Papers for Euler Circle Combinatorics, Summer 2021 Session 1
Aathmanathan Muruganathan:
An introduction to Ramsey theory
Alex Cao, Sparsho De, and Amit Saha:
Pattern avoidance in permutations
Amandip Dutta:
Pattern-avoiding permutations
Anant Asthana:
Ramsey theory: extensions and applications
Arjun Kulkarni:
Linear programming
Arpit Mittal:
Matroids
Ashwin Rajan:
Catalan numbers
Atticus Kuhn:
Hyperplane arrangements
Darren Yao:
Roth's theorem on arithmetic progressions
Eric Cohan:
Matroids
Eugenie Cha:
Division, combinatorially
Ishaan Patkar:
The Catalan numbers
Ishwar Suriyaprakash:
A tutorial on Catalan objects
Jackie Carson:
Couting permutations for acceptable harmonization in a four-voice chorale
Josh Zeitlin:
Homomesic functions
Maria Chrysafis:
Introduction to matroid theory
Medha Ravi:
Linear programming
Mehana Ellis:
Introduction to hyperplane arrangements
Nandana Madhukara:
An introduction to topological combinatorics
Neil Makur:
An introduction to topological combinatorics
Om Awate, Adityavardhan Iyengar, Sarth Chavan, and Rohan Kalluraya:
Q-analogues
Parth Chavan:
Combinatorial species
Riley O'Sullivan:
Necklace splitting
Shraya Pal:
Geometry of posets
Sidharth Sharma:
Catalan objects
Sophie Vulpe:
Ehrhart polynomials
Tanya Sinha:
Introduction to the probabilistic method
Valentio Iverson:
Topics in additive combinatorics
Vaughn Komorech:
Convex polytopes
Yash Agarwal:
Differential posets