
QUATERNIONS AND THE FOUR SQUARE THEOREM

ALAN LEE

1. Introduction

While we did not focus a lot on noncommutative rings in class, there are many applications
to other mathematical subjects in terms of noncommutative rings.

Definition 1.1. A noncommutative ring R is a ring that contains at least one pair of
elements a, b such that a× b 6= b× a.

In this paper, we will focus specifically on a noncommutative ring known as quaternions.
Using special quaternions called Hurwitz integers, we will prove Lagrange’s Four Square
Theorem.

2. Background

Trying to decompose every natural number into a minimal amount of perfect squares has
always been the subject of much discussion. One of the earliest conjectures is attributed to
Fermat and was first proven by Euler in 1747.

Theorem 2.1 (Fermat’s Two Square Theorem). An odd prime number p can be expressed
as a sum of two squares if and only if

p ≡ 1 (mod 4).

There is a construction showing that if a and b can be expressed as a sum of two squares,
ab can as well. This construction involves complex numbers of the form a + bi and utilizes
the behavior of complex number multiplication.

However, this two square method is only limited to numbers that have no prime factors
p ≡ 3 (mod 4) of odd power. Lagrange was able to prove a theorem of his own in 1770,
which we will focus on in this paper. Analogously, the construction for the product of two
numbers that can be expressed as a sum of four sqaures involves quaternions, and will be
detailed in a later section.

3. Quaternions and Four Squares

Definition 3.1. The quaternions are a number system defined by the fundamental units i,
j, and k. All elements are of the form a+ bi+ cj + dk and multiplication is defined as

i2 = j2 = k2 = ijk = −1.

For the purpose of quaternions, we have a slightly modified definition of conjugates.
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Definition 3.2. The conjugate of a quaternion q = a+ bi+ cj + dk, denoted as q̄, is equal
to a− bi− cj − dk.

Definition 3.3. We may also represent each quaternion as a matrix, with 1 =

(
1 0
0 1

)
,

i =

(
0 1
−1 0

)
, j =

(
0 i
i 0

)
, and k =

(
i 0
0 −i

)
. Then each quaternion a + bi + cj + dk can

be expressed as

(
a+ di b+ ci
b− ci a− di

)
. Setting α = a+ di and β = b+ ci to simplify things, we

have a+ bi+ cj + dk =

(
α β
β̄ ᾱ

)
. We refer to this matrix as the representative matrix of the

given quaternion.

Quaternions have a strong presence in number theory, where they may be used to prove
theorems as the one below.

Theorem 3.4 (Lagrange’s Four Square Theorem). Every natural number n can be expressed
as

n = x20 + x21 + x22 + x23
for some x0, x1, x2, x3 ∈ Z.

To prove this theorem, we need to define norms and the Hurwitz integers.

Definition 3.5. The norm of a quaternion q, denoted as ||q||, is the square root of the
determinant of its representative matrix.

Solving for the square of the norm of an arbitrary quaternion q = a+ bi+ cj+dk, we have

||q||2 = (a+ di) (a− di) + (b+ ci) (b− ci) = a2 + b2 + c2 + d2.

Norms have a nice property; for any two quaternions q1 and q2, we have ||q1||2 · ||q2||2 =
||q1q2||2.

Definition 3.6. Hurwitz integers are special quaternions that are elements of the ring
Z[h, i, j, k], where h = 1+i+j+k

2
. We can also think of the Hurwitz integers as the quaternions

with only integer coefficients as well as the quaternions with only half-integer coefficients.

Example. 1+3i+5j+7k
2

is a Hurwitz integer, but 1+2i+4j+8k
2

is not because not all of the coeffi-
cients in the numerator have the same parity.

Note that for every Hurwitz integer h, ||h||2 ∈ Z.

Proof of Theorem 3.4. The following proof is due to [Ng08]. Our proof will have two parts,
first showing that every prime can be expressed as a sum of four squares, then proving that
the product of any two numbers that can be expressed as a sum of four squares can also be
expressed as a sum of four squares.

The cases 1 = 02 + 02 + 02 + 12 and 2 = 02 + 02 + 12 + 12 are trivial, so let us only focus
on proving that all odd primes can be expressed as the sum of four squares.
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Lemma 3.7. All odd primes p = 2n+ 1 divide 1 + l2 +m2 for some l,m ∈ Z.

Proof. It is easy to prove that the numbers 02, 12, 22, . . . , n2 each have different residues mod-
ulo p using elementary techniques. Thus, there are exactly n + 1 unique quadratic residues
modulo p (including 0).

Using similar reasoning, we can deduce that for each m ∈ {0, 1, 2, . . . , n}, −1 − m2 has
a unique residue modulo p, not necessarily distinct from any of the residues mentioned above.

Now that we are considering 2n + 2 residues modulo p: n + 1 from each scenario above.
However, there are only 2n + 1 unique residues modulo p since p = 2n + 1. Thus, by the
Pigeonhole Principle, at least one quadratic residue of the form l2 must be congruent to a
residue of the form −1−m2 modulo p. Thus, we have

l2 ≡ −1−m2 (mod p)

1 + l2 +m2 ≡ 0 (mod p).

�

We also have a theorem from [Ng08] that we will not prove in the paper, but can be proved
using the Euclidean algorithm.

Theorem 3.8. If a prime p is irreducible in Z[h, i, j, k], for any a, b ∈ α, β ∈ Z[h, i, j, k]
such that p|αβ, we have p|α or p|β.

Now consider any odd prime p. We know by the previous lemma that p|1 + l2 + m2 for
some l,m ∈ Z. Let us factor 1 + l2 + m2 further into (1 + li + mj)(1 − li − mj), which
indicates that 1 + l2 + m2 is a product of two Hurwitz integers. Neither of these factors,
when divided by p are Hurwitz integers since the 1

p
term is not a half-integer or an integer.

However, p divides neither 1 + li + mj nor 1 − li −mj yet divides their product. Using
the contrapositive of Theorem 2.8, we can then deduce that p is reducible into a product of
two Hurwitz integers.

Therefore, we are able to factor p into (a+bi+cj+dk)γ such that both factors are Hurwitz
integers and neither of them have norm equal to 1. We also have p = p̄ = (a− bi− cj−dk)γ̄.
The product of these two equations yields

p2 = (a+ bi+ cj + dk) (a− bi− cj − dk) γγ̄

=
(
a2 + b2 + c2 + d2

)
γγ̄

=
(
a2 + b2 + c2 + d2

)
||γ||2.

Then since neither of the new factors are equal to 1, and the only other way to factor p2

is p · p, we must have p = a2 + b2 + c2 + d2 for some integers a, b, c, d or half-integers a, b, c, d.
In the case where a, b, c, d are all integers, we are done.
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Considering when a, b, c, d are all half-integers, we can do some substitution. In this case,
there exists a Hurwitz integer ω = ±1±i±j±k

2
and even a′, b′, c′, d′ such that ω+a′+ b′i+ c′j+

d′k = a+ bi+ cj + dk.

Example. If a = b = 3
2
, c = −1

2
and d = 13

2
, setting ω = 1+i+j−k

2
yields

−1− i− j + k

2
+ a′ + b′i+ c′j + d′k =

3 + 3i− j + 13k

2
.

We can verify that a′ = b′ = 2, c′ = 0 and d′ = 6, which are all even.

Since the norm of ω is 1, we have ωω̄ = 1 as well. We now have

p = a2 + b2 + c2 + d2

= (a+ bi+ cj + dk)(a− bi− cj − dk)

= (ω + a′ + b′i+ c′j + d′k) (ω̄ + a′ − b′i− c′j − d′k)

= ((ω + a′ + b′i+ c′j + d′k) ω̄) · (ω (ω̄ + a′ − b′i− c′j − d′k))

Multiplying out the first factor, we see that a′ω̄ has integer coefficients since a′ is even.
This is the same for b′, c′ and d′. Then we have ωω̄ = 1. Thus we see that the first factor can
be expressed as w+xi+yj+zk for some w, x, y, z ∈ Z. Since the other factor above is simply
the conjugate w−xi−yj−zk, we have proven that p = w2+x2+y2+z2 where w, x, y, z ∈ Z.

Example. Take the prime p = 31 = 81+25+9+9
4

= (9
2
)2 + (5

2
)2 + (3

2
)2 + (3

2
)2. We have a = 9

2
,

b = 5
2

and c = d = 3
2
. We can then set up the equation

ω + a′ + b′i+ c′j + d′k =
9 + 5i+ 3j + 3k

2
.

In order for a, b, c, d ≡ 0 (mod 2), we must have ω = 1+i−j−k
2

. Hence we have

1 + i− j − k
2

+ a′ + b′i+ c′j + d′k =
9 + 5i+ 3j + 3k

2

a′ + b′i+ c′j + d′k = 4 + 2i+ 2j + 2k.

Using the equation found earlier, we can now express p as

31 = ((ω + a′ + b′i+ c′j + d′k) ω̄) · (ω (ω̄ + a′ − b′i− c′j − d′k))

=

(
1 + i− j − k

2
+ 4 + 2i+ 2j + 2k

)
· 1− i+ j + k

2

· 1 + i− j − k
2

·
(

1− i+ j + k

2
+ 4− 2i− 2j − 2k

)
= (1 + (2 + i+ j + k) (1− i+ j + k)) · (1 + (2− i− j − k) (1 + i− j − k))

= (2− i+ j + 5k) · (2 + i− j − 5k)

= 22 + 12 + 12 + 52.
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Now that we have shown every prime can be expressed as a sum of four squares, we
prove the second part. Take two integers x1 and x2 such that x1 = a21 + b21 + c21 + d21 =
||a1 + b1i+ c1j + d1k||2 and x2 = a22 + b22 + c22 + d22 = ||a2 + b2i+ c2j + d2k||2.

Since norms are multiplicative, we have

x1x2 = ||(a1 + b1i+ c1j + d1k)(a2 + b2i+ c2j + d2k)||2

= (a1a2 − b1b2 − c1c2 − d1d2)2 + (a1b2 + a2b1 + c1d2 − c2d1)2

+ (a1c2 + a2c1 − b1d2 + b2d1)
2 + (a1d2 + a2d1 + b1c2 − b2c1)2.

Since all of the ai, bi, ci, and di were integers, the product x1x2 is also a sum of four squares.
Hence, all positive integers can be expressed as the sum of four integer squares.

�

4. Example and Conclusion

We have seen how a specific noncommutative ring called quaternions allowed us to derive
a proof of the Lagrange Four Square Theorem. Now let us try out an example to see how
the four squares are constructed for an arbitrary number.

Example. Take 31 = 32+32+32+22 and 57 = 72+22+22+02. Their product, 31∗57 = 1767,
can be expressed as

1767 = 31 · 57

= ||(a1 + b1i+ c1j + d1k)(a2 + b2i+ c2j + d2k)||2

= (a1a2 − b1b2 − c1c2 − d1d2)2 + (a1b2 + a2b1 + c1d2 − c2d1)2

+ (a1c2 + a2c1 − b1d2 + b2d1)
2 + (a1d2 + a2d1 + b1c2 − b2c1)2

= ((3)(7)− (3)(2)− (3)(2)− (2)(0))2 + ((3)(2) + (7)(3) + (3)(0)− (2)(2))2

+ ((3)(2) + (7)(3)− (3)(0) + (2)(2))2 + ((3)(0) + (7)(2) + (3)(2)− (2)(3))2

= (21− 6− 6)2 + (6 + 21− 4)2 + (6 + 21 + 4)2 + (14 + 6− 6)2

= 92 + 232 + 312 + 142.

Fermat also went on to write about a generalized version of the four square theorem.
However, it was Cauchy who was able to prove it fully in 1813. See [Nat87] for a quick proof
of the theorem.

Theorem 4.1 (Fermat Polygonal Number Theorem). Every positive integer n is the sum of
at most n n-gonal numbers.

Example. Take 58 as we try to break it up into smaller parts.

(1) Triangular: 58 = 55 + 3
(2) Square: 58 = 49 + 9
(3) Pentagonal: 58 = 51 + 5 + 1 + 1
(4) Hexagonal: 58 = 45 + 6 + 6 + 1
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Returning to the broader focus of noncommutative rings in general, while they are often
overlooked due to a lack of “good” properties, they are useful in their own right. There
are many classes of noncommutative rings such as division, semisimple, semiprimitive, and
simple rings, as well as specific types of rings such as the quaternions, matrix rings, and group
rings. Quite a few theorems take an interest in these aforementioned classes, including the
Artin-Wedderburn Theorem and Wedderburn’s Little Theorem. There is still a lot to explore
regarding noncommutative rings since these types of rings have less restrictions (not having
commutativity as a property). Many results regarding these rings are fairly recent, having
been conjectured or proven in the past few decades.
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