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Abstract

The concept of a matroid was first introduced by Hassler Whitney to bridge linear algebra
and graph theory. Shortly after Whitney’s publication, it was noted that matroids were also
useful in projective geometry, transversal theory, amongst other areas. This paper will
serve as an introduction to finite matroid theory, introducing some important terminology
- such as rank, duality, deletion, and contraction - while simultaneously highlighting some
fascinating properties about matroids. In particular, we will discuss an algorithm to find
basis of maximal weight and prove the matroid union theorem. Along the way, we will also
prove cryptomorphic definitions for some terms, like bases and rank.

1 Introduction to Matroid Theory

1.1 Matroid Definition

Definition 1. A matroid is a set E, often called the ground set, coupled with a collection of
independent subsets of E, denoted I subject to the following:

(I1) ∅ ∈ I.

(I2) All subsets of an independent set are independent.

(I3) If I1, I2 ∈ I with |I1| < |I2|, then there exists an e ∈ I2 \ I1 with I1 ∪ {e} ∈ I.

Example 1. Perhaps the simplest example of a matroid is a free matroid, where I consists of
all subsets of E. We can verify this is a matroid; (I1) holds because the empty set is a subset of
E; (I2) holds because any subset of a subset of E is still a subset of E; a stronger rendition of
(I3) holds because for all e ∈ I2 \ I1, I1 ∪ {e} ∈ I.

Example 2. Another simple example of a matroid is the uniform matroid, denoted Un,k. If
|E| = n and we let I consist of all subsets of E with cardinality less than or equal to k, then
(E, I) represents Un,k and indeed forms a matroid. We can verify this: (I1) holds if k ≥ 0,
(I2) holds by construction, and the stronger rendition of (I3) holds, since for all e ∈ I2 \ I1,
I1 ∪ {e} ∈ I. Notice that the free matroid is just the uniform matroid Un,0.

Example 3. Matroids are also deeply connected to graphs, and we can form a matroid out
of a graph. We can let E represent the collection of edges and let some subset of edges be
independent iff it is acyclic (i.e. a spanning forest). We can verify that such a construction
forms a matroid. (I1) and (I2) hold because with no edges, we cannot form a cycle, and any
subgraph of an acyclic graph is bound to be acyclic as well. As for (I3), if there exists an edge
e = (u, v) where v ∈ I2 \ I1, then I1 ∪ {e} is bound to stay acyclic. Hence, if Vj represents the
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set of nodes in Ij , then V2 ⊆ V1 =⇒ |V1| > |V2|. By nature of forests if I1 and I2 have C1 and
C2 connect components respectively, then:

|V1| = |I1|+ C1 ≥ |I2| = |I2|+ C2.

Since |I1| < |I2|, C1 > C2, so there must be an edge in I2 \ I1 that bridges to connected
components of I1 together. As such, (I3) will always hold.
We denote such a matroid constructed from a graph G as M(G).

Example 4. We can also form matroids out of vector spaces. Suppose we have a vector space
V : we can let the ground set E be the set of objects in V and I be the collection of linearly
independent subsets of E. As for verifying that (E, I) forms a matroid, (I1) and (I2) clearly hold.
Moving on to (I3), assume that it did not hold or that there was an I1, I2 ∈ I with |I1| < |I2|,
for all e ∈ I2 \ i1, I1 ∪ {e} /∈ I. This means that:

I2 \ I1 ⊆ span(I1) =⇒ I2 ⊆ span(I1) =⇒ span(I2) ⊆ span(I1).

Since I1 and I2 are independent, this means that |I2| ≤ |I1|, a contradiction to the assumption
that |I1| < |I2|. Hence, indeed, (I3) holds and (E, I) forms a matroid.

1.2 Bases

Like bases in vector spaces, we also have bases of matroids:

Definition 2. The basis of a matroid is a maximal independent set.

Lemma 1. The bases in a matroid all have the same cardinality.

Proof. Assume, by sake of contradiction, that we have two bases B1, B2, where, without loss
of generality, |B1| > |B2|. In such a case, by (I3) we can chose an e ∈ B2 \ B1 such that
B1 ∪ {e} ∈ I. However, this contradicts the alleged maximality of B1, and so we reach a
contradiction. It follows that all bases have the same cardinality. �

Lemma 2. The set of bases, B, satisfies the following:

(B1) B 6= ∅.

(B2) If B1, B2 ∈ B, then given an x ∈ B1\B2, there is an y ∈ B2\B1 such that (B1\{x})∪{y} ∈
B.

Proof. (B1) is clearly true, since we are examining finite matroids, so we devote most of our
attention to (B2). By (I2), we know that given an x ∈ B1 \ B2, B1 \ {x} is independent, and
since all bases have the same cardinality, |B1 \{x}| < |B2|. Therefore, by (I3), there must exist a
y ∈ B2\(B1\{x}) = B2\B1 such that (B1\{x})∪{y} ∈ I. However, notice that (B1\{x})∪{y}
has the same cardinality as B1, so it must be a basis as well. And so, the desired follows. �

Interestingly enough, (B1) and (B2) characterize bases:

Lemma 3. If E is some arbitrary set, and B is a set obeying (B1) and (B2), with I the collection
of subsets of elements of B, then (E, I) forms a matroid.
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Proof. It is not hard to see that (I1) and (I2) hold, so we will devote our attention to showing that
(I3) holds too. Suppose, by sake of contradiction, that (I3) did not hold for some independent
sets I1, I2 with |I1| < |I2|. Since I1, I2 ∈ I, they must be contained in some elements of B, say
B1 and B2. Notice that (I2 ∩ B1) \ I1 = ∅. If, on the contrary, there existed some element
e ∈ (I2 ∩ B1) \ I1, then I1 ∪ {e} would be independent, contradicting the assumption that (I3)
fails. As a consequence of (I2 ∩B1) \ I1 being empty, we have that:

I2 \ I1 = I2 \B1.

As it is not clear how to proceed, we can artificially create constraints on B1 and B2. In
particular, there exist a valid B1, B2 such that B2 \ (I2 ∪ B1) = ∅. As such, we can constrain
B1, B2 to minimize |B2 \ (I2 ∪ B1)|. With this constraint, it is clear why B2 \ (I2 ∪ B1) = ∅; if
there was an element e ∈ B2 \ (I2 ∪ B1), then there would also be an f ∈ B1 \ B2 such that
(B2 ∪ {f}) \ {e} ∈ I. However, (B2 ∪ {f}) \ {e} would be a better choice than B2. So, indeed,
B2 \ (I2 ∪B1) = ∅ and as such:

B2 \B1 = I2 \B1.

Seeing the intrinsic symmetry between B1 and B2, we may also wonder if B1 \(I1∪B2) is empty.
Indeed, it is, and we can see so by assuming the contrary. If there existed some x ∈ B1\(I1∪B2),
then we could always find a corresponding y ∈ B2 \B1 = I2 \ I1 with (B1 \ {x})∪ {y} ∈ B. But
this contradicts our assumption that (I3) fails for I1, I2, since I1∪{y} ⊆ (B1 \ {x})∪{y}. Thus,
we have that:

I1 \B2 = B1 \B2 ⊆ I1 \ I2.

However, this implies that |I2 \ I1| = |B2 \ B1| = |B1 \ B2| ≤ |I1 \ I2|, which contradicts the
assumption that |I1| < |I2|. As such, we reach a contradiction, and the desired follows. �

Proposition 1. For some graph G, M(G)’s bases are the spanning trees of G.

1.3 Bases of Maximal Weight

Suppose that we have a matroid and a weight function that assigns elements of E positive
weights, and we want to chose the basis of maximal weight. How would we do that. We claim
that the following algorithm, which we call algorithm 1, returns a basis of maximal weight:

• Initialize a set S = ∅; after the end of this algorithm, S will be the basis of maximal
weight.

• Iterate through the elements in E in decreasing order of weights, and add an element e ∈ E
if S ∪ {e} ∈ I.

Lemma 4. Algorithm 1 produces a basis of maximal weight.

Proof. We alternatively prove that at each iteration, S can be extended to a basis of maximal
weight. Let the status of S at the ith iteration be Si, indexed such that S0 = ∅. We claim that
if Si can be extended to a basis Bi of maximal weight, then Si+1 can also be extended to a basis
of maximal weight. Indeed, this is clearly true if Si = Si+1 or in other words, we do not pick
the i + 1th element. Similarly, if the i + 1th element belongs to Si, then we can let Bi+1 = Bi.
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Let us call the i + 1th element we consider ei+1. We only need to consider what happens when
Si ∪ {ei+1} ∈ I and ei+1 /∈ Bi. In such a case, by (B2), Si ∪ {ei+1} can be extended to some
arbitrary basis B′, where |B′ \ Bi| = |Bi \ B′| = 1 or in other words, B′ = (Bi−1 ∪ {ei+1}) \ ej
for some j > i + 1. Notice that the weight of B′, denoted w(B′) is as follows:

w(B′) = w(Bi−1) + w(ei+1)− w(ej) ≥ w(Bi). (1)

That is, B′ has a weight that is equal to that of Bi. So indeed, we can let Bi+1 = B′. That is,
all Si can be extended to a basis.
But the proof is not complete: it is possible that algorithm 1 does not actually return a basis.
Suppose that this is the case. Then, we know that no element in E \ S can be added to S
while maintaining S’s independence. That is, S cannot be extended to a basis. But this is a
contradiction, so as desired, algorithm 1 does not only return a basis, but a basis of maximal
weight. �

Note 1. We can slightly modify algorithm 1 to produce a basis of minimal weight. Simply
iterate through the elements of E in increasing order of weights. The proof that algorithm 1
works is completely analogous.

Lemma 5. If for all weight functions w, algorithm 1 returns a basis of maximal weight, then
(E, I) is a matroid.

Proof. This is equivalent to showing that if (E, I) is not a matroid, then we can find some weight
function that makes algorithm 1 fails. There can be three reasons why (E, I) is not a matroid:
either (I1), (I2), or (I3) does not hold.
Suppose that (I2) does not hold for two sets I1, I2; that is, I1 ⊂ I2, I2 ∈ I, but I1 /∈ I. Then,
we want to construct a weight function that fails. Intuitively, if we want the algorithm to fail,
we should first process elements of I1, then the elements of I2, and then the elements in neither
I1, nor I2. So naturally, we construct the following weight function:

w(ei) =


2 ei ∈ I1

1 ei ∈ I2 \ I1
0 ei /∈ I2

.

Hopefully, our weight function fails. Indeed, it will, since the final weighting of our basis is less
than 2|I1|+ |I2 \ I1|. However, this weighting is not optimal: we could have chosen the basis I2
and achieved better weighting.
Now, consider the case where (I3) fails; that is, there is an I1, I2 ∈ I with |I1| < |I2| and for all
e ∈ I2 \ I1, I2 ∪ {e} /∈ I. Intuitively, we want to ensure that we do not pick elements of I2 \ I1,
so we come up with the following weight function:

w(ei) =


1 + 1

2|I1| ei ∈ I1

1 ei ∈ I2 \ I1
0 ei /∈ (I2 ∪ I1)

.

Algorithm 1 will produce a basis of weight:

|I1| ·
(

1 +
1

2|I1|

)
= |I1|+

1

2
,

but we could have done better had we selected I2: we would have been able to achieve at least
|I2|. And thus, algorithm 1 will fail in such a case. �
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Question 1. Devise an algorithm that returns a maximal spanning forest of a graph.

Using algorithm 1, we can almost immediately devise such an algorithm:

• Initialize a set S = ∅; at the end of this algorithm, S will be the basis of maximal weight.

• Sort the edges e ∈ E in decreasing order of weight.

• Add the edge e to S is {e} ∪ S is acyclic.

This is called Kruskal’s algorithm. In practice, it is frequently used in sparse graphs (an alter-
native maximal spanning tree algorithm called Prim’s algorithm is faster for dense graphs).

Question 2. Suppose we have a set of tasks to complete, each of which has a corresponding due
date. Each task takes a day complete, and you cannot be on working at multiple tasks at once.
For each task, if you complete it, you gain some points (the amount of points varies depending
on the task). In what order should you attempt the tasks so as to maximize the amount of
points received?

We need to transform this problem into the language of matroids. We need some notion of
independence.

We can let any set of tasks which can all be completed before the deadline be independent.
In particular, iff an element S ∈ I, then all tasks in S can all be completed in time. We speculate
that (E, I) forms a matroid.
Indeed, (E, I) does form a matroid. We can verify (I1): ∅ ∈ I because naturally, if we chose
zero tasks, we can complete them all in time. Similarly, (I2) holds: if we can complete some set
of tasks, then we can also complete a subset of those tasks.
Proving (I3) is slightly more involved. Chose two sets X,Y that are independent with |X| < |Y |.
Let t0 be the first time in which more tasks in X have deadline before or at t0 than in Y. That
is, t0 is the first point in time at which Nt(X) ≥ Nt(Y ), where Nt(A) is the number of tasks
in A whose deadline is t or earlier. This definition of Nt(A) is particularly telling because if
for all t ∈ [0, n], Nt(A) ≤ t, then A is independent; so if we can find an e ∈ Y \ X such that
Nt(X ∪ {e}) ≤ t for all t ∈ [0, n], then we are done.
In attempt to find such an element e, let y be an element in Y \ X such that its deadline is
time t0 + 1. We know that Nt(X ∪ {y}) = Nt(X) ≤ t for all t ∈ [0, t0]. At the same time,
Nt(X ∪ {y}) = Nt(X) + 1 ≤ Nt(Y ) ≤ t for all t ∈ [t0 + 1, n]. That is, Nt(X ∪ {y}) ≤ t for all
t, so X ∪ {y} must be independent. Indeed, from this construction, (I3) holds and (E, I) forms
matroid.
Now that (I3) forms a matroid, we can modify algorithm 1 to find the optimal ordering of tasks:

• Initialize a set S = ∅.

• Sort R, the set of monetary rewards for completing a task, in decreasing order. Permute
D, the set of deadlines, accordingly.

• Iterate over the tasks, in the order which the appear in R, and add a task t iff we can
complete all tasks in S ∪ {t} before the deadline.

At the end of this process, by algorithm 1, we know that S will return a basis of maximal length.
From here, formally solving (2) is left as an exercise to the reader.1

1As a challenge, devise an algorithm that works in O(N logN) time, where N is the number of tasks. This
will require some other data structures, though.
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1.4 Rank

There are many equivalent definitions of rank. Perhaps the simplest one is that rank maps a
subset S of E to the cardinality of the maximal independent subset of S.

Lemma 6. The rank function r : 2E → Z satisfies the following properties:

(R1) r(X) ∈ [0, |X|].

(R2) If X ⊆ Y , then r(X) ≤ r(Y ).

(R3) For all, X,Y :
r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Proof. Let the maximal independent subset of X ∩ Y be I1, and extend I1 to I2, a maximal
independent set in X ∪ Y . We can partition I2 = I3 ∪ I4 ∪ I5, where I3 ∈ X \ Y, I4 ∈ Y \X, and
I5 ∈ X ∩ Y . It is not hard to see that r(X ∪ Y ) = |I2| = |I3|+ |I4|+ |I5|. Furthermore, we know
that since I1 ∪ I3 ⊆ I2, r(X) ≥ |I1|+ |I3|. Similarly, r(Y ) ≥ |I1|+ |I4|. Thus, we have that:

r(X) + r(Y ) ≥ 2|I1|+ |I3|+ |I4| = r(X ∪ Y ) + r(X ∩ Y ),

from which the desired follows. �

Lemma 7. Let r : 2E → N, where r satisfies (R1) through (R3). Then, if r(X ∪ {y}) = r(X)
for all y ∈ Y , r(X ∪ Y ) = r(X).

Proof. We can prove so via induction. Suppose that Y \ X = {y1, y2, . . . , yn+1}, and assume
that the desired is true when |Y \X| ≤ n. Notice that:

r(X) + r(X) = r(X ∪ {y1, . . . yn}) + r(X ∪ {yn+1})
≥ r(X ∪ {y1, . . . yn, yn+1}) + r(X),

from the submodularity of the rank function. As a consequence, we see that r(X ∪ (Y \X)) =
r(X) or r(X ∪ Y ) = r(X). �

Lemma 8. Let E be some arbitrary set and r : 2E → N, which satisfies (R1), (R2), and (R3).
Let I be the collection of subsets S of E which satisfy r(S) = |S|. Then, (E, I) forms a matroid.

Proof. Showing that (I1) holds is not terribly hard, so we devote our attention to proving (I2)
and (I3). To prove (I2), let I1 ∈ I with I2 ⊆ I1. By the submodularity of the rank function, we
know that:

r(I2 ∪ (I1 \ I2)) + r(I2 ∩ (I1 \ I2)) ≤ r(I2) + r(I1 \ I2),

which implies that:

|I1| = r(I1) ≤ r(I2) + r(I1 \ I2) ≤ |I2|+ |I1 \ I2| = |I1|.

The inequality must be equality and so r(I2) = |I2|, which implies that I2 ∈ I.
As for (I3), assume, by sake of contradiction, that it does not hold. Then, there must be
an I1, I2 ∈ I with |I1| < |I2| for which r(I1 ∪ {e}) 6= |I1 ∪ {e}| for all e ∈ I2 \ I1. Notice
|I1| + 1 > r(I1 ∪ {e}) ≥ r(I1) = |I1|, so r(I1 ∪ {e}) = |I1|. By the previous lemma, this implies
that r(I1) = r(I1 ∪ I2). However, this implies that I1 ≥ I2, a contradiction. Thus, our original
assumption that (I3) fails is fallacious. �

Definition 3. An element for which r({e}) = 0 is called a loop.
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1.5 Duality, Deletion, and Contraction

Proposition 2. If M is a matroid with set of bases B and we define B∗(M) as {E \B : B ∈ B},
then B∗ is the set of bases of some matroid M∗.

Proposition 3. M∗ is a matroid with rank function:

r∗(X) = |X| − r(E) + r(E \X).

Proof. (R1) and (R2) are clearly true, so we proceed to show that (R3) holds:

r∗(X ∩ Y ) + r∗(X ∪ Y ) = |X ∪ Y |+ |X ∩ Y | − 2r(E) + r(E \X) + r(E \ Y )

= |X|+ |Y | − 2r(E) + r((E \X) ∩ (E \ Y )) + r((E \X) ∪ r(E \ Y ))

≤ |X|+ |Y | − 2r(E) + r(E \X) + r(E \ Y )

= r∗(X) + r∗(Y ).

Hence, indeed r∗ is the rank function of some matroid, we just need to show that it is the
rank function of the dual matroid. Given the rank function, we can construct the collection of
independent sets by letting I∗ be the collection of subsets of E for which their rank is equal to
their cardinality. So, if I is a base of M∗, then

r∗(I) = |I| − r(E) + r(E \ I) = |I| = r∗(E).

That is, r(E) = r(E \ I), so E \ I is a basis in M. �

Definition 4. The deletion of S from M is defined to be:

M \ S = (E \ S, {I ⊆ E \ S : I ∈ I}) .

Definition 5. The restriction of M to S is defined to be:

M |S = (S, {I ⊆ S : I ∈ I}).

Definition 6. The contraction of S from M is defined to be:

M/S = (M∗ \ S)∗.

Definition 7. A matroid M1 is a minor of M if it can be achieved via a sequence of deletions
and contractions.

Proposition 4. rM/T (S) = rM (S ∪ T )− rM (T ).

Proof. We know that:

rM/T (S) = |S|+ rM∗\T (E \ (S ∪ T ))− rM∗\T (E \ T )

= |S|+ r∗(E \ (S ∪ T ))− r∗(E \ T )

= |S|+ |E \ (T ∪ S)| − |E \ T |+ rM (T ∪ S)− rM (E)− rM (T ) + rM (E)

= |S|+ |E \ (T ∪ S)| − |E \ T |+ rM (T ∪ S)− rM (T )

= rM (T ∪ S)− rM (T ).

�
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Proposition 5. If G is a graph, then for all subsets T of G:

M(G) \ T = M(G \ T ).

M(G)/T = M(G/T ).

Proof. It is clear that M(G) \ {e} = M(G \ e), so by induction, M(G) \ T = M(G \ T ). As for
contractions, if e is a loop of G, then the desired holds, so we can assume it is not a loop. If I
is acyclic in G/e, then I ∪ {e} must be acyclic in G. In other words, the set of independent sets
in M(G)/e is the same as the set of independent sets in M(G/e), so indeed, by induction, the
desired holds. �

Corollary 1. Graphic matroids are closed under taking minors.

Note 2. Analyzing excluded minors is a very rich topic in matroid theory. For example, based
solely on forbidden minors, we can determine if a matroid is graphic. Similarly, just by looking
at excluded minors, we can tell if a matriod is linear.

1.6 Matroid Union Theorem

Theorem 1 (Weighed Matroid Union Theorem). If M1,M2, . . .Mn are matroids with rank
fucntions r1, r2, . . . rn operating on a common ground set E, then (1) and (2) are equivalent:

(1) There is a w−covering of E with V1, V2, . . . Vn and Vi independent in Mi.

(2) For all A ⊂ E:
n∑

i=1

ri(A) ≥
∑
e∈A

w(e).

Proof. One direction is easy, namely showing that (1) =⇒ (2). In particular, we know that:

∑
e∈A

w(e) =
n∑

i=1

|A ∩ Vi| ≤
n∑

i=1

ri(A),

provided that there is a w−covering of E with V1, V2, . . . Vn and Vi independent in Mi.
As for the other direction, induct on E and suppose that equality for (2) holds for some A
or in other words, that

∑n
i=1 ri(A) =

∑
e∈Aw(e) for some A. We know that there is a w|A-

covering using U1, U2, . . . Un, where Ui is independent in Mi|A. Similarly, there is a w|E\A cov-
ering of E \ A on M1/A,M2/A, . . .Mn/A for some U ′i . We know that the new rank function
r′i(S) = ri(S ∪B)− ri(S), so (2) is satisfied. Letting, Vi = Ui ∪ U ′i , the desired follows.
However, it may not be the case that equality sometimes holds: we could have strict inequal-
ity. In such a case, pick an e for which w(e) > 0 and an i for which ri(e) > 0. Consider
M1, . . . ,Mi/e, . . .Mn and a weight function w′, where w′ ≡ w|E/e, but w′(e) = w(e) − 1. Since
(2) holds, there is a covering using V1, . . . , V

′
i , . . . Vn by our inductive hypothesis. If we let

Vi = V ′i ∪ {e}, then Vis are a a valid w−covering. So indeed, the desired holds.
We have exhausted all cases, so indeed (1)⇐⇒(2). �

Corollary 2. if M1,M2, . . .Mn are matroids with rank functions r1, . . . rn operating on a com-
mon ground set E, then (1) and (2) are equivalent:
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(1) There are ∪ki=1Vi = E, where Vi is independent in Mi for all i.

(2) For all A ⊂ E,
n∑

i=1

ri(A) ≥ |A|.

9


