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1 Abstract

In this paper, we introduce Ramsey Theory and how it is related to graph
theory, discuss some important extensions and results of Ramsey’s Theory,
and consider some applications of Ramsey Theory in other fields of math as
well as in the real world.

∗Thanks to Mr. Simon Rubenstein-Salzedo and the Euler Math Circle

1



2 Introduction 2

2 Introduction

Throughout this paper, we will be talking in great detail about graphs, so
we introduce some terms and notation which will be used throughout this
paper.

For our purposes, graphs are defined as multiple nodes connected by
edges. As a note, throughout this paper, the words vertex and node will be
used interchangeably. Consider for example a graph G. A subgraph g ∈ G
is a smaller section or part of a graph G. A clique is a connected subgraph
of G. We say G is a complete graph if every node is connected to every
other node, and let Kn denote the complete graph with n nodes.

We will be coloring different edges of these graphs, so for an edge between
two nodes v1 and v2, let C(v1, v2) denote the color of that edge. Also, for
every node v ∈ G, let db(v) and dr(v) denote the number of blue and red
edges emanating from node v, respectively. A given combination of db’s and
dr’s for a graph is one possible coloring of that graph, and we assume that
in a coloring, every edge is colored exactly one color.

2.1 Ramsey’s Theorem

We now introduce the centerpiece of this paper:

Theorem 1 (Ramsey’s Theorem). Given two positive integers m and n such
that m,n ≥ 2, there is a minimum positive integer, denoted by R(m,n), such
that in any red-blue coloring of KR(m,n), one can find at least one blue clique
on m vertices or a red clique on n vertices.

However, this isn’t such an obvious fact. Let’s see why such a minimum
number exists for all pairs (m,n). The proof in this paper was an elegant
proof presented by [Mat].

Proof. We prove this by induction on m and n. Firstly, we prove some
properties of R(m,n) that will be important in this proof:

1. R(m,n) = R(n,m). This is true by symmetry because switching red
and blue edges makes no difference.

2. R(2, n) = R(n, 2) = n. For our purposes, we will focus on proving
R(n, 2) = n, then R(2, n) = n follows by Property 1 mentioned above.
First, we show that n vertices are sufficient: if we have at least one
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red edge, we have a red clique of size 2, as desired. Now, consider the
case where none of the edges are red, i.e. all of them are blue. Then,
we have a blue clique on n vertices, and we are done. Notice that if
we have less than n vertices and all of the edges are blue, then we will
neither have a red clique of size 2 or a blue clique of size n. Thus, we
need at least n vertices.

To show that R(m,n) is well defined for all pairs of positive integers
(m,n) such that m,n ≥ 2, we must show that such a number is finite. Now,
we begin our induction.

Base Case: m2. Then we have R(n, 2) = R(2, n) = n, which is a finite
number. Hence, it is well defined.

Inductive Step: Assume that R(m − 1, n) and R(m,n − 1) are both
well defined. We will show that

R(m,n) ≤ R(m− 1, n) + R(m,n− 1),

which implies that R(m,n) is well defined. To prove this, consider one special
vertex v. Then, we have db(v)+dr(v)+1 = R(m−1, n)+R(m,n−1). Thus,
we have two possibilities: either db(v) ≥ R(m−1, n) and dr(v) < R(m,n−1),
or dr(v) ≥ R(m,n− 1) and db(v) < R(m− 1, n).

If db(v) ≥ R(m−1, n), then consider the subgraph created by those db(v)
vertices: we can guarantee a blue clique of size m− 1 or a red clique of size
n. Since v is connected to each of the vertices of this subgraph by a blue
edge, by adding on v to this subgraph, we can guarantee a blue clique of size
m or a red clique of size n.

A similar argument applies if dr(v) ≥ R(m,n − 1). This completes the
proof.

3 Important Results and Extensions

3.1 The Infinite extension of Ramsey’s Theorem

Ramsey’s Theorem can in fact be extended to infinite graphs.

Theorem 2 (Infinite Ramsey Theorem). Consider an infinitely large graph
G that is colored by a finite number of colors. Then there exists an infinitely
large clique C ⊆ G such that all of the edges connecting the vertices of C have
the same color.
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We present a nice, clean, and easy proof of the theorem that uses a clever
inductive construction approach as in [Mis].

Proof. Let V0 be the set of vertices in G. Consider one of these vertices
v0 ∈ V0. By the Pigeonhole Principle, since we have an infinite number of
edges coming from v0 but only a finite number of colors, at least one of these
colors must be coloring an infinite number of the edges coming from v0. Let
one of those such colors be denoted c0. Now, let V1 denote the vertices of G
such that for all v′ ∈ v1, we have C(v0, v

′) = c0. Note that V1 ⊂ V0.
We can do the same process again on V1, since it is also an infinite set

of vertices: consider one vertex v1 ∈ V1, then by the Pigeonhole Principle,
there must be at least one color, say color c1, such that there are an infinite
number of vertices v′′ connected to v1 such that C(v1, v

′′) = c1. Let the set
of vertices connected to v1 by an edge of color c1 be denoted as V2. We
can repeatedly apply this construction to generate the sets V0, V1, V2, V3, . . .,
where we are considering one vertex vi ∈ Vi and then generating the infinite
set Vi+1 from all of the vertices connected to vi by an edge of color ci.

Now, we make some observations: for all i ≥ 0,

1. vi ∈ Vi,

2. Vi+1 ⊂ Vi, and

3. C(vi, v) = ci for all v ∈ Vi+1.

Now, we prove the following lemma:

Lemma 3.1. For any integers i, j such that 0 ≤ i < j, it is true that

C(vi, vj) = ci.

Proof. By property 1, we have vj ∈ Vj. Then, by property 2, we have
Vj ⊂ Vj−1 ⊆ · · · ⊆ Vi+1, so vj ∈ Vi+1. Finally, by property 3, we have
C(vi, vj) = ci.

Revisiting the Pigeonhole Principle, since we have finitely many colors
but infinitely many edges, at least one color, let’s say c, occurs infinitely
many times in G. Let our clique C have the set of vertices V where V =
{vi : i ≥ 0 and ci = c}. Then we claim C is the clique we are looking for:
C is infinite, and for any two vertices vi, vj ∈ V , by Lemma 4.1 we have
C(vi, vj) = ci = c. Thus, G has an infinite monochromatic clique C.



3 Important Results and Extensions 5

It is possible to prove Ramsey’s Theorem from the infinite version of
the theorem using a proof by contradiction in conjunction with an infinite
construction idea similar to the one above. We leave this as an exercise to
the reader.

3.2 Ramsey Numbers

Ramsey numbers, which are all numbers R(m,n) over all pairs of positive
integers (m,n) (where m,n ≥ 2), have been an area of much research for
the past 100 years. Specifically, mathematicians have been trying to improve
the bounds on Ramsey numbers. We know the exact values for very few
Ramsey numbers because computing Ramsey numbers for large m and n is
very difficult; in fact, we don’t even know the exact value of R(5, 5)! All we
know is that 43 ≤ R(5, 5) ≤ 48.

So, instead of focusing on exact values, mathematicians have changed
their focus to proving stronger bounds for diagonal Ramsey numbers - num-
bers in the form R(k, k). All of the bounds presented in this section are of
diagonal Ramsey Numbers.

In 1935, Paul Erdős and George Szekeres proved that

R(m + 1, n + 1) ≤
(
m + n

m

)
.

This was a big deal; Erdős was regarded as one of the best mathematicians
of his time, so his work in Ramsey Theory brought the world’s attention to
this relatively young field. In fact, Erdős is commonly regarded as the person
who made Ramsey Theory a popular subjet.

This bound was also the best mathematicians had for almost 50 years
until 1980 when Vojtěch Rödl proved that

R(m + 1, n + 1) ≤
(
m+n
m

)
c logc(m + n)

for some constant c > 0.
In 1988, Robert Thomason beat this bound by showing that

R(m + 1, n + 1) ≤
(
m + n

m

)
m−n/(2m)+c/

√
log k

for some constant c > 0 as long as m ≥ n.
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Then, in 2006, a new breakthrough by David Conlon showed that

R(m + 1,m + 1) ≤ m−c logm/ log logm

(
2m

m

)
.

Thomason’s and Conlon’s bounds were remarkable. However, very re-
cently in 2020, MIT student Ashwin Sah made a ground-breaking improve-
ment in the upper bound of Ramsey Numbers [Sah20] and showed that for
all k ≥ 3, there is a constant c > 0 such that

R(m + 1,m + 1) ≤ e−c(logm)2
(

2m

m

)
.

Research on Ramsey Numbers is still continuing today, and new discov-
eries are being made in the field every day. However, even though today
we have much more computing power and mathematical knowledge to tackle
Ramsey Theory, it is fun to invent hypothetical situations which place the
fate of humanity in the hands of not superheroes, but mathematicians.

One such interesting hypothetical situation is known as the ”Alien Inva-
sion Problem”, which is centered around a famous quote by Paul Erdős:

”Suppose aliens invade the earth and threaten to obliterate it in
a year’s time unless human beings can find the Ramsey number
for red five and blue five. We could marshal the world’s best
minds and fastest computers, and within a year we could probably
calculate the value. If the aliens demanded the Ramsey number
for red six and blue six, however, we would have no choice but to
launch a preemptive attack.” [Lam16]

This quote from Erdős reminded the international scientific community about
how little we know about Ramsey Numbers despite all of the progress we have
made; if we were asked to find R(6, 6), it would be impossible. We would
have to look through almost 101550 possible graphs (for reference, there are
between 1078 and 1082 atoms in the observable universe).

4 Applications

4.1 Ramsey Theory in General

Ramsey theory, in general, has to do with finding order in a substructure
of a larger structure of a given size. For example, finding monochromatic
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cliques within a larger graph. The first paper classified as a part of Ramsey
Theory was published in 1927 by Bartel Leendert van der Waerden, a Dutch
mathematician. He is famously accredited with Van der Waerden’s Theorem
(theorem statement from [Ste15]):

Theorem 3 (Van der Waerden’s Theorem). For any two given positive in-
tegers s and p, there is a minimum number n such that for any coloring of
{1, 2, 3, . . . , n} with p colors, there is an arithmetic sequence of s numbers
where all of those numbers have the same color. We denote n as W (p, s).

Van der Waerden numbers are also very challenging to calculate, and
we only know a few of them. For example, W (2, 3) = 9,W (3, 4) = 293.
They grow very fast as well; in fact, W (5, 8) > 493, 700! (values taken from
[BCT18].)

Another interesting theorem early in Ramsey Theory is known as Schur’s
Theorem, proposed by Issai Schur:

Theorem 4 (Schur’s Theorem). If the set of natural numbers N is colored
by a finite number of colors, then there exist natural numbers a, b, c such that
a + b = c and a, b, c all have the same color. For a given n ∈ N, let S(n)
denote the smallest natural number such that if S(n) is colored by n colors,
then there exist a, b, c ∈ S(n) such that a+ b = c and a, b, c all have the same
color.

Resembling the nature of Ramsey Theory, Schur Numbers also are very
hard to calculate, and we know very few. For example, s1 = 1, s2 = 4,3 =
13, s4 = 44, but we don’t know the exact value of s5; all we know is that
s5 ≥ 160 (values taken from [Bou15]).

Finally, we present one more theorem that was considered one of the
first theorems in Ramsey Theory, Richard Rado’s Theorem (as stated in
[HTB20]):

Theorem 5 (Rado’s Theorem). Let A be an 1 ×m matrix, and let x be a
m×1 matrix of variables such that Ax is a system of linear equations. Then,
if we color the solution space of this system of equations with n colors (where
n ∈ N), then there is a monochromatic set of solutions if and only if the
columns of A can be partitioned into C1 ∪ C2 ∪ · · · ∪ Ck such that

1.
k∑

i=0

Ci = ~0.
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2. for all j > 1, every element in Cj can be expressed as a linear combi-
nation of elements in C1 ∪ C2 ∪ · · · ∪ Cj−1.

4.2 Ramsey Theory in Real life

Ramsey Theory is not only prevalent in other fields of math but also in many
real world scenarios, some of which I present here.

4.2.1 War and Peace

One famous historical example of Ramsey Theory appearing in real life is
when the English scholar Sir Woodson Kneading observed that from 600 to
400 BCE, there were 42 instances where five powers in a peaceful region went
to war when a sixth power entered the region. He said:

“I noticed that either (1) three, four, or five of them formed an
alliance and, thinking themselves quite powerful, merged armies
and attacked the other lords, or (2) there were three or more of
them who were pairwise enemies, and in that case war broke out
among the factions...” [BI16]

This essentially was the observation that R(3, 3) = 6: either 3 were allies
or 3 were pairwise enemies. The fact that this observation was made long
before Ramsey Theory was established is very striking.

4.2.2 The Birthday Party

The Birthday Party [Gas] is a classic application of Ramsey Theory and is
usually the setup used to introduce the theorem to beginners.

Question 4.1 (The Birthday Party Question). How many people would we
need at a Birthday Party to guarantee that there is a group of 3 people all of
whom either know each other or do not know each other?

The answer is R(3, 3) = 6. This problem is closely related to Ramsey
Theory and introduces the topic very nicely.

However, Ramsey Theory enables us to ask not only about 3 people, but
maybe 4 people. For example...
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Question 4.2 (The Birthday Party Question). How many people would we
need at a Birthday Party to guarantee that there is a group of 4 people all of
whom either know each other or do not know each other?

As it turns out, the answer to this question is 18. We will not be going
into the details of why this is, but a great resource that goes more into this
is [BI16].

4.2.3 Electricity Pricing

Haiming Li and Jia He published a paper titled ”An Application of the Ram-
sey Number in the Electricity Pricing” [LH16] which focused on electricity
pricing in China. They studied the applications of Ramsey Theory to sales
price cross-subsidies by investigating the relationship between ”revenues and
costs attributable to a single commodity or commodity combinations.” Es-
pecially considering the reforms going on in the electricity pricing industry
during the time, countries around the world had high concerns for sales price
cross-subsidies. They applied the mathematical model of Ramsey Pricing.
However, they concluded that more research needed to be done on how new
problems could arise from the solution to the Ramsey pricing model in dif-
ferent stages of development of China’s electric power industry, for example
how it would affect low-income residents.

5 Final Remarks

In this paper, Today, we talked about Ramsey’s Theorem and discussed the
applications of Ramsey Theory. Finding order in substructures is a vast
topic, and as a result, Ramsey Theory encompasses a large part of math-
ematics. Despite the amount of research that has already been done on
Ramsey Theory and Ramsey Numbers, we still have much to learn. Much
research is still underway in this young and active field. For example, math-
ematicians are studying variants of Ramsey Numbers, such as Induced, Size,
and Generalized Ramsey Numbers [CFS15].

In the future, we can hope to discover new bounds on Ramsey Numbers
and possibly new theorems in this field.
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