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Abstract. In this paper we go through a few application of topology in combinatorics.
We will see how combinatorial problems can be elegantly solved using topological methods
like the Borsuk-Ulam Theorem and Brouwer’s Fixed Point Theorem.

1. Introduction

In 1978, Lovász proved Kneser’s Conjecture and this proof marked the birth of a new
field in mathematics called topological combinatorics. By using topological concepts like the
Borsuk-Ulam Theorem, Lovász was able to prove a combinatorial problem. After this, there
have been many applications of topology in combinatorics and in this paper we will go over
a few.

2. Basic Topology

Before we go on, we will need to have to know the basics of topology. This paper will not
go into to too much depth since the goal is to study the applications of the field. Topology
is the study of geometric objects under continuous deformations: this includes stretching,
squishing, folding, or any other transformation that does not cut the object. The moti-
vation of topology is to study objects not based on their actual shape but more general
characteristics. We start topology by defining our space

Definition 2.1. If X is some set and τ is a set of subsets of X, the ordered pair (X, τ) is
considered topological space if three properties are satisfied

(1) The empty set and X are in τ
(2) The union of any number elements of τ is in τ
(3) The intersection of any number elements of τ is in τ

Additionally, for any topological space (X, τ), τ is said to be a topology on X.

Now that we have defined our space, we can start defining concepts in topology. One
concept we will be using is called homotopy.

Definition 2.2. Let X and Y be topological spaces and f and g be functions from X to Y .
A function H : X × [0, 1]→ Y is a homotopy between f and G if

H(x, 0) = f(x), H(x, 1) = g(x)

for all x ∈ X.

There is an conceptual way of thinking about this definition by looking at [0, 1] as a con-
tinuous time interval. If we have two continuous functions and we can deform one function
into the other function over this time interval, the deformation is called a homotopy and the
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Figure 1. Homotopic Paths

condition H(x, 0) = f(x), H(x, 1) = g(x), is the just the initial conditions for the deforma-
tion. For example, if we have two paths between two points, which are functions, we can
stretch and squish one path to form the other, the paths are homotopic and the way we
streched and squished the path is a homotopy. This can be seen in Figure 1.

Definition 2.3. For a given function f , its homotopy class is the set of all functions that
are homotopic to f .

Now we us define homotopy groups.

Definition 2.4. If b1 is the base point of the n-sphere Sn = {x ∈ Rn+1 | |x| = 1} and b2
is the base point of some topological space X, the nth homotopy group πn(X) is the set of
homotopy classes of the functions

f : Sn → X

that map b1 to b2.

Using this, we can define n-connectedness.

Definition 2.5. A topological space X is n-connected if its first n homotopy groups are
trivial. Connectedness is denoted with conn(X).

We are done with our definitions now but any field is pointless without theorems that use
the definitions so one of the topological theorems that we will be using is the Borsuk-Ulam
Theorem.

Theorem 2.6 (Borsuk-Ulam). If the function f : Sn → Rn is continuous, there exists
x ∈ Sn such that f(x) = f(−x).

Corollary 2.7. There are always a pair antipodal points on Earth with exactly the same
temperature and pressure.

Proof. Temperature and Pressure are functions f : S2 → R2 and applying 2.6 gives us
f(x) = f(−x) which are antipodal points. �

Another theorem we will using is Brouwer’s Fixed Point Theorem.

Theorem 2.8 (Brouwer’s Fixed Point Theorem). If D2 is a disk in R2 and f : D2 → D2

is a continuous function, f always has a fixed point i.e. there always exists a point x ∈ D2

such that f(x) = x.
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3. Proof of the Kneser Conjecture

As stated in the introduction, Lovász’s proof was the first application of topological com-
binatorics so we will be starting with this. First we define chromatic numbers.

Definition 3.1. Let the chromatic number of a graph χ(G) is the least number of colors
needed to color G such that adjacent vertices are not the same color.

From now on, let colarable meant that adjacent vertcies are not the same color.

Definition 3.2. A Kneser Graph K(n, k) is a graph where vertices are k element subsets of
[n] and are connected with an edge if the subsets are disjoint.

Now the Kneser Conjecture is

Conjecture 3.3 (Kneser).

χ(K(n, k)) = n− 2k + 2.

Before we use topology we need to define a few things. For a graph G, let N (G) be the
set of a vertices that share a neighbor. This is known as the neighborhood complex. Note
that N (G) is topological space since it satisfies all three conditions. Now we prove this
proposition.

Proposition 3.4. For any graph G,

χ(G) = conn(N (G)) + 3.

Then since N (K(n, k)) is n + k − 1 connected, from this proposition, we can prove the
Kneser Conjecture. All that is left is to prove the proposition. Before we go on, we state the
Borsuk-Ulam Theorem in another way.

Corollary 3.5. If there is an antipodal continuous map f : Sn → Sm, then m > n.

Proof 3.4. First let conn(N (G)) = k. Now if G is m colorable, this means that there is a
graph homomorphism G→ Km from G to the complete graph Km. This roughly means that
there is a map from G tp Km that maintains the structure. This must mean that the graph
homomorphism N (G)→ N (Km) also exists. With this and the fact that conn(N (G)) = k,
we can construct the an antipodal continuous map f : Sk+1 → Sm−2. By our new Borsuk
Ulam Theorem, we have

m− 2 > k + 1 =⇒ m > k + 3.

Therfore the minimum number of colors needed color G or χ(G) is k + 3 = conn(N (G)) +
3. �

4. The Necklace Problem

Another application of the Borsuk-Ulam Theorem is in the Necklace Problem.

Proposition 4.1. Let there be 2d > 2 jewels on a string where each jewel is one of n types.
It is always possible to use n or fewer cuts to cut and divide the substrings among two people
where each person gets the same number of jewels of each type.

An example of this proposition is shown in Figure 2.
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Figure 2. Example of cutting and division of a necklace

Proof. Our first step is to convert our problem into a continuous one. First we put our
string, say of length 1, on a number line and split our string into 2d regions. Then we color
each region depending on the jewel type in that region. Now the way we cut our string is
by picking numbers between 0 and 1. If our cut is in the middle of a “jewel region”, we just
round down to the next highest “jewel region.”

Now that we have a continuous problem, we can start using the Borsuk-Ulam Theorem.
The way we do this is by first creating a bijection betwen points on a n-sphere and ways of
cutting and dividing the jems. Recall that the n-sphere is all points (x1, x2, · · · , xn+1) such
that

x21 + x22 + · · ·+ x2n+1 = 1.

We can encapculate this information in our string of length 1 with n jewels. Cutting with
n cuts is equivilant to finding n + 1 numbers x21, x

2
2, · · · , x2n+1. Then the sign of the square

root tells us which person to give the jewels to. Therefore every point on a n-sphere can be
uniquely created into a cutting and division of string of length 1 with n jewels.

Now let f : Sn → Rn be a continuous function and Sn is a n-sphere. Using what we got
above, f is a continuous function that maps a cutting and division of a string of length 1 with
n jewels to Rn. Now let a point in Rn represent the number of jewels the first person gets
of each type. Now by the Borsuk-Ulam Theorem, there must exist a point f(x) = f(−x).
If x, a point on the n-sphere, is some cutting and division, −x is the same cutting but we
flip who get’s each substring we cut. Now f(x) is the number of jewels of each type the first
person gets, and f(−x) is the number of jewels of each type the first person would get if
the divisions were flipped among the people or the number of jewels of each type the second
person currently has. Therefore f(x) = f(−x) says that the number of jewels of each type
the first person gets is the same as the number of jewels of each type the second person gets.
Therefore there always exists a fair division. �

5. Inscribed Rectangle Problem

A fairly famous unsolved problem is the inscribed square problem:

Question 5.1. Can we always inscribe a square in any loop?

However a weaker version of this problem that we can prove is the inscribed rectangle
problem:

Proposition 5.2. It is always possible to inscribe a rectangle in any loop.

Proof. We can start this proof by noticing what need to form a rectangle. Rather than using
the orthodox method of defining a rectangle as a parallelogram with all right angles, we use
the fact that if we find two line segments that share a midpoint and are the same length, the
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Figure 3. A rectangle inscribed in a loop

for points form a rectangle. Therefore our goal is to find two inscribed line segments such
that they share a midpoint and are the same length. We can see an example in Figure 3.
Another way of thinking of our goal is by first placing the loop on the xy-plane. Then for
any inscribed line segment, we look at it’s midpoint and we plot a point in R3 with x and y
coordinates as the midpoint and a z coordinate as the length of the line segment. What we
will end up with is a surface above the loop and we must prove that it intersects itself.

To do this we visualize pairs of points differently. First we turn our loop into a line
sgement. Now we “plot” pairs of points by tilting our line segment 90 degrees and plotting
like Cartesian coordinates inside the square formed by the line segments. Now our plot is not
fully completed since we glue together edges that represent the same point. Namely opposite
sides of the square need to be glued and all pairs of points that are symmetric about the
NE diagonal need to be put together. By folding and gluing, we get the Möbius Strip. That
this means is that every point on the Möbius Strip represents a pair of points on our loop.
Also, note that the edge of Möbius Strip is when the pair of points are the same.

Now that we have this representation, since pairs of points define line segments, we must
now be able to map the Möbius Strip onto our surface. However, we have a restriction: the
edge of the Möbius Strip must map onto the loop. This is because the edge of the Möbius
Strip represents all points on the loop so this must map onto the part of the surface that is
the loop. Now we see that when we map the Möbius Strip, because of its nature and how it
is formed by twisting a strip, there must always be some point where the surface intersects
itself. This in turn means that there are two line segments that have the same midpoint and
have the same length so these four points make our rectangle. Therefore we are done. �

6. Hex Game

Topology can also be used in analyzing games. Consider the game Hex with the following
simple rules

(1) The game is played on a rhombus game board with pairs of opposite sides colored
red and blue and players are assigned to these opposite sides.

(2) The players take turns coloring cells in the game board with their color.
(3) Whichever player connects their two opposite sides with a path of their color wins.

An example game could look like Figure 4 where red has won.

Theorem 6.1 (Hex Theorem). Hex can never end in a draw.
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Figure 4. An example Hex gameboard

Proof. We start by abstracting the problem. This means converting our game board into a
graph where colorable vertices are the cells and the edges represent the adjacency of cells.
Note that the coloring discussed here does not have the restriction that adjacent vertices
have different colors. Now our goal is to prove that for any coloring of the graph there always
exists a path of vertices all colored c that connect opposite sides of color c.

Now we assume a contradiction that there is a draw. Now we define four sets:

R0 = {Red vertices that are in the a red path starting from the bottom}
R1 = {Red vertices not in R0}
B0 = {Blue vertices that are in the a blue path starting from the bottom}
B1 = {Blue vertices not in B0}

Now let e1 be a rightward shift of a vertex parallel to the top and bottom edges of the
gamboard and let e2 be an upward shift of a vertex parallel to the left and right edges of the
gameboard. Now we define a function f that maps vertices to vertices

f =


v + e2 v ∈ R0

v − e2 v ∈ R1

v + e1 v ∈ B0

v − e1 v ∈ B1

Since we have a draw, this function would not shift vertices off the board so everything is
defined. Now let us consider triangles in the graph. Each point in a triangle that have vertices
v1, v2, and v3 can be expressed as x =

∑
xivi where

∑
xi = 1. Now we apply our function

on our triangles to get f(x) =
∑
xif(vi) whichs is continuous. Now we get a homomorphism

between G and the disc D2 so f : D2 → D2. This means we can apply Brouwer’s Fixed Point
theorem and find that f must have a fixed point. Now let εi = {±e1,±e2} so f(vi) = vi + εi.
This means that∑

xif(vi) =
∑

xivi =⇒
∑

xivi +
∑

xiεi =
∑

xivi =⇒
∑

xiεi = 0.
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Without loss of generality, we can let x1 > 0 and ε1 = e1. Now one of the other epsilons
must be −e1. This results in two vertices of the same triangle being split among R0, R1, B0,
and B1 which is a contradiction. �
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