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1 Introduction

In this paper, we mainly introduce the Riemann-Hurwitz formula. Named after Bernhard
Riemann and Adolf Hurwitz, Riemann-Hurwitz formula describes the relationship of the
Euler characteristics of two surfaces when one is a ramified covering of the other. In section
2, we mainly introduce some preliminary knowledge that are necessary for the understanding
of Riemann-Hurwitz formula. Subsection 2.1, 2.2, and 2.3 presents some basic concepts
in complex analysis, such as complex differentiation, complex charts, complex structures,
manifolds, and Riemann surfaces. Subsection 2.4 and 2.5 focus on algebraic topology side,
introducing some interesting operations on surfaces such as orientation, triangulation, and
coverings. Finally, in section 3, we present the main statement of Riemann-Hurwitz formula.

2 Preliminaries

Definition 2.1. A homeomorphism is a continuous bijective function between topological
spaces with a continuous inverse function.

Example 2.1. The open interval (a, b) is homeomorphic to R for any a < b.

Nonexample 2.1. Rm and Rn are not homeomorphic when m 6= n.

2.1 Complex Differentiation

As we are probably familiar with the differentiation of real valued functions, we now
introduce the notion of complex differentiability.

Definition 2.2. A function f : Ω→ C, with Ω ⊂ C open, is called complex differentiable at
z0 ∈ Ω, if there is a function g : Ω→ C, which is continuous at z0, such that

f(z) = f(z0) + g(z)(z − z0)
for all z ∈ Ω. We call the value g(z0) the derivative of f at z0, and write

f ′(z0) =
df

dz
(z0) = g(z0).

The following lemma gives a sequential criterion of complex differentiability.

Lemma 2.3. Let Ω ⊂ C be an open subset. A function f : Ω→ C is complex differentiable
at z0 if and only if there exists a number λ ∈ C such that

(2.1) lim
n→∞

f(zn)− f(z0)

zn − z0
= λ

for every sequence {zn} ⊂ Ω converging to z0.
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Proof. Suppose that f is complex differentiable at z0. Then by definition 2.2, we have

g(z) =
f(z)− f(z0)

z − z0
for z ∈ Ω \ {z0}. Since g(z) is continuous at z0, for any sequence {z0} ⊂ Ω converging to z0,
we have

lim
n→∞

g(zn) = lim
n→∞

f(z)− f(z0)

z − z0
= g(z0) = λ.

For another direction, suppose that there exists λ ∈ C such that (2.1) holds for every sequence
{z0} ⊂ Ω converging to z0. Then we define a function g : Ω→ C by

g(z) =
f(z)− f(z0)

z − z0
for z ∈ Ω \ {z0}, and g(z0) = λ. This function is continuous at z0, and by construction
satisfies f(z) = f(z0) + g(z)(z − z0). �

Let us look at some explicit examples of complex differentiation.

Example 2.2. Consider f(z) = z2, and its differentiability at some point z0 ∈ C. We have

f(z)− f(z0) = z2 − z20 = (z + z0)(z − z0),
and hence f(z) = f(z0) + g(z)(z − z0) with g(z) = z + z0. Then function g(z) = z + z0 is
clearly continuous at z0, meaning that f is complex differentiable at z0, with

f ′(z0) = g(z0) = 2z0.

Nonexample 2.2. Now let us consider f(z) = z, where z is the complex conjugate of z. Let
z0 ∈ C, and take zn = z0 + hn, where {hn} ⊂ R is a real sequence converging to 0. Then we
have

f(zn)− f(z0) = zn − z0 = z0 + hn − z0 = hn,

and zn − z0 = hn, which implies that

f(zn)− f(z0)

zn − z0
=
hn
hn

= 1.

Now take ωn = z0 + ihn, where {hn} ⊂ R is a real sequence converging to 0. Then we have

f(ωn)− f(z0) = ωn − z0 = z0 + ihn − z0 = −ihn and ωn − z0 = ihn,

which implies that
f(ωn)− f(ω0)

ωn − ω0

=
−ihn
ihn

= −1.

Now we have two sequences, both converging to z0 but give different limits. Then by Lemma
2.3, f(z) = z is not complex differentiable at any point in C.

Definition 2.4. A function f : Ω → C, with Ω ∈ C open, is holomorphic if for all z ∈ Ω,
the complex derivative

f ′(z) = lim
h→0

f(z + h)− f(z)

h
exists. We say that f is holomorphic at the point z0 if f is complex differentiable on some
neighborhood of z0.
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Example 2.3. All polynomial functions f(z) =
∑n

i=0 ciz
i with complex coefficients are holo-

morphic on C.

Nonexample 2.3. f(z) = z is not holomorphic on C.

2.2 Complex Charts and Complex Structures

2.2.1 Complex Charts

Definition 2.5. A complex chart, or simply a chart, on X is a homeomorphism φ : U → V ,
where U ⊂ X is an open set in X, and V ⊂ C is an open set in the complex plane. The
open set U is called the domain of the chart φ. The chart φ is said to be centered at p ∈ U
if φ(p) = 0.

Figure 1. Two charts on a manifold and their respective transition map

Example 2.4. Let X = R2, and let U be any open subset. Define φU(x, y) = x + iy from U
to the complex plane. This is a complex chart on R2.

Example 2.5. Again let X = R2. For any open subset U , define

φU(x, y) =
x

1 +
√
x2 + y2

+ i
y

1 +
√
x2 + y2

,

this is also a complex chart on R2.

Example 2.6. Let φ : U → V be a complex chart on X. Suppose that U1 ⊂ U is an open
subset of U . Then φ|U1 : U1 → φ(U1) is a complex chart on X. This restriction of φ is called
a sub-chart of φ.

Example 2.7. Let φ : U → V be a complex chart on X. Suppose that ψ : V → W is a
holomorphic bijection between two open sets of the complex plane. Then the composition
ψ ◦ φ : U → W is a complex chart on X. If we think of φ as a given complex chart on U ,
we can view this operation as a change of coordinates. The difference between the charts φ
and ψ ◦ φ is just simple change of coordinates, which does not change the entire structure
on the open set.

Therefore, the ”difference” between those two charts lead us to the following definition.

Definition 2.6. Let φ1 : U1 → V1 and φ2 : U2 → V2 be two complex charts on X. We say
that φ1 and φ2 are compatible if either U1 ∩ U2 = ∅, or

φ2 ◦ φ−11 : φ1(U1 ∩ U2)→ φ2(U1 ∩ U2)
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is holomorphic. The function T = φ2 ◦ φ−11 is called the transition function between the two
charts and is always bijective.

This definition is symmetric: if φ2 ◦ φ−11 is holomorphic on φ1(U1 ∩ U2), then φ1 ◦ φ−12 is
holomorphic on φ2(U1 ∩ U2).

Example 2.8. As we have mentioned in the previous example, let φ : U → V be a complex
chart on X, and let ψ : V → W be a holomorphic bijection between two open sets of
the complex plane. Then the charts ψ ◦ φ and φ are compatible. Moreover, ψ ◦ φ will be
compatible with any chart which is compatible with φ.

Example 2.9. Let S2 denote the unit 2-sphere inside R3, i.e.,

S2 = {(x, y, w) ∈ R3 : x2 + y2 + w2 = 1}.

Consider the w = 0 plane as a copy of the complex plane C, with (x, y, 0) being matched with
z = x+ iy. Let φ1 : S2 \ {(0, 0, 1)} → C be defined by projection from (0, 0, 1). Specifically,

φ1(x, y, w) =
x

1− w
+ i

y

1− w
.

The inverse to φ1 is

φ−11 (z) =

(
2 Re(z)

|z|2 + 1
,

2 Im(z)

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
.

Define φ2 : S2 \ {(0, 0,−1)} → C by projection from (0, 0,−1) followed by a complex conju-
gation

φ2(x, y, w) =
x

1 + w
− i y

1 + w
.

The inverse to φ2 is

φ−12 (z) =
(2 Re(z)

|z|2 + 1
,
−2 Im(z)

|z|2 + 1
,
1− |z|2

|z|2 + 1

)
.

The common domain is S2 \ {(0, 0,±1)}, and is mapped by both φ1 and φ2 bijectively onto
C∗ = C− {0}. The composition φ2 ◦ φ−11 (z) = 1/z, which is holomorphic on C∞. Thus the
two charts are compatible.

2.2.2 Complex Atlases

For X to look locally like the complex plane everywhere, we must have complex charts
around every point of X and we want these charts to be compatible. This is the notion of a
complex atlas.

Definition 2.7. A complex atlas (or simply atlas) A on X is a collection of pairwise com-
patible complex charts A = {Uα, φα} for which the Uα constitute an open covering of M .

Remark 2.8. A point p ∈ Uα is uniquely determined by φα(p). We may even omit the index
α and call the components of φ(p) ∈ C the coordinates of p.

The charts we defined in Example 2.4 form a complex atlas on R2, as do the charts in
Example 2.5.

Example 2.10. If A = {Uα, fα} is an atlas on X, and Y ⊂ X is any open subset, then the
collection of sub-charts AY = {Y ∩ Uα, φα|Y ∩Uα} is an atlas on Y .
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Given two different atlases, when every chart of one atlas is compatible with every chart
of the other atlas, those two atlases can give the same local notions of complex analysis on
a Riemann surface. Therefore, we have an equivalence relation on atlases.

Definition 2.9. Two complex atlases A and B are equivalent if every chart of one is com-
patible with every chart of the other.

Note that two complex atlases are equivalent if and only if their union is also a complex
atlas.

Definition 2.10. A complex structure on X is a maximal complex atlas on X, or, equiva-
lently, an equivalence class of complex atlases on X.

Note that any atlas on X determines a unique complex structure. So, the usual way we
define complex structures is by giving an atlas.

2.2.3 Manifolds and Differential Manifolds

Definition 2.11. A manifold of dimension n, or n-manifold is a connected Hausdorff space
M such that for every point p ∈ M , there is an open set U ⊂ S containing p, and a
homeomorphism φ : U → V onto an open subset V ⊂ Rn. Such a homeomorphism

φ : U → V

is an n-dimensional real chart on X.

Remark 2.12.
• A point p ∈ Uα is uniquely determined by fα(p). We may even omit the index α and

call the components of f(p) ∈ Rn the coordinates of p.
• A manifold of dimension 2 is usually a surface.

We want to introduce a general tool for producing manifolds. The tool is the Implicit
Function Theorem, a classic result from multivariable calculus. The complete version of
Implicit Function Theorem and its proof can be found in almost any book on advanced
calculus. For example, see [Spi65]. We will prove a special case below, a case that is fairly
easy to prove yet still produces nice examples.
Let f : Rn+1 → R be a continuous function. Assume also that the partial derivatives of f
exist and are continuous functions. This means that the gradient∇f exists and is continuous.
We say that 0 is a regular value for f if it never happens that both f(x1, · · · , xn+1) = 0 and
∇f(x1, · · · , xn+1) = 0 at the same point.

Proposition 2.13. If 0 is a regular value for f , then f−1(0) is an n-dimensional manifold.

Proof. See [Sch11] for a proof. �

Example 2.11. Now we give a nice example of a 3-dimensional manifold. We can think of
the set of 2× 2 (real valued) matrices as a copy of R4. There is a nice map from this space
into R, namely the determinant (minus 1):

f

(∣∣∣∣a b
c d

∣∣∣∣) = ad− bc− 1.

In the above example, f−1(0) is usually denoted by SL2(R), which is the set of unit determi-
nant real 2×2 matrices. By proposition 2.13, the space SL2(R) is a 3-dimensional manifold.
By the similar argument, we can conclude that SLn(R), the set of unit determinant n × n
matrices, is a manifold of dimension n2 − 1.
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Definition 2.14. An atlas {Uα, φα} on a manifold is called differentiable if for any two
charts φ1 and φ2, either the intersection of their domain is empty, or

φ2 ◦ φ−11 : φ1(U1 ∩ U2)→ (φ2U1 ∩ U2)

is C∞, i.e., has derivatives of all orders in its domain.

A chart is called compatible with a differentiable atlas if adding this chart to the atlas
yields again a differentiable atlas. Taking all charts compatible with a given differentiable
atlas yields a differentiable structure. A differentiable manifold of dimension d is a manifold
of dimension d together with a differentiable structure.

Definition 2.15. A continuous map h : M → M ′ between differentiable manifolds M and
M ′ with charts {Uα, φα} and {U ′α, φ′α} is said to be differentiable if all the maps φ′β ◦ h ◦ φ−1α
are differentiable (of class C∞) wherever they are defined.

Definition 2.16. If h is a homeomorphism and if both h and h−1 are differentiable, then h
is called a diffeomorphism.

2.2.4 The Definition of a Riemann Surface

Definition 2.17. A topological space X is a Hausdorff space if for any two distinct points
x, y ∈ X, there exist a neighborhood U of x and V of y such that U ∩ V = ∅.

Example 2.12. The real numbers, under the standard metric topology, are a Hausdorff space.

Nonexample 2.4. A cofinite subset of a set X is a subset A whose complement in X is a finite
set. The cofinite topology defined on a set X has precisely the empty set and all cofinite
subsets of X as open sets, which can be written as

T = {A ⊆ X | A = ∅ or X \ A is finite}.

The cofinite topology defined on an infinite set is not Hausdorff.

Definition 2.18. A topological space X is second countable if there exists some countable
collection U = {Ui}∞i=1 of open subsets of X such that any open subset of X can be written
as a union of elements of some subset of U .

Definition 2.19. A Riemann surface is a second countable, connected, and Hausdorff topo-
logical space X together with a complex structure.

The second countability condition is meant to exclude any pathological examples. Most
examples we find naturally, like a subset of Cn, are second countable. In particular, if the
complex structure may be defined by a complex atlas, then X must be second countable.

Example 2.13. Let X = C, considered topologically as R2, with the complex structure
induced by the atlas of Example 2.4. This Riemann surface is called the complex plane.

Example 2.14. Let X be the 2-sphere, with complex structure given by the two-chart atlas
of Example 2.9. This Riemann surface is called a Riemann sphere. Riemann sphere is often
written as C ∩∞ or C∞, with the complex plane C representing one chart, with the ”point
at infinity” ∞ being the single extra point. The Riemann sphere is a compact Riemann
surface.
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2.3 Functions on Riemann Surfaces

Let X be a Riemann surface, p a point of X, and f a function on X defined near p.
To check whether f has any particular property at p (for example, to check whether f is
holomorphic at p), we can use complex charts to transport the function to the neighborhood
of a point in the complex plane, and check properties there. In this section we specify the
checking process of various properties.
The only thing we need to be careful of is that the property we are checking must be
independent of coordinate changes, so that it does not matter what chart we use to check
the property.

2.3.1 Holomorphic Functions

Let X be a Riemann surface, let p be a point of X, and let f be a complex-valued function
defined in a neighborhood W of p.

Definition 2.20. We say that f is holomorphic at p if there exists a chart φ : U → V with
p ∈ U , such that the composition f ◦ φ−1 is holomorphic at φ(p). We say f is holomorphic
in W if it is holomorphic at every point in W .

We then have the following lemmas:

Lemma 2.21. Let X be a Riemann surface, let p be a point of X, and let f be a complex-
valued function defined in a neighborhood W of p. Then:

(1) f is holomorphic at p if and only if for every chart φ : U → V with p ∈ U , the
composition f ◦ φ−1 is holomorphic at φ(p).

(2) f is holomorphic in W if and only if there exists a set of charts {φi : Ui → Vi} with
W ⊆

⋃
i Ui such that f ◦ φ−1i is holomorphic on φi(W ∪ Ui) for each i.

(3) if f is holomorphic at p, then f is holomorphic in a neighborhood of p.

Proof. See [Mir53] for a proof. �

Definition 2.22. If W ⊂ X is an open subset of a Riemann surface X, we will denote the
set of holomorphic functions on W by OX(W ) (or simply O(W )):

OX(W ) = O(W ) = {f : W → C | f is holomorphic }.

We note that O(W ) is a C-algebra.

2.4 More on Surfaces

2.4.1 Orientability

For any point on a smooth compact surface, there are two possible directions of rotation
around this point. If such a direction is chosen at each point, and these directions are
compatible for nearby points, then one says that the surface is endowed with an orientation.
A surface S will be called orientable if we can define an orientation in a consistent way.

Example 2.15. Most surfaces we encounter in physical world are orientable. For example,
we can define orientation on spheres, tori, and planes.

Example 2.16. The Klein bottle and the Mőbius strip are non-orientable.
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Figure 2. Orientable Surface

Figure 3. Non-orientable Surfaces

Remark 2.23. An intuitive way to determine whether a surface S is orientable is by detecting
the existence of an orientation-reversing curve. This is a continuous curve that starts and
ends at a single point p ∈ S, traversing a path γ ⊆ S that includes points other than p.
Then we choose a direction to move from p along γ and assign a right-handed orientation
to each points on γ. When we come back to p, if we find that the y-axis defined by the
right-handed orientation has changed direction, then γ is an orientation reversing curve.

In this paper, we will be interested in orientable surfaces only, because, from the topological
point of view, a smooth complex curve is a closed orientable surface.

2.4.2 The Connected Sum

Another interesting operation of surfaces is the connected sum.

Definition 2.24. The connected sum of two surfaces M and N is the surface M#N obtained
by removing small open disks D1 and D2 from M and N and gluing the surfaces M \ D1

and N \D2 together by a homeomorphism h : ∂D1 → ∂D2 (∂D denotes the boundary of D).
What remains after removing a small open disk D from the torus S1× S1 is called a handle.

Example 2.17. The connected sum of a sphere and a torus is the same as attaching a cylinder
at both boundary circles after removing two open disks, which is again a torus.

A genus-g surface (also known as a g-torus or g-holed torus) is a surface formed by the
connected sum of g many tori, which is also known as a sphere with g-handles. Every closed
orientable two-dimensional surface is homeomorphic to a sphere with g-handles (for some
g), and spheres with different numbers of handles are not homeomorphic.
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Figure 4. Handles

2.4.3 Triangulation and Euler Characteristic

Definition 2.25. Let X be a compact Riemann surface. A triangulation T of X is a
collection of continuous maps,ti : Ti → X for Ti from triangles in C onto X so that:

(1) the ti are homeomorphisms onto their image
(2) the union of the image of all ti cover X
(3) the intersection of any two triangles is either an edge or a point.

Every closed two-dimensional surface can be triangulated, i.e., cut into triangles in such
a way that any two triangles either have no common points, or have one common vertex,
or have one common side (but are not allowed to share only a part of a side). Given a
triangulation of a surface M , let V be the number of vertices, E be the number of edges
(sides), and F be the number of faces in this triangulation.

Definition 2.26. Let S be a compact 2-manifold, possibly with boundary. Suppose a
triangulation is give with n vertices, e edges, and f faces. The Euler characteristic of S is

χ(S) = v − e+ f.

The main fact about Euler characteristic is that it does not depend on the particular
triangulation one use to compute them.

Proposition 2.27. The Euler characteristic is independent of the choice of triangulation.
For a compact orientable 2-manifold with boundary of topological genus g, its Euler charac-
teristic is 2− 2g.

See [Mir53] for a proof.

2.5 Coverings

Definition 2.28. Let X be a topological space. A covering space of X is a topological space
C together with a continuous surjective map p : C → X such that for every x ∈ X, there is
an open neighborhood U of x, such that p−1(U) is a union of disjoint open sets in C, each of
which is mapped homeomorphically onto U by the p. The map p is called a covering map,
the space X is often called the base space of the covering, and the space C is called the total
space of the covering.

Example 2.18. S1 is the punctured unit disk |z| < 1, z 6= 0 in C. The map p : R → S1

defined by p(t) = eit is a covering map, wrapping the real line round and round the circle.
For an little open arc in the circle, its preimage is a collection of open intervals in R with
period of 2π.

Example 2.19. For any positive integer n, the mapping p : S1 → S1 defined by p(z) = zn is
a covering map. This wraps the circle around itself n times.
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Figure 5. A Covering Space

Given a neighborhood Ux in the base space X, each point in Ux has the same number of
preimages. Therefore, if the base space X is connected, the number of preimages of each
point is constant over the whole space. This common number of preimages is called the
degree, or the number of sheets, of the covering.

Theorem 2.29. Let p : C → X be a n-sheeted covering with C and X being connected
compact two-dimensional surfaces. Then χ(M) = nχ(N).

Proof. Consider a triangulation of N . Then the preimage of every triangle of N consists
of n pairwise disjoint triangles, and all these triangles together form a triangulation of M .
Since p is an n-sheeted covering, the latter contains exactly n triangles corresponding to each
triangle of the original triangulation of N , exactly n edges corresponding to each edge, and
exactly n vertices corresponding to each vertex. Therefore, χ(M) = nχ(N). �

If the covered surface N is orientable and one of the two orientations of N is chosen, then
the covering surface M is also orientable, and it can be endowed with the orientation induced
from N .

Definition 2.30. A ramified covering is a non-trivial holomorphic map between compact
Riemann surfaces. Let f : X → Y be a ramified covering. A point P on X is ramified (or
a critical point) if the differential of f at P vanishes. The ramification index is defined by
eP = min{n ≥ 1 | f (n)(P ) 6= 0}. If every point is not ramified, we call f an unramified
covering.

Example 2.20. P : C → Cn defined by P (z) = zn is a ramified covering with critical points
0 and ∞, ramification index are n for both.

Example 2.21. P : C → C4 defined by P (z) = z3(z − 1) is a ramified covering with critical
points 0,3

4
, and ∞. Ramification index are 3, 1, and 4 respectively.

3 Riemann-Hurwitz Formula

As we have introduced in Theorem 2.29, for a covering, the Euler characteristic of the
covering surface is given by a simple formula in terms of the Euler characteristic of the
covered surface and the degree of the covering. Analogously, we want to see if we can have
some similar formula when we study ramified coverings. And the answer turns out to be yes!
In the case of ramified coverings, however, the formula turns out to be more complicated,
involving some additional characteristics of the covering.
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Theorem 3.1 (Riemann-Hurwitz). Let p : M → N be an n-sheeted ramified covering with
k ramification points having m1, . . . ,mk preimages, respectively. Then

χ(M) = n(χ(N)− k) +m1 + · · ·+mk.

Proof. Divide the surface N into two closed sets: N = NA ∪ NB, where NA is the union of
the closures of small circular neighborhoods of the ramification points and NB is the closure
of the complement N \NA to NA. Then

χ(N) = χ(NA) + χ(NB)− χ(NA ∩NB).

But the set NA ∩NB consists of several circles, hence χ(NA ∩NB) = 0. Therefore,

χ(N) = χ(NA) + χ(NB).

Similarly, we divide the surface M into the closed sets MA = p−1(NA) and MB = p−1(NB).
Then

χ(M) = χ(MA) + χ(MB).

The restriction of p to MB is a covering, hence χ(MB) = nχ(NB), and then

χ(M)− χ(MA) = n(χ(N)− χ(NA)).

Since the set MA consists of m1 +m2 + · · ·+mk disjoint disks, and the Euler characteristic
of a disk is 1, we have χ(MA) = m1 + · · ·+mk and χ(NA) = k. �

Here is another proof for Riemann-Hurwitz Theorem.

Proof. Consider a sufficiently fine triangulation of the surface N whose vertices include all
ramification points. Here the words “sufficiently fine” mean that the preimage of the interior
of each triangle of the triangulation consists of interiors of n triangles, where n is the degree
of the covering, and the same holds for the preimages of interiors of edges. Over the interior
of each triangle of the triangulation, as well as over the interior of each its edge, p is an
unramified covering. Hence the p-preimages of the edges and the triangles of the triangulation
of N form the induced triangulation of M . Let vN , eN , fNbe the number of vertices, edges,
and faces of the triangulation of N . Let vM , eM , fMbe the number of vertices, edges, and faces
of the induced triangulation of M . Then eM = neN , fM = nfN , and vM = n(vN−k)+

∑
mi.

Therefore,

χ(M) = vM − eM + fM = nχ(N)− nk +
∑

mi.

�

Riemann-Hurwitz Formula shows us the relationship of the Euler characteristics of two
surfaces when one is a ramified covering of the other. It turns out that we have an analo-
gous formula in case of algebraic curves, which also has many applications, such as proving
Lúroth’s Theorem and Fermat’s Last Theorem for Polynomials (see [Oor16]).
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