 − 2(1− c))(f4 + ω2f5 + ω2f6)

x22 =
1

9
(3f3 − 2(1− c))(ω2f4 + ω2f5 + f6)

x1x2 =
1

9c
(3f1 − 2(1− c))ω2f4 + f5 + ω2f6)

x2x0 =
ω2

9
(3f1 − 2(1− c)(f4 + ω2f5 + ω2f6)

x0x1 =
1

9c
(3f1 − 2(1− c))(ω2f4 + ω2f5 + f6)

Reciprocals of the six ternary quadratic forms f1, ..., f6:

f̂1 = −c(cu20 + 2u1u2)

f̂2 = −cω2(cu21 + 2u0u2)

f̂3 = −c(cu22 + 2u0u1)

f̂4 =
1

3
(c+ 2)ω2[c(u20 + u21 + u22)− (u1u2 + u2u0 + u0u1)]

f̂5 =
1

3
(c+ 2)[c(u20 + ωu21 + u22)− (u1u2 + u2u0 + ω2u0u1)]

f̂6 =
1

3
(c+ 2)ω2[c(u20 + ω2u21 + ωu22)− (u1u2 + ω2u2u0 + ωu0u1)]

Thus, we have proven the existence of the 6 ternary mutually apolar linearly independent non-
degenerate ternary quadratic forms, which was exactly what we wanted.
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§7 Parting Words
Projective Geometry is one of the major mathematical accomplishments of the nineteenth cen-
tury and remains an intricate jewel to this date. Indeed, it has uses from not only other areas of
mathematics but is also applicable to real life situations such as engineering, computer vision and
computer graphics.

Firstly, projective geometry forms the basis of algebraic geometry and is basically a prerequi-
site. As we have seen in this paper, there are many elegant theorems which are proven by using
projective geometry as an implicit step, also serving as a space where Bezout’s theorem holds.
Evidently, Bezout’s theorem would not hold in regular affine space.

Further, Gerbaldi’s Theorem also plays an intriguing role/application in group theory as well,
the existence of the Valentiner group. In short, the Valentiner group is the prefect triple cover
of the alternating group(the group of even permutations of a finite set) on 6 points which was
proven in the form of an action A6 on the complex projective plane. Gerbaldi showed that this
group(the alternating group A6) also acts on the 6 conics of Gerbaldi’s Theorem, which was listed
above. However, this is well beyond the scope of this expository paper and much more sophisticated
knowledge of mathematics is required.

Projective geometry also plays an integral role in camera calibration in which projective trans-
formations(an automorphism of Pn

k) give a simple explanation of the perspective(pinhole) model
of a camera.

Another application is in computer graphics, where it is necessary to convert the 3D coordinate
world of point into a two-dimensional view plane, which is also achieved by using a projective
transformation.

While these have been extremely brief descriptions of applications of projective geometry in the
real world, the author urges the interested readers to learn more about this on other more thorough
sources.
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