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1 Introduction

Elliptic curves are non-singular cubic curves commonly in the form

y2 = x3 + ax2 + bx + c.

Figure 1.1 gives two examples of what an elliptic curve might look like when plotted in R2.
It is in one connected piece if the cubic in x has one real root, and in two connected pieces
if it has three real roots.
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(a) y2 = x3 − x+ 1
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(b) y2 = x3 − x

Figure 1.1: Examples of elliptic curves.

Elliptic curves are particularly useful in number theory since elliptic curves over the
rationals are related to modular forms, and they are involved in the proof of Fermat’s last
theorem through a form of the modularity theorem. Elliptic curves also have important
cryptographic uses since an operation can be defined on the points of an elliptic curve, and
there is an analog of the discrete log problem on the points under this operation. Compared
to public-key encription algorithms based on the structure of the multiplicative group Z/pZ×,
the keys using elliptic curve cryptography are much smaller in size.

In this paper, we prove some basic results concerning the structure of rational points
on an elliptic curve mainly following the exposition of [2]. We first analyze rational points
on conic curves to gain some intuition, then we build up the necessary tools for the main
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results of this paper, the Nagell-Lutz theorem, which lets us compute the torsion group of
rational points, and Mordell’s theorem, which states that the group of rational points is
finitely generated.

2 Rational Points on Conics

Before we dive into elliptic curves, we will first look at rational points on conics, i.e., curves
of degree 2 with the general formula

ay2 + bxy + cx2 + dx+ ey + f = 0,

which gives us some insights on how rational points behave on a curve. If all the coefficients
of the curve a, . . . , f are rational, then we refer to the curve C as a rational conic. We are
interested in the rational points on a rational conic.

We have a complete characterization of rational points on conics in the sense that we
can check in finite steps whether there exists a rational point, and if so, we can represent all
rational points on thee conic with a closed-form parametrization.

2.1 Conics with a Known Rational Point

The principal idea we develop in this section is that if we have one rational point on the
conic, then in fact we have infinitely many of them. The rational points on the conic can
tbe parametrized by projecting the conic onto the a rational line.

We assume that the conic C contains a rational point O. Let l be a rational line. Then
we can establish a correspondence between rational points on the conic C and rational points
on the line l. We project C onto l through the point O as shown in Figure 2.1, i.e., let P
be a point on C, then its projection P ′ onto l is given by the intersection of l with the line
passing through O and P . There are a couple special points that we need to take care of.
The point O itself is projected onto l using the line that is tangent to C at O. The point
at which the line passing through it and O is parallel to l is mapped onto their intersection
at the point at infinity. (We often operate in the projective space for the benefit that two
lines always intersect and curves have a “correct” number of intersections according to their
degrees.) Conversely, if we have a point Q on the line l, then its corresponding point Q′ on
C is given by the intersection of C with the line passing through O and Q, which exists since
a line intersects a cubic at two points generally.

Now that we have a bijective mapping between points on the conic and the line, we
simply need to demonstrate that this map is also a correspondence of rational points. If P
is a rational point on C, then the line passing through O and P is a rational line. It is easy
to see that the intersection of two rational lines is indeed rational, so P ′ is a rational point
on l. Conversely, if Q is a rational point on l, then the line passing through O and Q is a
rational line. Since the coordinate of the intersection of a rational line and a rational conic
is given by a quadratic with rational coefficients and its roots come in conjugate pairs. Since
one of the intersection O is rational, then the other intersection Q′ must also be rational.
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Figure 2.1: Projecting a conic onto a line through a point O

Since the rational points on the line can be easily parametrized with one of the coordi-
nates, we have obtained a parametrization of rational points on a conic. We demonstrate
this procedure on a circle.

Example. Consider a circle given by the equation

x2 + y2 = 1.

We project the points on the circle from the point (−1, 0) to the y-axis parametrized by
{(0, t)} as shown in Figure 2.2.

x

y

(−1, 0)

(0, t)

(x, y)

Figure 2.2: Rational points on the circle x2 + y2 = 1.

The line passing through (−1.0) and (0, t) is given by y = t(x+ 1). Since the point (x, y)
lies both on the line and on the circle, we have the relationship

y2 = t2(x+ 1)2 = 1− x2.
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Since one of the intersections of the line and the circle is (−1, 0), we factor out (x+ 1) from
both sides,

t2(x+ 1) = 1− x.

Solving for x and using y = t(x+ 1) to solve for y gives

x =
1− t2

1 + t2
, y =

2t

1 + t2
,

and we have arrived at a rational parametrization of the circle.

2.2 Existence of Rational Points on Conics

In the previous section, we showed how we can parametrize the infinite family of rational
points on a conic curve given the existence of one rational point. Now, we investigate the
conditions the conic needs to satisfy to contain a rational point.

The general idea is given by Hasse’s local-global principle, which states that certain
families of equations have solutions in the rational numbers if and only if solutions exist in
the real numbers and the p-adic numbers for each prime p.

In our specific case, we can first reduce the conic to a general form

ax2 + by2 + cz2 = 0, abc 6= 0, a, b, c pairwise relatively prime and squarefree

by homogenization and a change of variables through diagonalization. (See [1] for a complete
process.) Then, the existence of a rational solution can be determined by Legendre’s theorem,
and we give a proof of it using elementary number theory.

Theorem 2.1 (Legendre). The homogeneous quadratic equation ax2 + by2 + cz2 = 0 with
nonzero, squarefree, and pairwise relatively prime coefficients a, b, c ∈ Z has a nontrivial
integer solution if and only if

(1) a, b, c do not share the same signs.

(2) −ab mod c,−bc mod a,−ac mod b are squares.

Remark. Condition (1) corresponds to solutions in the real numbers in Hasse principle,
while condition (2) corresponds to solutions in the p-adic numbers.

Proof. ⇒ (Necessity):

(1) If a, b, c have the same signs, then the only solution to the equation is the trivial
solution x = y = z = 0.

(2) We show that −ab is a square mod c, and the other conditions can be shown similarly
by symmetry. It suffices to show that −ab is a square mod p for some p | c, as the rest
follows by the Chinese remainder theorem.

Let (x, y, z) be a nontrivial integer solution to ax2+by2+cz2 = 0. Since the equation is
homogeneous, we can take gcd(x, y, z) = 1. Furthermore, x, y, z are pairwise relatively
prime: Let d be a common divisor of x and y, then d2 | ax2 + by2, which implies that
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d2 | cz2. Since c is squarefree, we have d | z. Since gcd(x, y, z) = 1, we must have
d = 1, so gcd(x, y) = 1, and we have shown that x, y, z are pairwise relatively prime.

Reducing the equation modulo p, where p | c, we have ax2 + by2 ≡ 0 mod p. Since
gcd(x, y) = 1, p does not divide both x and y. Wlog we have p - x. Then, rearranging
the equation and multiplying by −b, we have

a ≡ −by
2

x2
mod p ⇒ −ab ≡ b2y2

x2
mod p.

−ab is a square mod p as claimed.

⇐ (Sufficiency):
Since a, b, c do not share the same sign, assume that a > 0 and b, c < 0. If |abc| = 1, then

the conic x2 − y2 − z2 has the nontrivial solution (1, 1, 0), so assume that |abc| > 1. Since
−bc ≡ k2 mod a, the polynomial ax2 + by2 + cz2 splits into linear factors over Z/aZ:

ax2 + by2 + cz2 ≡ by2 + cz2

≡ b
(
y2 +

c

b
z2
)

≡ b

(
y2 − k2

b2
z2
)

≡ b

(
y − k

b
z

)(
y +

k

b
z

)
mod a.

By symmetry, ax2 + by2 + cz2 also splits into linear factors over Z/|b|Z and Z/|c|Z, so by
CRT, it also factors over Z/abcZ:

ax2 + by2 + cz2 ≡ (αx+ βy + γz)(rx+ sy + tz) mod abc.

Consider the set of triples of nonnegative integers

S = {(x, y, z) : x, y, z ≥ 0, x <
√
|bc|, y <

√
|ca|, z <

√
|ab|}.

Since bc, ca, ab are not perfect squares, we have |S| > abc. Then, by pigeonhole principle,
there exists two distinct triples (x1, y1, z1) and (x2, y2, z2) such that

αx1 + βy1 + γz1 ≡ αx2 + βy2 + γz2 mod abc.

Setting x = x1 − x2, y = y1 − y2, z = z1 − z2, we have αx + βy + γz ≡ 0 mod abc, which
implies that

ax2 + by2 + cz2 ≡ (αx+ βy + γz)(rx+ sy + tz) ≡ 0 mod abc.

Moreover, since x <
√
|bc|, y <

√
|ca|, z <

√
|ab|, and a > 0, b, c < 0 we have

ax2 + by2 + cz2 ≤ ax2 < abc,

ax2 + by2 + cz2 ≥ by2 + cz2 > −2abc.
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Thus, ax2 + by2 + cz2 is either 0 or abc. In the former case, (x, y, z) is a nontrivial solution
since (x1, y1, z1) and (x2, y2, z2) are distinct and we are done. In the latter case, we make the
following change of variables:

x′ = xz − by, y′ = yz + ax, z′ = z2 + ab

and it follows that ax′2 + by′2 + cz′2 = 0. If (x′, y′, z′) is trivial, then the conic is x2−y2 + cz2,
and (1, 1, 0) is a nontrivial solution.

3 From Conics to Cubics

Now with some intuition gained from analyzing the case for conics, we turn to discussing
rational points on cubic curves. Similarly, we reduce the cubic to a form that is easier to
deal with, namely the Weierstrass normal form:

y2 = x3 + ax2 + bx+ c.

With a smart choice of axes in the projective space, one can show that any cubic is
birationally equivalent to a cubic in the Weierstrass normal form. (See Section 1.3 of [2] for
a sketch of the transformation.) There is a bijection between rational points on the general
cubic and those on the reduced cubic as a result of the birational equivalence. Note that a
cubic in Weierstrass normal form is symmetric across the x-axis, i.e., if (x, y) is on the curve,
then is (x,−y).

An elliptic curve is a nonsingular cubic in the Weierstrass normal form. As shown in
Figure 1.1, an elliptic curve could either be one or two connected pieces in R2 depending on
whether they have 1 or 3 real roots.

A cubic in the Weierstrass form is singular when y2 = f(x) = x3 + ax2 + bx + c has a
repeated root (See Figure 3.1). If f(x) has three repeated roots, e.g., f(x) = x3, then the
curve has a cusp, or a “sharp” point. If the curve has two repeated roots, e.g., f(x) = x2(x+1)
then it has a pair of tangents (real or complex) at the point of singularity.

Singular cubics behave quite differently from nonsingular ones. Since a line that passes
through the singular point only crosses the curve at one other point, rational points on a
singular cubic can be projected on to a rational line in the same way as conics, so the analysis
of rational points on singular cubics can be dealt with similarly. Therefore, we will restrict
our attention to singular cubics, i.e., birationally equivalent to a nonsingular cubic in the
Weierstrass normal form.

3.1 Group Structure of Points on Elliptic Curves

The ubiquity and usefulness of elliptic curves can be partially attributed to the fact that
points on elliptic curves have a very conveninet additional structure — they form an abelian
group under a natural geometric operation involving lines and intersections.

Since an elliptic curve is nonsingular, a line generally intersects the curve at three points
(counting multiplicities). In order to make the idea of intersections precise, we work in the
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(a) y2 = x3
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(b) y2 = x2(x+ 1)

Figure 3.1: Examples of singular cubics.

projective space. In addition to the affine part, the elliptic curve also contains a point at
infinity O = (0 : 1 : 0) in projective space, i.e., a point that lies on all the vertical lines
parallel to the y-axis. A binary operation can be defined on points on the curve by taking
the line that connects the two points and find the third intersection with the curve. More
precisely, let P and Q be two points on the elliptic curve, then the point P ∗ Q is the
intersection of the line PQ and C. If P = Q, then the third point is the intersection of the
curve with the tangent line at P , which intersects C at P “twice”.

l
C

P

Q

P ∗Q l

C

P
P ∗ P

Figure 3.2: A binary operation on an elliptic curve.

We do not yet have an identity with the binary operation ∗, but we can turn the points
on the curve into a group by buildig upon ∗. First, we need a point to be the identity.
Any rational point can be chosen to be the identity, but for the ease of computation, we
conventionally define the group operation such that the point at infinity O be the identity.
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The group operation, which we denote by +, is defined as

P +Q = O ∗ (P ∗Q),

i.e., we take the third intersection of the line connecting P and Q, and then connect it with
O, where the third intersection between this new line and the curve is taken to be P +Q.

P

Q

P ∗Q

P +Q

P

−P

Figure 3.3: The group operation on an elliptic curve

We need to verify that the points on the curve and + do form an abelian group. First,
it is easy to check that + is commutative, since ∗ is commutative: P ∗ Q and Q ∗ P give
us the same line and thus the same third intersection point. Then, we check that O is
indeed the identity, i.e., P + O = O ∗ (P ∗ O) = P for any point P on the curve. Note
that the line passing connecting O and P passes through P ∗O by definition, then the third
intersection point given O and P ∗ O is clearly P . Next, we check that each point P does
have an inverse −P , which we show to be its reflection across the x-axis, i.e., if the point
P = (x, y), then its inverse −P = (x,−y). Since the line passing through P and −P is
vertical, its third intersection point with the curve is the point at infinity O, so we have
P + (−P ) = O ∗ (P ∗ (−P )) = O ∗ O. The line tangent at O is the line at infinity, and its
third intersection point is again at O, and we have shown that P + (−P ) = O.

The last thing we need to check is that + is associative. We could do so by computing
the coordinates through explicit formulas, which is doable but not quite a pleasant task.
Instead, we appeal to Caley-Bacharach theoreme, an important result on cubics that can be
proved from Bezout’s theorem.

Theorem 3.1 (Cayley-Bacharach). Let C1 and C2 be two cubic curves that intersect at
exactly nine points. Then any cubic curve C that passes through eight of the points also
passes through the ninth.

We are interested in showing that (P + Q) + R = P + (Q + R), which is equivalent to
P ∗ (Q + R) = (P + Q) ∗ R. We draw the points O, P,Q,R, P ∗ Q,P + Q,Q ∗ R,Q + R
and intersection of line P (Q + R) and R(P + Q). Note that the set of three dashed lines
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and three solid lines all pass through the above nine points, and the elliptic curve passes
through the first eight points except the intersection. Therefore, since a union of three lines
is a cubic, by Cayley-Bacharach theorem, the elliptic curve C also passes through the ninth
point, which implies that P (Q+R) and R(P +Q) intersects C at the same point. And we
have shown P ∗ (Q+R) = (P +Q) ∗R.

R

Q

Q ∗R

Q+R

P ∗QP

P +Q

P ∗ (Q+R)
= (P +Q) ∗R

Figure 3.4: Associativity of the group operation.

Note that the rational points on an elliptic curve are closed under + and thus form
a group. If P and Q have rational coefficients, then the line passing through them is a
rational line. The x-coordinates of the intersections of C and l are given by a cubic with
rational coefficients. Since the two roots corresponding to P and Q are rational, the third
root must also be rational by Vieta’s formula, so P ∗Q has rational coefficients, and so does
P + Q. Therefore, if we have rational points on an elliptic curve, we could potentially use
the addition operation to generate more rational points on the curve.

3.2 Explicit Formulas for the Group Operation

In this section, we will derive some explicit formulas for adding two points on the curve. Let
P = (x1, y1) and Q = (x2, y2) be two distinct points, and we try to compute P ∗Q = (x3, y3)
and P +Q = (x3,−y3).

First, the equation for the line connecting P and Q is given by

y = αx+ β, where α =
y2 − y1
x2 − x1

, β = y1 − αx1.
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We find the intersection of this line and the elliptic curve by substituting in y:

y2 = (αx+ β)2 = x3 + ax2 + bx+ c.

Expanding and collecting terms, we have

x3 + (a− α2)x2 + (b− 2αβ)x+ (c− β2).

Since the three intersections are P , Q, and P ∗ Q, the three roots of the cubic are x1, x2,
and x3. So by Vieta’s formula, we have

x3 = α2 − a− x1 − x2, y3 = αx3 + β.

For the case when P = Q, i.e., computing 2P , we need to find the tangent line at P .
Using the same variables, the slope α of the tangent line is given by implicit differentiation

α =
dy

dx

∣∣∣∣
P

=
f ′(x1)

2y1
.

Then, using the same formula we derived above, we have

x3 =

[
f ′(x1)

2y1

]2
− a− 2x1 =

(3x21 + 2ax1 + b)2

4y21
− a− 2x1.

Simplifying and substituting in y21, we arrive at the formula for the x-coordinate of 2(x, y),
referred to as the duplication formula:

x(2(x, y)) =
x4 − 2bx2 − 8cx+ b2 − 4ac

4(x3 + ax2 + bx+ c)
.

4 Torsion Points on Elliptic Curves

As in the last section we showed how the points on an elliptic curve form a group, we can
now talk about the torsion points on an elliptic curve, i.e., points with finite order. We first
characterize general points on the curve of small orders. Then we discuss specifically rational
torsion points on the curve and show how they can be determined algorithmically in finite
steps, as a consequence of our main result of the section, the Nagell-Lutz theorem.

4.1 Points of Order 2 and 3

Let P = (x, y) be a point of order 2, i.e., 2P = O, which is equivalent to P = −P . Since
−P = (x,−y), we have y = 0, so the points of order 2 on the curve are precisely (r, 0),
where r is a root of the cubic f(x) = x3 + ax2 + bx+ c. Since f(x) is a nonsingular cubic, it
has three distinct complex roots r1, r2, r3, so there are three points with order 2. The points
satisfying 2P = O are

{O, (r1, 0), (r2, 0), (r3, 0)}
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, and they form a subgroup isomorphic to Z/2Z× Z/2Z since it is a group of four elements
and all non-identity elements have order 2.

Now let us move on to points of order 3. We can characterize them by noting that they
are exactly the points that satisfy x(2P ) = x(P ) and is not the identity. By the duplication
formula, we have

x4 − 2bx2 − 8cx+ b2 − 4ac

4(x3 + ax2 + bx+ c)
= x.

Simplifying and rearranging, we find that P 6= O is a point of order 3 if and only if x(P ) is
a root of the quartic

φ3(x) = 3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2.

We want to show that φ3(x) has four distinct roots, and we do so by relating φ3(x) to
f(x), since f(x) is nonsingular. Recall the following form of the duplication formula:

x(2P ) =
f ′(x)2

4f(x)
− a− 2x.

Setting it to equal to x and rearranging, we have

φ3(x) = f ′(x)2 − 4f(x)(a+ 3x) = f ′(x)2 − 2f(x)f ′′(x).

In order to see if φ3(x) have repeated roots, we differentiate

φ′3(x) = 2f ′(x)f ′′(x)− (2f ′(x)f ′′(x) + 2f(x)f ′′′(x)) = −2f(x)f ′′′(x) = −12f(x).

Since f(x) and f ′(x) do not have common roots, φ3(x) = f ′(x)2 − 2f(x)f ′′(x) and φ′3(x) =
−12f(x) also do not have any common roots.

As we have shown that φ3(x) has four distinct roots s1, s2, s3, s4, there are eight points
of order 3, and including the identity there are nine points satisfying the equation 3P = O:

O, (s1,±t1), (s2,±t2), (s3,±t3), (s4,±t4).

Since each non-identity point has order 3, it is easy to see that they form a group isomorphic
to Z/3Z× Z/3Z.

4.2 Nagell-Lutz Theorem

After a discussion of points of small orders in the field of complex numbers, we return to
the rational numbers and look at rational torsion points. If we take an elliptic curve in
Weierstrass form with rational coefficients, we can always make a change of variables to
clear the denominators of the coefficients, so we assume that the coefficients a, b, c of the
curve are all integers.

The Nagell-Lutz theorem gives us a nice characterization of rational torsion points on
the curve.
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Theorem 4.1 (Nagell-Lutz). Let

y2 = x3 + ax2 + bx+ c

be an elliptic curve with integer coefficients a, b, c, and its discriminant be

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2.

Let P = (x, y) be a rational torsion point on the curve, then its coordinates x and y are
integers and either y = 0 (P has order two), or y | D.

Proof. We first prove the second part of the statement assuming the first part of the theorem
which states that rational torsion points have integer coefficient. Let P = (x, y) be a rational
torsion point, then 2P must also be a rational torsion point, so P and 2P both have integer
coefficients. We need to show that either y = 0 or y | D.

Assume that y 6= 0, then 2P 6= O and the duplication formula applies:

x(2P ) =

[
f ′(x)

2y

]2
− a− 2x.

Since a, x and x(2P ) are integers, we must have y | f ′(x). Since f(x) = y2, we also have
y | f(x). By the general theorey of discriminants, we can write D as a linear combination of
f(x) and f ′(x):

D = r(x)f(x) + s(x)f ′(x),

from which we conclude that y | D.
Next, we move onto proving the crux of the theorem: a rational torsion point on an

elliptic curve has integer coordinates. We prove this rather indirectly by showing that the
p-adic valuation of the coordinates is nonnegative for all prime p.

To this end, let P = (x, y) be a rational torsion point and let µ = vp(x) and σ = vp(y).
Then we can write the coordinates as

x = mpµ, y = npσ.

Plugging them into the equation of the elliptic curve, we have

n2p2σ = m3p3µ + am2p2µ + bmpµ.

If σ and µ are negative, then by the properties of the p-adic valuation we have 2σ = 3µ.
Therefore, there exists v ∈ Z+ such that µ = −2v and σ = −3v, so we can filter the rational
points based on the p-adic valuation of their coordinates.

Let E(pv) denote the set of rational points such that

E(pv) = {O ∪ (x, y) ∈ E(Q) : vp(x) ≤ −2v, vp(y) ≤ −3v}.

Then, we obtain a chain of inclusions

E(Q) ⊂ E(p) ⊂ E(p2) ⊂ . . .
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(In p-adic topology, we have built a chain of neighborhoods around the identity O.)
Our goal is to show that the only torsion point in E(p) is O. We first make a transfor-

mation to move the infinite point O to the origin. Let

t =
x

y
, s =

1

y
,

then the curve y2 = x3 + ax2 + bx+ c becomes

s = t3 + at2s+ bts2 + cs3.

This transformation is bijective except for points of order 2, i.e., when y = 0.
Let (x, y) ∈ E(pv) be a point in the xy-plane, then for its corresponding point (t, s) in

the ts-plane, we have

vp(t) = vp

(
x

y

)
= −2(v + k)− (−3(v + k)) = v + k ≥ v,

vp(s) = vp

(
1

y

)
= −(−3(v + k)) ≥ 3v.

Next, we compute explicit formula for the group law in ts-plane. Let P = (t1, s1) and
Q = (t2, s2) be two distinct points, then the line passing through P and Q is given by

y = αx+ β, α =
s2 − s1
t2 − t1

.

Since P and Q are on the curve, we substitute in s = t3 + at2s + bts2 + cs3. After a bit of
algebra, we arrive at

α =
s2 − s1
t2 − t1

=
t22 + t1t2 + t21 + a (t2 + t1) s2 + bs22

1− at21 − bt1 (s2 + s1)− c (s22 + s1s2 + s21)
.

Similarly, we compute α when P = Q. The slope of the tangent line is given by

α =
ds

dt

∣∣∣∣
P

=
3t21 + 2at1s1 + bs21

1− at21 − 2bt1s1 − 3cs21
.

Since this is the same as the case with distinct P and Q, we simply use the former.
Let us compute vp(α) for later use and recall that vp(ti) ≥ v, vp(si) ≥ 3v. Note that for

the denominator we have vp(1− at21 − 2bt1s1 − 3cs21) = vp(1) = 0, so

vp(α) = vp(t
2
2 + t1t2 + t21 + a (t2 + t1) s2 + bs22) ≥ 2v.

Recall that β = s1 − αt1, so we also have vp(β) ≥ 3v.
We find the third intersection P ∗Q = (t3, s3) of the line y = αx+β with the transformed

curve by a procedure similar to when we computed explicit formulas for an elliptic curve in
Weierstrass form. We substitute in the equation of the line and use Vieta’s formula to arrive
at

t1 + t2 + t3 = −αβ + 2bαβ + 3cα2β

1 + aα + bα2 + cα3
.
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Since the identity in the ts-plane is (0, 0), P +Q has coordinates (−t3,−s3).
We then calcualte vp(t1 + t2 + t3). Since the denominator contains 1, and recall that

vp(α) ≥ 2v, vp(β) ≥ 3v, we have

vp(t1 + t2 + t3) = vp(αβ + 2bαβ + 3cα2β) ≥ 5v.

Since vp(t1), vp(t2) ≥ v, we have vp(t3) ≥ v as well, and we have shown that the points in
E(pv) are closed under addition and hence form a subgroup of E(Q). Moreover, we obtain
the relation that

vp(t(P ) + t(Q)− t(P +Q) ≥ 5v,

which could be turned into a homomorphism using the ring pvZp/p5vZp.
We are ready to complete the proof by showing that the only torsion point in E(p) is O.

Suppose P = (t, s) is a torsion point of order n, i.e., nP = (0, 0) and thus t(nP ) = 0. Let
vp(t) = v, which means that P ∈ E(pv) but P 6∈ E(P v+1). Then, by applying the above
relation repeatedly, we have

vp(nt− t(nP )) = vp(nt) ≥ 5v.

Suppose p - n, then vp(nt) = vp(t) = v, a contradiction.
Suppose n = kp, then we look at P ′ = kP = (t′, s′) which has order p. Let v′ = vp(P

′)
So similarly we have vp(pt

′) ≥ 5v but vp(pt
′) = v + 1, a contradiction.

Let us see how the Nagell-Lutz theoren can be used to compute torsion points through
an simple example.

Example. Consider the elliptic curve y2 = x3 + x. The only rational point of order 2 is
(0, 0). Let (x, y) be a rational torsion point. Since the discriminant D = −4, then y must be
±1,±2, or ±4. None of these cases are possible, so the only torsion points are {O, (0, 0)},
which form a group isomorphic to Z/2Z.

Mazur’s theorem gives us a characterization of all the possibilities of the structure of
rational torsion points of an elliptic curve. It is a beautiful and challenging theorem, and
the proof is beyond the scope of this paper.

Theorem 4.2 (Mazur). Let E(Q) be the group of rational points on a rational elliptic curve.
Then the torsion subgroup of E(Q) is isomorphic to

• either Z/nZ for 1 ≤ n ≤ 10, or n = 12

• or Z/2Z× Z/2mZ for 1 ≤ m ≤ 4.

5 Group of Rational Points on Elliptic Curves

In this section, we will provide a sketch of proof of the celebrated Mordell’s theorem, which
states that the group of rational points on an elliptic curve is finitely generated.
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We define a measure of “complexity” of a rational number where a rational number is
complex if it has a large denominator or numerator. Let the height H of a rational number
be

H
(m
n

)
= max{|m|, |n|},

and define the height of a point to be the height of its x-coordinate, i.e., H(P ) = H(x). We
are interested in how H(P +Q) compares to H(P ) and H(Q). For the ease of notations, we
use the additive counterpart of H denoted by h.

Definition 5.1. The height h(P ) of a point P is

h(P ) = logH(P ).

A nice property of the height function is that the set of points with height less than a
real number is finite.

Lemma 5.2. The set
P ∈ E(Q) : h(P ) ≤M

is finite for any M ∈ R.

Proof. If h(P ) ≤ M , then H(P ) ≤ eM , so there are finite choices for the numerator and
denominator for x, so the set of x-coordinates is finite. Since each x-coordinate corresponds
to two possible y-coordinates, the set of points is also finite.

By the following lemmas, we see how the height function behave with respect to the
adding and doubling points, which allows us to translate the geometric group operation to
number theoretic information given by the height function.

Lemma 5.3. For a fixed rational point P0 and an arbitrary rational point P on an elliptic
curve,

h(P + P0) ≤ 2h(P ) + κ0

for some constant κ0 specific to the curve and dependent on the choice of P0.

Lemma 5.4. For a rational point P on an elliptic curve,

h(2P ) ≥ 4h(P ) + κ

for some constant κ specific to the curve.

We note that the above two lemmas simply characterize the behavior of the height func-
tion and do not rely on any fact about elliptic curves as we have explicit formulas for adding
and doubling points. The proof of Lemma 5.3 simply involves direct algebraic computation
with the formulas and applying triangle inequalities. The proof of Lemma 5.4 is a bit more
involved as we need to show that doubling the point increases the height of the point by a lot,
so there cannot be too much cancelling happening with the numerator and the denominator.
We do so by writing x(2P ) as a function of f(x) and f ′(x), and proving a more general
bound on the height of quotients of polynomials evaluated at a rational number.

The crux of Mordell’s theorem lies in the following key lemma.
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Lemma 5.5. The index [E(Q) : 2E(Q)] is finite.

The proof is quite subtle and relies on a homomorphism φ that factors the duplication
map P 7→ 2P . φ maps C to a closely related curve C, and applying φ twice gives us C again
after an appropriate scaling.

Equipped with the above lemmas, we are ready to prove Mordell’s theorem. The main
idea of the proof is in a similar vein to infinite descent. We start with an arbitrary point
and produces a smaller point with the size of points measured by the height function, and
show that we arrive at a finite set, and thus the entire group is finitely generated as we can
reverse the descent procedure.

Theorem 5.6 (Mordell). The group of rational points E(Q) on an elliptic curve is a finitely
generated abelian group.

Proof. Let [E(Q) : 2E(Q)] = n, and pointe Q1, . . . ,Qn be the representatives for each coset
of 2E(Q). Therefore, for a point P0 ∈ E(Q), we can repeatedly perform the operation

Pk = Qik + 2Pk+1

to arrive at the expansion

P = Qi1 + 2Qi2 + 4Qi3 + · · ·+ 2m−1Qim + 2mPm.

Consequently, it suffices to show that for large enough m, we can obtain a bound for the
height of Pm independent of the initial point P , which implies that the Qi’s and the finite
set of points less than a certain height generate E(Q).

We use the bounds in Lemma 5.3 and Lemma 5.4 to show that the height of each Pk+1 is
proportionally smaller than Pk. Take −Qi to be the fixed point, then for any point Pk, we
have

h(Pk −Qik) = h(2Pk+1) ≤ 2h(P ) + κi.

Let κ = maxκi, we combine the bounds and find that for all Qi, we have

h(2Pk+1) ≤ 2h(Pk) + κ.

Recall that
h(2Pk+1) ≥ 4h(Pk+1) + κ′.

From the upper and lower bounds on h(2Pk+1), we obtain

4h(Pk+1) + κ′ ≤ 2h(Pk) + κ,

which we rewrite as

h(Pk + 1) ≤ 3

4
h(Pk)−

1

4
(h(Pk)− (κ+ κ′)) .

Therefore, if h(Pk) > κ+ κ′, we can always find Pk+1 whose height is smaller by a factor of
3/4. So we are guaranteed with a positive integer m such that Pm ≤ κ + κ′, which finishes
our proof.
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