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Abstract. For a statement X, we define a q-analogue of X as a statement Xq such that
letting q = 1 or taking the limit as q approaches 1 of Xq results in X. In this expository
paper, we aim to study several applications of q-analogues. We begin by exploring the q-
analogues of binomial coefficients and the binomial theorem; for the latter, we introduce
and prove both the finite and infinite versions. We then discuss two intriguing applications
of q-analogues: the first is to counting lines in finite geometries, especially as it pertains
to the card game SET; the second is to the mathematical modeling of juggling. Lastly,
we explore several q-analogues to combinatorial numbers including Catalan numbers, Lucas
numbers, Bernouilli numbers, and Narayana numbers. Next we look at Hypergeometric
Series, Heine’s tranformation formulas, Heine’s q-analogue of Gauss summation formula
and the Bailey-Daum summation formula. At the end we also give an elementary proof of
Jacobi’s triple product identity using q-analogues.

1. Introduction and Preliminaries

Definition 1.1. A q-analog of a quantity or formula P is a quantity or formula Pq, such
that if we set q = 1 or take limq→1 Pq, we get P .

We define the q-analog of a non-negative integer n as

1− qn

1− q
.

1
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Note that
1− qn

1− q
= 1 + q + q2 + ...+ qn.

So, as q → 1, the function gives an output of n.

We can also consider q-analogues to be a special type of generating function. q-analog of
n can be defined as the generating function of the number of Ferrers boards with k squares,
contained in a in a 1×n board(1 row, n columns). Another type of q-analog is the q-factorial:

[n]q! = [n]q[n− 1]q...[1]q.

2. q-Binomial Coefficients and the q-Binomial theorem

We begin our discussion of q-analogues with q-analogues of binomial coefficients, known
as q-binomial coefficients or Gaussian coefficients. In this section, we will first look at the
recurrence relation of Gaussian coefficients. Then, we will look at a combinatorial interpre-
tation of these q-analogues and finally we will prove the q-binomial theorem. Lets start by
looking at the definition of the Gaussian coefficients.

Recall that we define the normal binomial coefficient for non-negative integers n and k to
be (

n
k

)
=

(n)(n− 1)...(n− k + 1)

(k)(k − 1)...(1)
=

n!

k!(n− k)!

To find the q-analog of this, we replace each factor r by

1− qr

1− q
,

which leads us to the following definition.

Definition 2.1. The q-binomial (or Gaussian) coefficient is defined for non-negative integers
n and k, n > k, as[

n
k

]
q

=
[n]q[n− 1]q....[n− k + 1]q

[k]q[k − 1]q...[1]q
=

(1− qn)(1− qn−1)...(1− qn−k+1)

(1− qk)(1− qk−1)...(1− q)

Notice that division is exact here, so this is a polynomial and not a rational function. We
show a few examples of computing q-binomial coefficients.[

0
0

]
q

=

[
1
0

]
q

= 1,[
2
1

]
q

=
1− q2

1− q
= 1 + q,[

3
2

]
q

=
(1− q3)(1− q2)
(1− q2)(1− q)

= 1 + q + q2,[
6
3

]
q

=
(1− q6)(1− q5)(1− q4)
(1− q3)(1− q2)(1− q)

= 1 + q + 2q2 + 3q3 + 3q4 + 3q5 + 3q6 + 2q7 + q8 + q9.
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Proposition 2.2. Reflection [
m+ n
m

]
q

=

[
m+ n
n

]
q

This can be proved by directly using the formula.

Proposition 2.3. Analog of Pascal’s identity[
n+ 1
k + 1

]
q

= qk+1

[
n

k + 1

]
q

+

[
n
k

]
q

Proof.

qk+1

[
n

k + 1

]
q

+

[
n
k

]
q

= qk+1 (1− qn)(1− qn−1)...(1− qn−k)
(1− qk+1)(1− qk)...(1− q)

+
(1− qn)(1− qn−1)...(1− qn−k+1)

(1− qk)(1− qk−1)...(1− q)

=

(
(1− qn)(1− qn−1)...(1− qn−k+1)

(1− qk)(1− qk−1)...(1− q)

)(
qk+1(1− qn−k)

1− qk+1
+ 1

)
=

(
(1− qn)(1− qn−1)...(1− qn−k+1)

(1− qk)(1− qk−1)...(1− q)

)(
(qk+1 − qn+1) + 1− qk+1

1− qk+1

)
=

(
(1− qn)(1− qn−1)...(1− qn−k+1)

(1− qk)(1− qk−1)...(1− q)

)(
1− qn+1

1− qk+1

)
=

(
(1− qn+1)(1− qn)...(1− qn−k+1)

(1− qk+1)(1− qk)...(1− q)

)
=

[
n+ 1
k + 1

]
q

�

Proposition 2.4. Now we will see another interpretation of q-binomial coefficients, involving
Ferrers boards. Let pk(m,n) denote the number of Ferrers boards with k squares on a complete
m × n chess board. Consider the generating function,P (m,n), for the number of Ferrers
boards with k squares on a complete m× n chess board.

P (m,n) =
∞∑
i=0

pi(m,n)qi =

[
m+ n
m

]
q

=

[
m+ n
n

]
q

Note that this sum is actually finite, as for i > mn, pi(m,n) = 0

Proof. If we show that

P (0, 0) = 0 and P (0, 1) = 1 and P (m,n) = qnP (m− 1, n) + P (m,n− 1)

then we have proved that P (m,n) =

[
m+ n
m

]
q

as P (m,n) follows the same recurrence as[
m+ n
m

]
q

and P (m,n) also has the same starting values.

Number of Ferrers board with 0 squares in a 0 × 0 chess board is 1, and for all other
positive integers k, the number of Ferrers boards with k squares in a 0 × 0 chess board is
0. Number of Ferrers boards with 0 squares in a 1 × 0 chess board is 1, and for all other
positive integers k, the number of Ferrers boards with k squares in a 1× 0 chess board is 0.
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So, P (0, 0) = P (1, 0) = 1. Now, we must only prove the recurrence relation to complete our
proof.

Observe that each lattice path from (0, 0) to (m,n) where we can move only in the north
direction or in the east direction determines a Ferrers board - The board under the path.
Using this interpretation of Ferrers board, we will prove the recurrence relation. To prove
the recurrence relation, we need to show that the coefficients of qi on both sides are equal.
So, we need to prove pi(m,n) = pi−n(m− 1, n) + pi(m,n− 1).

The Ferrers board with i squares on a m × n board either contains the bottom right
square or it doesn’t. Ferrers boards not containing the bottom right square are contained in
a m×(n−1) rectangle.So, number of such Ferrers boards is pi(m,n−1). Suppose the Ferrers
board contains the bottom right corner square. Then, the entire bottom row is included in
the Ferrers board. Hence, the number of such Ferrers boards is equivalent to the number of
Ferrers boards(with i − n squares) excluding the bottom row of the m × n square. Hence
there are pi−n(m − 1, n) such Ferrers boards. This completes the proof of the recurrence
relation. �

Theorem 2.5. Analog of Binomial theorem
The q-binomial theorem states that if x and q are some non-negative integers, then

n−1∏
i=0

(1 + xqi) =
n∑
k=0

[
n
k

]
q

qk(k−1)/2xk

Proof. We will prove the finite q-binomial theorem, using the proof given by G. Polya and
G.L. Alexanderson [2]. Denote the LHS by f(x). We will write

(2.1) f(x) = (1 + x)(1 + xq)....(1 + xqn−1) =
n∑
k=0

Qkx
k

Note that, Q0 = 1 and Qn = qn(n−1)/2

Further, (2.1) implies

(1 + x)f(qx) = (1 + qnx)f(x)

Substituting the value of f(x) in the above equation, we get

(1 + x)
n∑
k=0

Qkq
kxk = (1 + qnx)

n∑
k=0

Qkx
k

Comparing coefficients of xr, we get

Qrq
r +Qr−1q

r−1 = Qr + qnQr−1,

or

(2.2) Qr = Qr−1
qn−r+1 − 1

qr − 1
qr−1.

Since Q0 = 1 and Qn = qn(n−1)/2, we can repeatedly apply (2.2) and conclude that

Qk =

[
n
k

]
q

qk(k−1)/2.
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Therefore we have
n−1∏
i=0

(1− xqi) =
n∑
k=0

[
n
k

]
q

qk(k−1)/2xk,

as desired. �

3. Counting Lines in Finite Geometries

We now shift our focus to an application of q-analogues to counting the number of lines
in finite geometries; we begin by deriving an analogy of the game SET from finite fields,
and proceed to show that the number of lines in a finite geometry can be counted by a
q-analogue [3].

The card game SET consists of 81 cards, each of which has four attributes: color, shape,
shading, and number of shapes. We can think of these attributes as the x, y, z and t axes
in four dimensional space; since each of these attributes can take on three values (shading:
none, striped, solid; color: red, green purple; shape: oval, diamond, squiggle; number of
shapes: one, two, three), we can think of them as elements of the finite field F3. Similarly,
we can think of a SET card as a point in F4

3 (a 3× 3× 3× 3 grid of points).

Definition 3.1 (Finite field). A finite field is defined as a field that contains a finite number
of elements; the operations multiplication, addition, subtraction, and division are defined on
such a field, as with all types of fields.

In this game, a set is a certain combination of three cards in which either 0, 1, 2, or 3
(but not 4) attributes are the same across the three cards. In our analogue of the game of
SET to F4

3, a set is analogous to a line in F4
3. One application of q-analogues is counting the

number of lines in a finite geometry such as this. Since we are working in the finite field
F4
3, all points will be considered modulo 3. For instance, consider the finite field F2

3 depicted
below:

The line x + y = 0 has solutions (−1, 1), (0, 0), (2,−2) . . .. Because we are working in
mod 3, we have the following mapping: (0, 0)→ (0, 0), (−1, 1)→ (2, 1), and (2,−2)→ (2, 1).
Therefore the line x+ y = 0 has the solutions (0, 0), (1, 2), and (2, 1) in F2

3.

Proposition 3.2. The number of lines in the finite field F2
3 is 12.

Proof. We begin by counting the number of lines passing through (0, 0); since a line is
defined by 2 unique points, there are 32 − 1 = 8 other points to choose from. We must now
divide by two, since the order of choosing the points is irrelevant. There are thus 4 lines
passing through (0, 0). Through computation, we find that for each equation of the form
ax + by = 0, there are 2 equations of the form ax + by = 1 not passing through (0, 0) and
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similarly 2 equations of the form ax+ by = 2 not passing through (0, 0). There are thus 12
lines in total, as desired. �

Following the same logic, we come across the following proposition:

Proposition 3.3. The number of lines in the finite field Fnq is q q
n−1
q−1 .

Proof. We use the same argument as before. We have qn − 1 ways to choose a point besides
(0, 0). Then, we must divide by q− 1 since the order of choosing the points does not matter.
Finally, we add a factor of q to account for the lines ax+ by = 0, ax+ by = 1, . . . ax+ by = q.
This gives a total of

q
qn − 1

q − 1

lines in the finite field Fnq , as claimed. Note that this is a q-analogue of n by definition, since
we have

lim
q→1

q
qn − 1

q − 1
= n.

�

4. q-Calculus

One of the most prominent applications of q-analogues is in q-calculus, or quantum calcu-
lus. In this section, we provide a brief exposition on some of the foundations of q-calculus.
We begin with the differential and the derivative.

Definition 4.1. We define the q-derivative of a function f(x) as

dqf(x) = f(qx)− f(x).

Definition 4.2. With this definition of the q-derivative, we can now define the q-differential
Dq [4] as follows:

Dq(x) =
dqf(x)

dqx
=
f(qx)− f(x)

qx− x
.

Note that when we take the limit as q → 1 of the q-differential, we arrive at the definition
of a derivative in classical calculus. Similarly, let us now define the q-analogue to the classical
antiderivative.

Definition 4.3. We define the q-antiderivative [5], F (x), of a function f(x) such that
DqF (x) = f(x). We write

F (x) =

∫
f(x)dqx.

As in the case of classical calculus, this q-antiderivative is not unique: adding a function
of the type g(x) where g(qx) = g(x) will not change the derivative since Dqg(x) = 0 for
such a g(x). We now state an important proposition regarding the uniqueness of the q-
antiderivative.

Proposition 4.4. Let q ∈ (0, 1). Then up to adding a constant, a function f(x) has no
more than one q-antiderivative that is continuous at x = 0.
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Proof. We prove this idea using contradiction and methods from real analysis [5]. Suppose,
for the sake of contradiction, that F1(x), F2(x) are two q-antiderivatives of f(x) (which are
continuous at x = 0). Let g(x) = F1(x) − F2(x); since Dqg(x) = 0, we have g(qx) = g(x).
Now for an arbitrary K > 0, define m and M as follows:

m = inf{g(x) | qK ≤ x ≤ K},
M = sup{g(x) | qK ≤ x ≤ K}.

We can assume that m < M , and so that either g(0) 6= m, g(0) 6= M , or both. Without loss
of generality, let us assume that g(0) 6= m; then since g is continuous at x = 0, there will
always be a δ > 0 for sufficiently small ε for which

(1) m+ ε 6∈ g(0, δ).

However, for sufficiently large N , we have qN ·K < δ. We additionally utilize the fact that
g(qx) = g(x) to find that

m+ ε ∈ (m,M) ⊂ g[qK,K] = g[qN+1K, qNK] ⊂ g(0, δ).

This is clearly a contradiction to (1); therefore, m = M and thus g(x) is constant in [qK,K]
and subsequently over R. �

We now have a definition for the q-antiderivative, and we need a method to compute it.
For this, we turn to the fundamental theorem of q-calculus, an analogue of the fundamental
theorem of classical calculus.

Theorem 4.5 (Fundamental theorem of q-Calculus). Given that F (x), the q-antiderivative
of f(x) is continuous at x = 0, we have∫ b

a

f(x)dqx = F (b)− F (a)

for a < b and a, b ∈ [0,∞).

Proof. F (x) is given by the Jackson formula1, meaning

(1− q)a
∞∑
j=0

qjf(qja) = F (x)− F (0)

=

∫ a

0

f(x)dqx.

Thus by definition of the Jackson integral, we have

(1)

∫ a

0

f(x)dqx = F (a)− F (0).

And similarly,

(2)

∫ b

0

f(x)dqx = F (b)− F (0).

Subtracting (1) from (2), we find that∫ b

a

f(x)dqx = F (b)− F (a)

1Visit this link for a basic overview of the Jackson integral.

https://en.wikipedia.org/wiki/Jackson_integral
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as desired. �

Lastly, we will look at the q-analogue to the method of integration by parts in classical
calculus. Let f and g be two differentiable functions that are continuous at x = 0. The
derivative of their product is then given by

Dq (f(x)g(x)) = f(x) (Dqg(x)) + g(qx) (Dqf(x)) .

To proceed, we will need to make use of the following corollary of Theorem 4.5: if f ′(x) is
continuous at x = 0, then ∫ b

a

Dqf(x)dqx = f(b)− f(a).

Using this result, we have

f(b)g(b)− f(a)g(a) =

∫ b

a

f(x)(Dqg(x))dqx+

∫ b

a

g(qx)(Dqf(x))dqx.

Rearranging this gives

(4.1)

∫ b

a

f(x)dqg(x) = f(b)g(b)− f(a)g(a)−
∫ b

a

g(qx)dqf(x).

This formula can be used for q-integration by parts. This method is integral to the derivation
of the q-Taylor formula with the Cauchy remainder term.

5. q-numbers

5.1. q-Narayana numbers. The q-Narayana numbers were orignally discovered by MacMa-
hon and then were rediscovered by Narayana. Interestingly , it turns out that many statistics
of combinatorial structures have the Narayan distribution.

Definition 5.1. The q-Narayana numbers are defined as

N(n, k; q) =
1

[k]q

[
n− 1
k − 1

]
q

[
n

k − 1

]
q

Proposition 5.2.

N(n, k; q) = qk(k−1)−n

([
n− 1
k − 1

]
q

[
n+ 1
k

]
q

−
[

n
k − 1

]
q

[
n
k

]
q

)
Definition 5.3. The Young tableau of a Ferrers diagram is obtained by placing the numbers
1, ..., n in the n boxes of the diagram. A standard Young tableau is a Young tableau in which
the numbers form an increasing sequence along each line and along each column. A Young
tableau in which numbers are non-decreasing along lines and increasing along columns is
called a semistandard Young tableau (SSYT).The index l is called the length, l(λ) of λ. A
semistandard Young tablue of shape λ is an array T = (Tij) of positive, where 1 6 i 6 l(λ)
and 1 6 j 6 λi , that is weakly increasing in rows and strictly increasing in columns.

Theorem 5.4. For any n > 0 and S ⊆ [2n − 1], [S] = k we have that βn(S) counts the
number of SSYT’s of shape 〈2k〉 with row(T ) = S and with parts less than n.

Proof. The proof of the theorem is omitted, but can be found in the following link: link �
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Proposition 5.5.

N(n, k + 1; q) = S2k(q, q
2, q3, . . . qn−1)

Proof. By Theorem 4.3 we have that∑
w∈Dn

des(w) = kqMAJ(w) =
∑
|S|=k

βn(S)q
∑
s∈S s =

∑
Tq

∑
Tij ,

where the last sum is over all SSYT’s of shape 〈2k〉 with parts less than n. By the combina-
torial definition of the Schur function this is equal to N(n, k + 1; q) = S2k(q, q

2, q3, . . . qn−1)
and the theorem follows. �

Definition 5.6. q - Catalan numbers are defined by

Cn(q) =
n−1∑
k=0

kCk(q)Cn−k−1(q)

with C0(q) = 1 Let

f(z, q) =
∑
k>0

Ck(q)z
k

be their generating function, which can uniquely be determined by the functional equation

f(z, q) = 1 + zf(z, q)f(qz, q).

This implies a well known fact that it can be represented in the form

f(z, q) =
E2(−qz)

E2(−z)

Here Er(z) denotes the generalized q - Exponential function

Er(z) =
∑
k>0

qr(
k
2) zk

(1− q)(1− q2)...(1− qk)

Er(z)− Er(qz) = zEr(q
rz)

For n ∈ N we define

Gr(z, n) =
∑
k>0

G(k, n, r)zk :=
Er(−qnz)

Er(−z)

Then we have

Gr(z, n+ 1) = Gr(z, n) + qnzGr(z, n+ r)

We compare coefficients we get

G(k, n+ 1, r)−G(k, n, r)

qn
= G(k − 1, n+ r, r)

with G(k, 0, r) = [k = 0] and G(0, n, r) = 1 This implies

Gr(z, 1) = 1 + zGr(z, r)

These are the characteristics properties of the q-Gould polynomial. For q = 1 they have the
explicit formula G(k, n, r) = n

n+rk

(
n+rk
k

)
.
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For general q special values are G(k, n, 0) = q
(k2)

n
k


and G(k, n, 1) =

[
n+ k − 1

k

]
where[

n
k

]
denotes a q - Binomial coefficient. For r > 1 no explicit formulas are known. Also note

that G2(z, 1) = 1 + zG2(z, 2)G2(qz, 1) = f(z, q) is the generating function of q - Catalan
numbers. From

Er(−qnz)

Er(−z)
=
Er(−qz)

Er(−z)

Er(−q2z)

Er(−qz)
....

Er(−qnz)

Er(−qn−1z)
we get

Gr(z, n) = Gr(z, 1)Gr(qz, 1)...Gr(q
mz, n)

and
Gr(z,m+ n) = Gr(z,m)Gr(q

mz, n)

5.2. q-Lucas number.

Theorem 5.7. Here we will be defining q-Lucas theorem. Let

n = n1d+ n0

and
k = k1d+ k0

where
0 ≤ n0, k0 < d

Then we get that [
n
k

]
q

≡
(
n1

k1

)[
n0

k0

]
q

(mod Φd)

Here Φd is the dth cyclotomic polynomial [2].
Then we get that [

n
k

]
q

≡
(
n1

k1

)[
n0

k0

]
q

This is only when q = e
2cπi
d . With gcd(c, d) = 1.

Proof. Let S =

(
n
k

)
. Now if ω ∈

(
n
k

)
, then we can write it as ω = ω1ω2. Here ω1 denotes

the first d bits of ω and ω2 is the remaining suffix. Our goal is to show that SG is given by
right side of the recurrence. Let us pick a random ω ∈ SG. Then ω1 is either all 0’s or all
1’s. In the first case , invω = invω2 In the second case invω = invω2 + kd. Thus we always
have

qinvω ≡ qinvω2

As we are working (mod Φd), this sets q to be a primitive dth root of unity. Moving ahead

ω2 ∈
(
n̂− k
k − d

)
.

This is in the first case and

ω2 ∈
(
n̂− k
k

)
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in the second case. Hence [SG] does give the right generating function. Finally we show that
any other orbit O has weight divisible by Φd. Take ω ∈ O and let us assume ω1 contains l
zeros. Then for the generator g of Cd we have

(1) invgω ≡ invω + l (mod d).

As the number of inversions either goes up by l or goes down by d− l. Now if m = #O,
then

(2) [O] = qinvω(ql + q2l + ...+ qml).

But we know that ω = gmω forces d|ml by repeated application of (1). Thus the right side
of (2) is divisible by Φd. �

5.3. q-Pochhammer symbol.

Definition 5.8. The q-Pochhammer symbol is defined as

(a; q)n := (1− a)(1− aq)...(1− aqn−1)

where (a; q)0 := 1
Another name for it is q - shifted factorial
we get the relation

(qa; q)n + r = (qa; q)r(q
a+r; q)n

By convention

(a; q)∞ := Πj>0(1− aqj)

so that

(a; q)n =
(a; q)∞

(aqn; q)∞

This lets us set

(a; q)−n :=
1

(aq−n; q)n
=

(−q/a)nq(
n
2)

(q/a; q)n
.

On can also prove that,

(aq−n; q)n = q−(n2)(
−a
q

)n(
q

a
; q)n

Some other identities are

[m]q =
(q; q)m

(1− q)(q; q)m−1
=

(qm; q)∞
(1− q)(qm+1; q)∞

[m]q! =
(q; q)m

(1− q)n[
m
r

]
q

=
(qm−r+1; q)r

(q; q)r
=

(qr+1; q)∞(qm−r+1; q)∞
(qm+1; q)∞(q; q)∞
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5.4. q-Bernoulli polynomials. Bernoulli polynomials are of significant importance in math-
ematics and physics. The reason is that Bernoulli polynomials arise in many applications.q-
Bernoulli polynomials posses many interesting properties which can be used in many areas.

Definition 5.9. In this unit we will learn more on q-Bernoulli polynomials.

[x]q =
1− qx

1− q
for any real number x. Let us assume that q ∈ C with |q| < 1. Let

Fqr(t) =
qr − 1

r log q
e

t
1−qr − t

∞∑
n=0

qrne[n]qr t, |t| < 1

Consider the Taylor expansion at t = 0.

Fqr(t) = β0,qr + β1,qr
t

1!
+ β2,qr

t2

2!
+ ...+ βn,qr

tn

n!
+ ...

The coefficients βn,qr are called nth q-Bernoulli numbers.

6. Hypergeometric Series

6.1. Introduction. Our main objective in this section is to present the definitions and no-
tations for hypergeometric and basic hypergeometric series, and to derive the elementary
formulas that form the basis for most of the summation, transformation and expansion for-
mulas and basic integrals. We begin by defining Gauss 2F1 hypergeometric series, the rFs
(generalized) hypergeometric series, and pointing out some of their important special cases.

Next, we define the Heine’s 2φ1 basic hypergeometric series which contains an additional
parameter q, also called the base, and then give the definition and notations for rφs basic
hypergeometric series. Basic hypergeometric series are called q-analogues of hypergeometric
series because an rFs series can be obtained as the q → 1 limit case of an rφs series.

Next, we use the q-binomial theorem (stated in the previous section), to derive Heine’s
q-analogues of Euler’s transformation formulas, Jacobi’s triple product identity, and sum-
mation formulas that are q-analogues of those for hypergeometric series due to Chu and
Vandermonde, Gauss, Kummer, Plaff and Saalschutz, and to Karlsson and Minton.

We also introduce q-analogues of the exponential, gamma and beta functions, as well as
the concept of a q-integral that surprisingly allows us to give a q-analogue of the famous
Euler’s integral representation of a hypergeometric function.

1.2. Hypergeometric and Basic Hypergeometric Series In 1812, Gauss presented
to the Royal Society of Sciences at Gottingen his famous paper [6] in which he considered
the infinite series

(6.1) 1 +
ab

1 · c
z +

a (a+ 1) b (b+ 1)

1 · 2 · c(c+ 1)
z2 +

a (a+ 1) (a+ 2) b (b+ 1) (b+ 1)

1 · 2 · c (c+ 1) (c+ 2)
z3 + · · ·

as a function of a, b, c and z where it is assumed that c /∈ Z \ {N} and c 6= 0 so that no
zero factors appear in the denominators of the terms of the series. He showed that the
series converges absolutely for |z| < 1. Although Gauss used the notation F (a, b, c, z) for his
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series, it is now customary to use F (a, b; c; z) or 2F1(a, b; c; z) for this series (and for its sum
when it converges), because these notations separate the numerator parameters a, b from the
denominator parameter c and the variable z. In view of Gauss paper, his series is frequently
called Gauss series. However, since the special case a = 1, b = c yields the geometric series

1 + z + z2 + z3 + z4 + · · ·
Gauss series is also called the (ordinary) hypergeometric series or the Gauss hyper geometric
series. Some important functions which can be expressed by means of Gauss’ series are

(1 + z)a = F (−a, b; b;−z), log(1 + z) = zF (1, 1; 2;−z),

arcsin(z) = zF

(
1

2
,
1

2
;
3

2
; z2
)
, arctan(z) = zF

(
1

2
, 1;

3

2
;−z2

)
, ez = lim

a→∞
F (a, b; b; z/a).

where |z| < 1 in the first four formulas. Also expressible by means of Gauss’ series are the
classical orthogonal polynomials, such as the Tchebichef polynomials of the first/second kind

Tn(x) = F

(
−n, n;

1

2
;
(1− x)

2

)
,

Un(x) = (n+ 1)F

(
−n, n+ 2;

3

2
;
(1− x)

2

)
,

The Legendre polynomials

Pn(x) = F

(
−n, n+ 1; 1;

(1− x)

2

)
,

the Gegenbauer (ultraspherical) polynomials

Cλ
n(x) =

(2λ)n
n!

F

(
−n, n+ 2λ;λ+

1

2
;
(1− x)

2

)
and the more general Jacobi polynomials

P (α,β)
n (x) =

(α + 1)n
n!

F

(
−n, n+ α + β + 1;α + 1;

(1− x)

2

)
where n ∈ N and (α)n denotes the shifted factorial defined by

(α)n = α(α + 1)(α + 2) . . . (α + n− 1) =
Γ(α + n)

Γ(α)

for all n > 1. Before Gauss, Chu [1303] (also see [7], [8] and [10, Page 59]) and [9] had proved
the summation formula

(6.2) F (−n, b; c; 1) =
(c− b)n

(c)n

which is now called Vandermonde’s formula or the Chu-Vandermonde formula, and Euler
had derived several results for hypergeometric series, including his transformation formula

(6.3) F (a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z), |z| < 1.

Notice that, equation (6.2) is a terminating case a = −n of the summation formula :

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)
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which Gauss proved in his paper. 33 years later, Heine [11], [12] and [13] introduced the
series

(6.4) 1 +
(1− qa)

(
1− qb

)
(1− q) (1− qc)

z +
(1− qa) (1− qa+1)

(
1− qb

) (
1− qb+1

)
(1− q) (1− q2) (1− qc) (1− qc+1)

z2 + · · ·

where as before c /∈ Z \ {N} and q 6= 1. This series converges absolutely for |z| < 1 when
|q| < 1 and it tends (at least termwise) to Gauss series as q 7→ 1, simply because

lim
q→1

(1− qα)

(1− q)
= α

The series is usually called Heine’s series or in view of the base q, q-hypergeometric series.
Analogous to Gauss notation, Heine used the notation φ(a, b, c, q, z) for his series. However,
since one would like to also be able to consider the case when q to the power a, b or c is
replaced by zero, it is now customary to define the basic hypergeometric series by

(6.5) φ(a, b; c; q, z) ≡ 2φ1(a, b; c; q, z) ≡ 2φ1

[
a, b
c

; q, z

]
≡

+∞∑
n=0

(a; q)n (b; q)n
(q; q)n (c; q)n

where (a; q)n represents the q-Pochammer symbol (also known as the q-shifted factorial).
Note that, in equation (6.5) it is assumed that c 6= q−m where m ∈ N.

Another generalization of Gauss series is the (generalized) hypergeometric series with r
numerator parameters a1, a2, . . . , ar and s denominator parameters b1, b2, . . . , bs defined by

rFs(a1, a2, . . . , ar; b1, b2, . . . bs; z) ≡ rFs

[
a1, a2, . . . , ar
b1, b2, . . . , bs

; z

]
=

+∞∑
n=1

(a1)n (a2)n . . . (ar)n
n! (b1)n (b2)n . . . (bs)n

zn

Some well-known special cases are the trigonometric functions

sin(z) = z 0F1(−; 3/2;−z2/4), cos(z) = z 0F1(−; 1/2;−z2/4),

including the famous Bessel function

Jα(z) =
(z

2

)α
0F1(−;α + 1;−z2/4)

Γ(α + 1)

where a dash is used to indicate the absence of either numerator (when r = 0) or denominator
(when s = 0) parameters. Some other well-known special cases are the Hermite polynomials

Hn(x) = (2x)n2F1

(
−n

2
,
(1− n)

2
;−;− 1

x2

)
and the Laguerre polynomials :

Lαn(x) =
(α + 1)n

n!
1F1(−n;α + 1;x).

Generalizing Heine’s series, we shall define an rφs basic hyper geometric series by

rφs(a1, a2, . . . , ar; b1, b2, . . . bs; q, z) =
+∞∑
n=1

(a1; q)n (a2; q)n . . . (ar; q)n
n! (b1; q)n (b2; q)n . . . (bs; q)n

[
(−1)nq(

n
2)
]s−r+1

zn
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Notice that, we have assumed that the parameters b1, b2, . . . , bs are such that the denominator
factors in the terms of the series are never zero. Since

(−m)n = (q−m; q)n = 0, n = m+ 1,m+ 2,m+ 3, . . . ,

an rFs series terminates if one of its numerator parameter is zero or a negative integer, and
an rφs series terminates if one of its numerator parameter is of the form q−m with m ∈ N.

For all n ∈ {N ∪ 0}, we also define

(a; q)∞ =
+∞∏
k=0

(
1− aqk

)
, |q| < 1

Since products of q-shifted factorials occur so often, to simplify them we shall frequently use
the more compact notations

(a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n . . . (am; q)n

(a1, a2, . . . , am; q)∞ = (a1; q)∞(a2; q)∞ . . . (am; q)∞.

The ratio (1− qa)/(1− q) is called a q-number (or basic number) and it is denoted by

[a]q =
1− qa

1− q
, q 6= 1.

It is also called a q-analogue, q-deformation, q-extension, or a q-generalization of the complex
number a. In terms of q-numbers the q-number factorial [n]q! is defined for a n ∈ N by

[n]q! =
n∏
k=1

[k]q

and the corresponding q-number shifted factorial is defined by

[a]q;n =
n−1∏
k=0

[a+ k]q

It’s not hard to see that

lim
q→1

[n]q! = n!, lim
q→1

[a]q = a, lim
q→1

[a]q;n = (a)n.

We can use the compact notation

[a1, a2, . . . , am]q;n = [a1]q;n[a2]q;n . . . [am]q;n

Therefore we find that

+∞∑
n=0

[a1, a2, . . . , ar]q;n
[n]q![b1, b2, . . . , bs]q;n

[
(−1)nq(

n
2)
]1+s−r

zn = rφs(q
a1 , . . . , qar ; qb1 , . . . , qbs ; q, z(1− q)1+s−r)

As in Frenkel and Turaev [14] one can define a trigonometric number [a;σ] by

[a;σ] =
sin (πσa)

sin (πσ)
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for some non-integer values of σ and view [a;σ] as a trigonometric deformation of a since
limσ→0[a;σ] = a. The corresponding rts trigonometric hyper geometric series is defined by

rts(q
a1 , . . . , qar ; qb1 , . . . , qbs ;σ, z) =

+∞∑
n=0

[a1, a2, . . . , ar]n
[n;σ]![b1, b2, . . . , bs]n

[
(−1)neπiσ(

n
2)
]1+s−r

zn

where

[n;σ]! =
n∏
k=0

[k;σ], [a;σ]n =
n−1∏
k=0

[a+ k;σ]

and

[a1, a2, . . . , am;σ]n = [a1;σ]n[a2;σ]n . . . [am;σ]n

From the fact that

[a;σ] =
eπiσa − e−πiσa

eπiσ − e−πiσ
=
qa/2 − q−a/2

q1/2 − q−1/2
=

1− qa

1− q
q(1−a)/2

where q 7→ e2πiσ, it follows that

[a;σ]n =
(qa; q)n
(1− q)n

qn(1−a)/2−n(n−1)/4

and hence we deduce that

rts(a1, a2, . . . , ar; b1, b2, . . . bs;σ, z) = rφs(q
a1 , qa2 , . . . , qar ; qb1 , qb2 , . . . , qbs ; q, cz)

where c = (1− q)1+s−rqr/2−s/2+(b1+b2+...+bs)/2−(a1+a2+...+ar)/2.

6.2. Heine’s transformation formulas for 2φ1 series. From the last section, we know
that q-Binomial theorem states that

(6.6) 1φ0(a;−; q, z) =
+∞∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

, |z| < 1, |q| < 1.

Heine [11], [12] and [13] showed that

(6.7) 2φ1(a, b; c; q, z) =
(b, az; q)∞
(c, z; q)∞

2φ1(c/b, z; az; q, b), |z| < 1, |b| < 1.

To prove this transformation formula, first observe from the q-binomial theorem (6.6) that

(cqn; q)∞
(bqn; q)∞

=
+∞∑
m=0

(c/b; q)m
(q; q)m

(bqn)m.
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Hence for |z| < 1 and |b| < 1 we deduce that

2φ1(a, b; c; q, z) =
(b; q)∞
(c; q)∞

+∞∑
n=0

(a; q)n(cqn; q)∞
(q; q)n(bqn; q)∞

zn

=
(b; q)∞
(c; q)∞

+∞∑
n=0

(a; q)n
(q; q)n

zn
+∞∑
n=0

(cqn; q)∞
(bqn; q)∞

zn

=
(b; q)∞
(c; q)∞

+∞∑
n=0

(a; q)n
(q; q)n

zn
+∞∑
m=0

(c/b; q)m
(q; q)m

(bqn)m

=
(b; q)∞
(c; q)∞

+∞∑
m=0

(c/b; q)m
(q; q)m

bm
+∞∑
n=0

(a; q)n
(q; q)n

(zqm)n

=
(b; q)∞
(c; q)∞

+∞∑
m=0

(c/b; q)m
(q; q)m

bm
(azqm; q)∞
(zqm; q)∞

Now it’s not hard to see that

(b; q)∞
(c; q)∞

+∞∑
m=0

(c/b; q)m
(q; q)m

bm
(azqm; q)∞
(zqm; q)∞

=
(b, az; q)∞
(c, z; q)∞

2φ1(c/b, z; az; q, b)

as desired. This completes the proof of Heine’s transformation formulas for 2φ1 series.

Heine also showed that Euler’s transformation formula which states that

2F1(a, b; c; z) = (1− z)c−a−bF (c− a, c− b; c; z), |z| < 1.

has a q-analogue of the form

(6.8) 2φ1(a, b; c; q, z) =
(abz/c; q)∞

(z; q)∞
2φ1(c/b, c/b; c; q, abc/z).

A short and quite interesting way to prove this beautiful formula is just to iterate the Heine’s
transformation formulas for 2φ1 series (see equation (6.7)) as follows:

2φ1(a, b; c; q, z) =
(b, az; q)∞
(c, z; q)∞

2φ1(c/b, z; az; q, b)

=
(c/b, bz; q)∞

(c, z; q)∞
2φ1(abz/c, b; bz; q, c/b) =

(abz/c; q)∞
(z; q)∞

2φ1(c/a, c/b; c; q, abz/c)

Therefore we deduce that

2φ1(a, b; c; q, z) =
(abz/c; q)∞

(z; q)∞
2φ1(c/b, c/b; c; q, abc/z)

as desired. This completes the proof of q-analogue of Euler’s transformation formula.

6.3. Heine’s q-analogue of Gauss’ summation formula. In order to derive Heine’s
[11], [12] q-analogue of Gauss summation formula it suffices to set z 7→ c/ab in Heine’s
transformation formulas for 2φ1 series (6.7) assuming that |b| < 1, |c/ab| < 1and simply
observe that the series on the right hand side of

2φ1(a, b; c; q, c/ab) =
(b, c/b; q)∞
(c, c/ab; q)∞

1φ0(c/ab;−; q, b)
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can be summed by using the q-binomial theorem to give

(6.9) 2φ1(a, b; c; q, c/ab) =
(c/a, c/b; q)∞
(c, c/ab; q)∞

Notice that, by analytic continuation, we may drop the assumption that |b| < 1 and require
only that |c/ab| < 1| for the previous equation (6.9) to be valid.

For the terminating case when a = q−n, equation (80) reduces to

(6.10) 2φ1(q
−n, b; c; q, cqn/b) =

(c/b; q)n
(c; q)n

By inversion or by changing the order of summation it follows from equation (6.9) that

(6.11) 2φ1(q
−n, b; c; q, q) =

(c/b; q)n
(c; q)n

bn

Both the equations (6.10) and (6.11) are the q-analogues of Vandermonde’s formula (6.2).
These formulas can be used to derive other important formulas.

For example, Jackson’s [15] transformation formula states that

2φ1(a, b; c; q, z) =
(az; q)∞
(z; q)∞

+∞∑
k=0

(a, c/b; q)k
(q, c; az; q)k

(−bz)k q(
n
2)

=
(az; q)∞
(z; q)∞

2φ1(a, b; c; q, z)(6.12)

This formula is a q-analogue of the Pfaff-Kummer transformation formula:

2F1(a, b; c; z) = (1− z)−a 2F1(a, c− b; c; z/z(z − 1))

To prove Jackson’s transformation formula (6.12), we use equation (6.10) to write

2φ1(a, b; c; q, z) =
+∞∑
k=0

(a; q)k
(q; q)k

zk
k∑

n=0

(q−k, c/b; q)n
(q, c; q)n

(bqk)n

=
+∞∑
n=0

+∞∑
k=n

(a; q)k(c/b; q)n
(q; q)k−n(q, c; q)n

zk (−b)n q(
n
2)

=
+∞∑
n=0

+∞∑
k=0

(a; q)k+n(c/b; q)n
(q; q)k(q, c; q)n

zk (−bz)n q(
n
2)

=
+∞∑
n=0

(a, c/b; q)n
(q, c; q)n

(−bz)n q(
n
2)

+∞∑
k=0

(aqn; q)k
(q; q)k

zk

=
(az; q)∞
(z; q)∞

+∞∑
k=0

(a, c/b; q)k
(q, c; az; q)k

(−bz)k q(
n
2)

as desired. This completes the proof of Jackson’s transformation formula.
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If a 7→ q−n, then the series on the right side of equation (6.12) can be reversed (simply
by replacing k by (n− k) to yield the famous Sears transformation formula

(6.12) 2φ1(q
−n, b; c; q, z) =

(c/b; q)n
(c; q)n

(
bz

q

)n
3φ2(q

−n, q/z; c−1q1−n; bc−1q1−n, 0; q, q)

6.4. Jacobi’s triple product identity and theta functions. Jacobi’s [16] well-known
triple product identity (also see Andrews [17]) states that

(6.13) (z
√
q,
√
q/z, q; q)∞ =

+∞∑
n=−∞

(−1)nqn
2/2zn

where z 6= 0 can be easily derived by using Heine’s summation formula (6.9). Now Plugging
c 7→ bz

√
q in equation (6.9) and then let b→∞ and a→∞ to finally obtain

+∞∑
n=0

(−1)nqn
2/2zn

(q; q)n
= (z
√
q; q)∞

Similarly substituting c 7→ zq in equation (6.9) and letting a→∞ and b→∞ produces

+∞∑
n=0

qn
2
zn

(q, zq; q)n
=

1

(zq; q)∞

Putting all things together produces

(z
√
q,
√
q/z; q)∞ =

+∞∑
m=0

+∞∑
n=0

(−1)m+nq(m
2+n2)/2zm−n

(q; q)m (q; q)n

=
+∞∑
n=0

(−1)nqn
2/2zn

(q; q)n

+∞∑
k=0

qk
2
qnk

(q, qn+1; q)k
+

+∞∑
n=1

(−1)nqn
2/2z−n

(q; q)n

+∞∑
k=0

qk
2
qnk

(q, qn+1; q)k

The Jacobi’s triple product identity now follows simply by noticing that

1

(q; q)n

+∞∑
k=0

qk
2
qnk

(q, qn+1; q)k
=

1

(q; q)n (qn+1; q)∞
=

1

(q; q)∞

An important and interesting application of the Jacobi’s triple product identity is that it
can be used to express the theta functions (Whittaker and Watson [18, Chapter 21]:

ϑ1(x, q) = 2
+∞∑
n=0

(−1)nq((n+1)/2)2 sin(2n+ 1)x

ϑ2(x, q) = 2
+∞∑
n=0

q((n+1)/2)2 cos(2n+ 1)x

ϑ3(x, q) = 1 + 2
+∞∑
n=0

qn
2

cos(2n)x

ϑ4(x, q) = 1 + 2
+∞∑
n=0

(−1)nqn
2

cos(2n)x
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in terms of infinite products. Simply replace q 7→ q2 in Jacobi’s triple product identity and
substitute z 7→ qe2ix,−qe2ix,−e2ix, e2ix respectively to finally obtain

ϑ1(x, q) = 2 4
√
q sin(x)

+∞∏
n=0

(1− q2n)(1− 2q2n cos(2x) + q4n)

ϑ2(x, q) = 2 4
√
q cos(x)

+∞∏
n=0

(1− q2n)
(
1 + 2q2n cos(2x) + q4n

)
ϑ3(x, q) =

+∞∏
n=0

(
1− q2n

) (
1 + 2q2n−1 cos(2x) + q4n−2

)
ϑ4(x, q) =

+∞∏
n=0

(
1− q2n

) (
1− 2q2n−1 cos(2x) + q4n−2

)
One can also think of the theta functions ϑ1(x, q) and ϑ2(x, q) as one-parameter deformations
(generalizations) of the trigonometric functions sin(x) and cos(x), respectively.

This led Frenkel and Turaev [14] to define an elliptic number [a;σ, τ ] by

(6.14) [a;σ, τ ] =
ϑ1 (πσa, eπiτ )

ϑ1 (πσ, eπiτ )

where a is a complex number and the modular parameters σ and τ are fixed complex numbers
such that =(τ) > 0 and σ 6= m+ nτ for integer values of m and n, so that the denominator
ϑ1 (πσ, eπiτ ) in equation (6.14) is never zero. Therefore it is clear that [a;σ, τ ] is well-defined,

[−a;σ, τ ] = −[a;σ, τ ], [1;σ, τ ] = 1

(6.15) lim
τ→∞

[a;σ, τ ] =
sin (πσa)

sin (πσ)
= [a;σ]

Hence, the elliptic number [a;σ, τ ] is a one-parameter deformation of the trigonometric num-
ber [a;σ] and a two-parameter deformation of the number a. Notice that [a;σ, τ ] is called an
elliptic number even though it is not an elliptic (doubly periodic and meromorphic) function
of a. However, [a;σ, τ ] is a quotient of ϑ1 functions and, as is well-known (see Whittaker
and Watson [18, 21.5]), any (doubly periodic meromorphic) elliptic function can be written
as a constant multiple of a quotient of products of ϑ1 functions.

6.5. A q-analogue of Saalschutz’s summation formula. A French mathematician Pfaff
[19] discovered the summation formula

(6.16) 3F2 (a, b,−n; c, 1 + a+ b− c− n; 1) =
(c− a)n(c− b)n
(c)n(c− a− b)n

, n ∈ N.

which sums a terminating balanced 3F2(1) series with argument 1. It was rediscovered by
Saalschutz [20] and is usually called Saalschiitz formula or the Pfaff-Saalschiitz formula; also
see Askey [10]. To derive a q-analogue of equation equation (6.16) observe that

(abz/c; q)∞
(z; q)∞

=
+∞∑
k=0

(abz/c; q)k
(q; q)k

zk
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The right hand side of q-analogue of Eulers tranformation formula equals
+∞∑
k=0

+∞∑
m=0

(ab/c; q)k(c/a, c/b; q)n
(q; q)k(q, c; q)m

(
ab

c

)m
zk+m

and hence, equating the coefficients of zn on both sides we finally get

(6.17) 3φ2(a, b, q
−n, c, abc−1q1−n; q, q) =

(c/a, c/b; q)n
(c, c/ab; q)n

, n ∈ N

which was first derived by Jackson [15]. It is easy to see that equation (6.16) follows from
equation (6.17) simply by replacing a, b, c in equation (6.17) by qa, qb and qc respectively.

6.6. The Bailey-Daum summation formula. Bailey [22] and Daum [21] independently
discovered the summation formula

(6.18) 2φ1(a, b; aq/b; q,−q/b) =
(−q; q)∞(aq, aq2/b2; q2)∞

(aq/b,−q/b; q)∞
which is a q-analogue of Kummer’s formula

2F1(a, b; 1 + a− b;−1) =
Γ(1 + a− b)Γ(1 + a/2)

Γ(1 + a)Γ(1 + a/2− b)
The proof of The Bailey-Daum summation formula Bailey is as follows

2φ1(a, b; aq/b; q,−q/b) =
(a,−q; q)∞

(aq/b,−q/b; q)∞
2φ1(q/b,−q/b;−q; q, a)

=
(a,−q; q)∞

(aq/b,−q/b; q)∞

+∞∑
n=0

(q2/b2; q2)n
(q2; q2)n

an

=
(a,−q; q)∞

(aq/b,−q/b; q)∞
(aq2/b2; q2)∞

(a; q2)∞

=
(−q; q)∞(aq, aq2/b2; q2)∞

(aq/b,−q/b; q)∞
as desired. This completes the proof of Bailey-Daum summation formula (6.18).
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