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Abstract

In this paper, we introduce Roth’s theorem on the existence of 3-term arithmetic progressions
and provide a graph-theoretic proof. We also discuss some generalizations of Roth’s theorem.

1 Introduction

Additive combinatorics, also known as combinatorial number theory, is a field of mathematics
concerned with sets and sequences of integers, and similarly related problems involving lattice points,
sets in commutative groups, and so forth. One particularly important set of problems involves the
existence of nontrivial arithmetic progressions in subsets of the positive integers.

First, we introduce Roth’s theorem on arithmetic progressions, which states that any subset
of the positive integers with positive upper density must contain a 3-term arithmetic progression.
Roth’s theorem can be proved in several ways, including Varnavides’s theorem, Fourier analysis,
and graph theory. In this paper, we present the graph-theoretic proof using Szemerédi’s regularity
lemma.

The main observation is that 3-term arithmetic progressions are equivalent to triangles in a
certain graph. We first show that a graph can be partitioned in a "regular" way. Then, we bound
the number of triangles and use this to make the graph triangle-free. Finally, we create a graph
from an upper-bounded set of integers, and bound the number of edges in the graph in two different
ways, which completes the proof.

We will also briefly present several other theorems and conjectures that can be seen as extensions
of Roth’s theorem.

2 Roth’s theorem

In this section, we prove Roth’s theorem on arithmetic progressions. We will follow the proof
techniques of Yufei Zhao’s Graph Theory and Additive Combinatorics [Zha19], which will be our
main reference for this section.

Definition 2.1. Let A be a subset of the positive integers. Then, A has positive upper density if

lim sup
N→∞

A ∩ {1, . . . , N}
N

> 0.

Theorem 2.2 (Roth’s theorem). Any subset S of the positive integers with positive upper density
contains a 3-term arithmetic progression.

We’ll start by introducing some important concepts from graph theory, since this proof makes
use of certain properties of triangle-free graphs.
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Definition 2.3. For two sets of vertices X and Y in a graph G, let e(X,Y ) be the number of edges
between X and Y . Then let the edge density d(X,Y ) be defined as

d(X,Y ) =
e(X,Y )

|X||Y |
.

Informally, the edge density is the proportion of pairs of vertices from opposite sets where an edge
exists.

Definition 2.4. Given a graph G and vertex sets X,Y ⊆ G, we say (X,Y ) is an ε-regular pair if
for all A ⊆ X,B ⊆ Y with |A| ≥ ε|X|, |B| ≥ ε|Y |, then

|d(A,B)− d(X,Y )| ≤ ε.

Definition 2.5. Given a graph G, a partition of its vertices into sets {V1, . . . , Vk} is an ε-regular
partition if ∑

1≤i,j≤k,
(Vi,Vj) not ε-regular

|Vi||Vj | ≤ ε|V (G)|2.

Essentially, a partition is ε-regular if the sum of "irregularities" of pairs that fail to be ε-regular is
less than ε|V (G)|2.

With all the necessary definitions in place, we now introduce Szemerédi’s regularity lemma, which
we’ll state without proof. Szemerédi’s regularity lemma proves the existence of a certain type of
graph partition with a bounded number of components. This allows us to approximate large graphs
with a much simpler model.

Theorem 2.6 (Szemerédi’s regularity lemma). For every ε > 0, there exists a constant M such that
every graph has an ε-regular partition into at most M components.

We’ll also introduce the triangle counting lemma, which will become important in a bit.

Theorem 2.7 (Triangle counting lemma). Let G be a graph and X,Y, Z be subsets of the vertices of G
such that (X,Y ), (Y, Z), (Z,X) are all ε-regular pairs for some ε > 0. If d(X,Y ), d(Y,Z), d(Z,X) ≥
2ε, then the number of triples (x, y, z) ∈ X × Y × Z such that x, y, z form a triangle in G is at least

(1− 2ε)(d(X,Y )− ε)(d(Y,Z)− ε)(d(Z,X)− ε)|X||Y ||Z|.

The next component is the triangle removal lemma, which bounds the maximum number of
vertices that need to be removed to make a graph triangle-free.

Theorem 2.8 (Triangle removal lemma). For all ε > 0, there exists δ > 0 such that any graph G on
n vertices with less than or equal to δn3 triangles can be made triangle-free by removing at most εn2

edges.

Proof. First, we take a (ε/4)-regular partition of G, and number its vertex sets V1, . . . , VM . We then
proceed by disconnecting components that fail to be well-behaved. More formally, we remove all
edges between pairs of components (Vi, Vj) that satisfy any of the following conditions:

(a) the pair (Vi, Vj) fails to be ε-regular,

(b) the pair is not dense enough: d(Vi, Vj) < ε/2, or
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(c) one component is too small: either Vi or Vj has at most (ε/4M)n vertices.

Let’s examine the maximum number of edges that can be removed under each condition:

(a) By ε-regularity of the partition from Definition 2.5, we have∑
1≤i,j≤k

(Vi,Vj) not ε/4-regular

|Vi||Vj | ≤
ε

4
n2.

(b) By the definition of edge density, we have∑
1≤i,j≤k

d(Vi,Vj)<ε/2

d(Vi, Vj)|Vi||Vj | ≤
ε

2

∑
i,j

|Vi||Vj | =
ε

2
n2.

(c) In each "small" component Vi, each vertex v is adjacent to at most (ε/4M)n vertices in each
small component. There are at most M small components, and n vertices in total, so the
number of edges removed under this condition is at most

n · ε

4M
n ·M =

ε

4
n2.

Summing over these three cases, at most εn2 edges are removed. Now, suppose for the sake of
contradiction that after removing these edges, there still exists a triangle in the graph. Now take
(not necessarily distinct) vertex components Vi, Vj , Vk such that each component contains one vertex
of this triangle. Because of the removals of components (a) and (b), Vi, Vj , Vk satisfies the hypotheses
of Theorem 2.7. Then, Theorem 2.7 states that the number of triangles remaining in the graph is at
least (

1− ε

2

)(ε
4

)3
|Vi||Vj ||Vk|.

But we also have a bound on the size of the components; by (c), each of them must have at least
(ε/4M)n vertices, so the above expression reduces to(

1− ε

2

)(ε
4

)3 ( ε

4M

)3
n3.

Taking

0 < δ <
1

6

(
1− ε

2

)(ε
4

)3 ( ε

4M

)3

yields a contradiction, because the hypothesis of the theorem states that the original graph has
fewer than δn3 triangles, but Theorem 2.7 states that we have more triangles than allowed. This
completes the proof. ■

Corollary 2.9. A graph G on n vertices in which every edge lies in a unique triangle has o(n2)
edges.

Proof. Let m be the number of edges in G, then G has m/3 triangles. Since m < n2, we have that
G has o(n3) triangles. By the triangle removal lemma, we can remove o(n2) edges to make the graph
triangle-free. However, we need to remove one edge to cut each triangle, so we must remove at least
m/3 edges. Setting these equal to each other, we have m = o(n2), as desired. ■
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With all of our intermediate results in place, we are ready to prove Roth’s theorem on arithmetic
progressions.

Proof of Theorem 2.2. Let A = S ∩ {1, 2, . . . , N}. We will show that if S has no 3-term arithmetic
progressions, then A has o(N) elements, which means that S has zero upper density. Let M = 2N+1,
now we look at A as a subset of Z/MZ. Then, we can construct a tripartite graph G whose components
X,Y, Z are each copies of Z/MZ. Edges exist as follows:

• For x ∈ X and y ∈ Y , x and y are connected by an edge if y − x ∈ A.

• For y ∈ Y and z ∈ Z, y and z are connected by an edge if z − y ∈ A.

• For z ∈ Z and x ∈ X, z and x are connected by an edge if z−x
2 ∈ A. This is modular division,

which is well-defined because M is odd.

If x, y, z form a triangle, then y − x, z−x
2 , z − y must all be congruent modulo M . This means

that x, y, z must be an arithmetic progression in Z/MZ. Now, note that given two elements of
Z/MZ (an edge in G), there is exactly one valid way to choose a third element of Z/MZ to form an
arithmetic progression (a triangle in the G). Hence, each edge lies in exactly one triangle. In this
construction, there are 3M |A| edges. By Corollary 2.9, G has o(M2) edges. Since the number of
edges in G is 3M |A| = o(M2), and M = 2N +1, by dividing out an M on each side we can conclude
that |A| is o(N). ■

3 Generalizations of Roth’s theorem

Now that we’ve proved Roth’s theorem, in this section we look at some of its generalizations and
extensions.

Roth’s theorem is actually the specific n = 3 case of Szemerédi’s theorem, which generalizes
Roth’s theorem to arithmetic progressions that are arbitrarily long.

Theorem 3.1 (Szemerédi’s theorem). For any integer k, any subset of the positive integers with
positive upper density contains an arithmetic progression of length k.

Remark 3.2. Szemerédi’s theorem has many proofs, the three most important being Szemerédi’s
original 1975 proof using pure combinatorics [Sze75], Furstenberg’s 1977 proof using ergodic theory
[Fur82], and Gowers’s 2001 proof using Fourier analysis and combinatorics [Gow01]. Unfortunately,
the proofs are too long and too difficult for this paper.

A further generalization is Erdős’s conjecture on arithmetic progressions, which remains an open
problem.

Definition 3.3. A set A = {a1, a2, a3, . . .} of positive integers is called a large set if the sum
∑

i
1
ai

diverges.

Conjecture 3.4 (Erdos’s conjecture on arithmetic progressions). For any integer k, any large set A
contains an arithmetic progression of length k.

Another related theorem that can be seen as a generalization of Szemerédi’s theorem is the
Green-Tao theorem [GT08]. The Green-Tao theorem looks at the subset of primes within the integers,
instead of looking at subsets of positive upper density.

Theorem 3.5 (Green–Tao). For any integer k, the prime numbers contain infinitely many arithmetic
progressions of length k.
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