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Abstract

In this paper, we aim to explore some of the properties of complex polytopes, specif-
ically, the intersection of convex sets, lattice points in sets, as well as combinatorial
interpretations of the number faces and edges in special types of polytopes. Most of
the definitions in the introduction are taken from Ziegler’s ”Lectures on Polytopes”
[13]. In addition, the theorems that relate to convex sets are taken from [1] and [4].
The content in the section on associahedrons is largely based on Loday’s paper [2],
with a few of my own modifications, such as the representation of vertices.

1 Introduction and Examples

We begin by defining a convex set, which is essential in defining a polytope.

Definition 1.1 (Convex Set). A point set K ⊆ Rn is convex if for any points x,y ∈ K it
also contains the straight line segment between them.

In Figure 1, for example, the set on the left is convex because all line segments between
two points in the set are also in the set, while the set on the right is not convex because not
all such line segments are in the set.

Figure 1: Convex set on left; non-convex set on right [7]

One important property of a convex set is that every intersection of convex sets is also
convex. With this in mind, we can construct a convex hull.

Definition 1.2 (Convex Hull). A convex set is a convex hull of K ∈ Rn if it is the intersection
of all convex sets containing K:

Conv(K) :=
⋂{

K ′ ∈ Rd : K ⊆ K ′, K ′ convex
}
.
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Figure 2: Simplices in multiple dimensions [10]

In addition, we have an alternate definition of the convex hull in terms of convex combi-
nations. A convex combination is simply a linear combination of points in a set such that
the coefficients of the points are nonnegative and sum to 1.

Definition 1.3 (Convex Hull). A convex hull of some subset is the set of all convex combi-
nations of points in the subset.

Roughly speaking, the convex hull can be thought of as the “smallest” convex set con-
taining K. Now that we have these basic definitions, let’s introduce polytopes:

Definition 1.4 (V-polytope). A V-polytope is a convex hull of a finite set of points in Rn.

In addition, we have the definition for an H-polytope:

Definition 1.5 (H-polytope). An H-polytope is a bounded intersection of finitely many
closed halfspaces in Rn.

A polytope then, is a point set P ⊆ Rn which is either a V-polytope or H-polytope. In
addition, a convex polytope is a polytope that is also a convex set in Rn. We will refer to
convex polytopes simply as polytopes. A d-polytope is a polytope of dimension d in some
Rn with n ≥ d. A polytope contains elements of different dimensions less than d that are
referred to as faces. These faces include the empty set, points, lines, and even the polytope
P. One-dimensional faces are defined as points, two-dimensional faces are defined as lines,
and (d− 1)-dimensional faces are defined as facets.

Example. One of the most fundamental polytopes that exists is known as the simplex. In
one dimension, the simplex is a line. In two dimensions, the simplex is simply a triangle.
In three dimensions, the simplex is a tetrahedron, and in four dimensions it is known as a
5-cell. In general, a k-simplex is a k-dimensional polytope which is the convex hull of k + 1
vertices (see figure 2).

Example. The hypercube is another common type of polytope. It is a generalization of a
square or a cube to an n-dimensional figure. In four dimensions, the 4-cube is known as
a tesseract. Strictly speaking, the hypercube is a closed, compact, convex figure whose 1-
skeleton is made up of opposite and parallel groups of line segments that are perpendicular
to each other and have the same length.

In this paper, we will begin by focusing our attention to some of the important proper-
ties and results of convex sets. Then, we will discuss two specific polytopes known as the
permothedron and associahedron.

2



Figure 3: Disjoint subsets whose convex hulls share a common point [9]

2 Convex Sets

Since polytopes are convex sets, let’s introduce a few of the important results that come
from convex sets. We will begin by introducing Radon’s Theorem, and a related result
Helly’s Theorem. We will then shift focus toward convex sets in lattices and important
results such as Blichfeldt’s Theorem and Minkowski’s Theorem.

2.1 Intersections of Sets

In order to prove Helly’s Theorem, let’s first establish Radon’s Theorem.

Theorem 2.1 (Radon’s Theorem [1]). Each set of n+2 or more points in Rn can be expressed
as the union of two disjoint subsets whose convex hulls have a common point.

Example. To visualize this, consider X ⊂ R2. Radon’s Theorem says that if X contains 4
points, then there exists an intersection either between the convex hull of 3 of the points and
the 1 left over or between 2 line segments. In other words, we can either form a triangle out
of 3 of the points such that the remaining point is inside it, or we can form two intersecting
line segments, as shown in Figure 3.

Proof. Let P be a set of m ≥ n + 2 points pi in Rn with 1 ≤ i ≤ m. Then, since m ≥ n + 2,
the points in X are affine dependent, and there exists some (a0, a1, . . . , am) such that

m∑
i=0

aipi = 0,
m∑
i=0

ai = 0.

Now, split the indices of the points into two disjoint subsets I1 and I2 such that all of
the non-negative ai go to I1 and all of the negative ai go to I2. In other words,

I1 := {1, . . . ,m | ai ≥ 0}, I2 := {1, . . . ,m | ai < 0}.

In addition, let A =
∑

i∈I1 ai. Then,∑
i∈I1

ai +
∑
i∈I2

ai = 0

A =
∑
i∈I1

ai = −
∑
i∈I2

ai.
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Figure 4: Helly’s Theorem [8]

Lastly, let x =
∑

i∈I1
ai
A
pi. This leaves∑

i∈I1

aipi +
∑
i∈I2

aipi = 0∑
i∈I1

ai
A
pi +

∑
i∈I2

ai
A
pi = 0

x =
∑
i∈I1

ai
A
pi =

∑
i∈I2

−ai
A

pi.

From the last equation, we see that x is a complex combination of the points in I1 and
a complex combination of the points in I2 since∑

i∈I1

ai
A

=
∑
i∈I2

−ai
A

= 1.

Therefore, there is some point x that exists inside the convex hulls of two disjoint subsets
of P.

One of the most important applications of Radon’s Theorem is its usefulness in proving
Helly’s Theorem.

Theorem 2.2 (Helly’s Theorem [1]). Suppose X is a collection of m ≥ n+ 1 convex sets in
Rn, and X is finite or each set in X is compact. Then if each n + 1 members of X have a
common point, there is a common point to all members of X.

Proof. Let Si denote each convex set in X with 1 ≤ i ≤ m. We wish to show that

m⋂
i=1

Si 6= ∅.

In order to prove this result, we will form an inductive argument. To start, note that the
base case m = n+ 1 is trivial. Now, assume that the condition holds when |X| = m ≥ n+ 1.
The inductive step will go as follows:

Since the condition holds when |X| = m ≥ n+1, there exists a point pj with 1 ≤ j ≤ m+1
in the intersection of all Si except for possibly one, say Sj. Let P = {p1, p2, . . . , pm+1}. Then,
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Figure 5: Translating each Si to the origin [6]

2.1 tells us that we can split P into P1 and P2 such that there is a point p in the intersection
of the convex hulls of P1 and P2. We claim

p ∈
m+1⋂
i=1

Si.

We wish to show p exists in every Si. To do this, note that all points in P are in Si except
for possibly pi, since all other pj with j 6= i are in the intersection of some combination of
Ss including Si. Now, consider the case where pi ∈ P1. Then, pi 6∈ P2 and all of the points
in P2 are in Si. Since Si is convex,

Conv(P2) ⊂ Si.

Therefore, p ∈ Si for all 1 ≤ i ≤ m + 1. Similarly, if pi ∈ P2 instead, we have p ∈ Si for
all 1 ≤ i ≤ m + 1 as well.

2.2 Lattice Points in Sets

Now that we have discussed intersections of convex sets, let’s shift focus toward counting
lattice points in convex sets. One of the most important results in this area is Minkowski’s
Theorem. In order to prove it though, let’s establish a related result—Blichfeldt’s Theorem.

Theorem 2.3 (Blichfeldt’s Theorem [4]). Let S be a bounded set of points in R2 whose area
A exceeds 1. Then there exist two points x1 and x2 such that x1−x2 has integral coordinates.

While we will consider the R2 case, Blichfeldt’s Theorem can be generalized to n dimen-
sions as well.

Proof. We begin by covering S with unit squares that are formed from the integer lattice
Z2. Let S1, S2, . . . Sk denote the intersections between the unit squares and S. Now, translate
each Si with 1 ≤ i ≤ k to the origin. This can be thought of as stacking all of the tiles with
a piece of S on top of each other so that they fit inside a unit square. Then, since A > 1,
there exists some point z in the intersection of the translated copies of Sa and Sb where a 6= b
and 1 ≤ a, b ≤ k. Let l1 denote the lattice point corresponding to Sa and let l2 denote the
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lattice point corresponding to Sb. Then, the points x1 = l1 + z and x2 = l2 + z both exist in
S. In addition,

x1 − x2 = l1 + z − (l2 + z) = l1 − l2,

which is a point on Z2.

Now, let’s apply 2.3 in order to prove an important corollary.

Corollary 2.3.1 (Minkowski’s Theorem). If M is a symmetrical bounded convex set with an
area greater than 4, then it contains at least one lattice point other than the origin.

Proof. Let M̂ = 1
2
M , so that all of the points in M are shrunk by a factor of 2, and let A(x)

denote the area of a convex set x. Then,

A(M̂) =

(
1

2

)2

A(M) > 1.

Now, Blichfeldt’s Theorem tells us that there exist x1 and x2 in M̂ such that x1 − x2

has integral coordinates. Since x1 and x2 exist in M̂ , the points 2x1 and 2x2 exist in M. In
addition, since M is symmetric and convex −2x2 exists in M and so does the midpoint of
2x1 and −2x2. The midpoint of 2x1 and −2x2 is simply

2x1 − 2x2

2
= x1 − x2,

which has integral coordinates. Therefore, there is a point with integral coordinates in
M.

Minkowski’s Theorem has a number of applications to number theory and other areas in
the theory of convex sets. Minkowski’s Theorem can be used along with Euler’s Formula to
prove Pick’s Theorem, for example, which provides a formula for the area of polygons with
lattice point vertices.

3 Permutohedron and Associahedron

We have layed the foundation for describing polytopes by considering important results from
convex sets. Now, let’s shift focus to polyhedral combinatorics.

3.1 Permutohedron

When discussing polyhedral combinatorics, the permutohedron is an interesting polytope to
consider.

Definition 3.1 (Permutohedron). The permutohedron is defined Πn−1 ⊆ Rn is defined as
the convex hull of all vectors that are obtained by permuting the coordinates of the vector

1
2
...
n

 .
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From this definition, we see that the permutohedron is the polytope whose vertices are
permutations of [n] and whose edges connect transpositions of permutations from two ver-
tices.

Example. Let’s consider the permutohedron of order 4, a truncated octahedron. Then there
are 4! = 24 vertices corresponding to the 24 permutations of {1, 2, 3, 4}. In addition, to go
from one vertex to another connected by an edge, simply swap the order of two numbers
in the permutation (see Figure 6). The facets of the permutohedron correspond to the
2-dimensional faces of the truncated octahedron.

Figure 6: Permutohedron of order 4 [12]

Immediately, we can see that the number of vertices is equivalent to n!, since this is
simply the number of permutations of [n]. In addition, we can clearly see that the number

of edges is equivalent to (n−1)n!
2

since each vertex has n− 1 edges attached to it.
At this point, we may ask whether there is a way to describe the number of (n− k)-faces

of a permutohedron. It turns out that there is indeed a nice way of counting such faces.
However, before we accomplish this, let’s count the number of facets of the permutohedron.

Lemma 3.1. Let Πn−1 be a permutohedron in Rn. Then the number of facets of Πn−1 is
equal to 2n − 2.

Proof. Let S denote a nonempty proper subset of [n]. Then, construct a facet from the
vertices whose permutations contain the smallest elements at the positions indicated by S.
For example, if n = 4 and S = {1, 3}, construct a facet from vertices (1, 3, 2, 4), (1, 4, 2, 3),
(2, 3, 1, 4), and (2, 4, 1, 3). Then, the facets are in bijection with the subsets S, so the number
of facets is equal to the number of total subsets minus the empty subset and [n]. This is
simply 2n − 2.

Now, let’s use this result to describe the number of (n− k)-faces.
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Theorem 3.2. The number of faces of dimension n− k in Πn−1 is equal to k!S(n, k), where
S(n, k) represents the Stirling numbers of the second kind.

Proof. To start, note that the permutohedron is a simple polytope, so the intersection of
k facets is a (n − k)-face. Now, consider two intersecting facets F1 and F2 denoted by
subsets S1 and S2, respectively. In addition, let i = |S1| < j = |S2|. Then, F1 has vertices
whose permutations have 1, 2, . . . , i in the positions stored in S1, and F2 has vertices whose
permutations have 1, 2, . . . , i, . . . , j in the positions marked by S2. Since F1 and F2 intersect,
they must share at least one common vertex, meaning S1 ⊂ S2. In addition, since S1 =
S2 =⇒ F1 = F2, we must have

∅ ( S1 ( S2 ( [n].

Similarly, if we intersect k− 1 facets, constructed from proper subsets S1, S2, . . . , Sk−1 of
[n], we must have

∅ ( S1 ( S2 ( · · · ( Sk ( [n].

So, the total number of (n−k)-faces is equivalent to the number of sequences of nonempty
nested proper subsets S1, S2, . . . , Sk−1. We claim that these sequences of subsets are in bi-
jection with the partitions of [n] into k nonempty subsets counting order. To show this,
partition [n] into T1, T2, . . . , Tk. Then, the sequence of subsets can be constructed as

∅ ( T1 ( T1 ∪ T2 ( · · · (
k−1⋃
i=1

Ti ( [n].

In addition, we can also construct a partition of [n] into k subsets from a sequence of
k − 1 subsets denoting facets. Therefore, since there is indeed a bijection, the total number
of (n− k)-faces is equal to the number of partitions of [n] into k nonempty subsets counting
order, that is, k!S(n, k). [3]

3.2 Associahedron

In addition to the permutohedron, there exists another similar polytope whose vertices have
an important combinatorial interpretation. We call this polytope the associahedron. Before
we define the associahedron, let’s introduce some notation:

Let Yn be the set of parenthesizations of a word with n + 1 letters.

Example. We have,

Y1 = {(x0x1)},
Y2 = {((x0x1)x2), (x0(x1x2))},

Y3 = {((x0x1)(x2x3)), (x0((x1x2)x3)), (x0(x1(x2x3))), (((x0x1)x2)x3), ((x0(x1x2))x3)}.

Now, define t ∨ s to be a parenthesization that takes t as a left element and that takes s
as a right element. In other words,

t ∨ s = (t, s).
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We can associate any t with an integral vertex M(t) as follows. Let x0, x1, x2, . . . , xn be
the elements in t from left to right. Then, place some divider di between xi−1 and the first
group or element to the right of xi−1. Let ai be the number of xis to the left of di inside the
parenthesization containing di, and let bi be the number of xis to the right of di inside the
parenthesization. Define M(t) as

M(t) := (a1b1, a2, b2, . . . , anbn).

Example. Suppose we have t = (((x0, x1)(x2x3))x4). Then, we can insert the dis to get
(((x0d1x1)d2(x2d3x3))d4x4). This leaves

M(t) = (1× 1, 2× 2, 1× 1, 4× 1) = (1, 4, 1, 4).

Lastly, define Hn to be a hyperplane in Rn whose equation is

x1 + x2 + · · ·+ xn =
n(n + 1)

2
.

Lemma 3.3. The point M(t) belongs to hyperplane Hn for all t ∈ Yn.

Proof. We construct a proof by induction. The n = 1 case is satisfied because (1) belongs to
x1 = 1. Now, break t up into t1∨ t2 where t1 ∈ Yp and t2 ∈ Y1 and assume that the condition
holds when n = p and n = q. We have

M(t) = (M(t1), (p + 1)(q + 1),M(t2)).

Let zi denote the ith coordinate in M(t). Then, since n = p + q + 1,

n∑
i=1

zi =
p(p + 1)

2
+ (p + 1)(q + 1) +

q(q + 1)

2
=

n(n + 1)

2

as desired.

With this, we can define the associahedron.

Definition 3.2 (Associahedron). The associahedron Kn−1 is the convex hull of the points
M(t) in the hyperplane Hn for t ∈ Yn.

The associahedron Kn is a polytope of dimension n (see Figure 7a). Since each vertex
M(t) of Kn corresponds to a parenthesization of a word with n + 2 letters, there are Cn+1

one of them, where Ck is the kth Catalan number.
One important feature of the associahedron is that it’s vertices can be represented as a

poset (partially ordered set). We define s ≤ t if and only if t can be formed from s by a
rightward shift in one set of parentheses.

Example. Take s = (((x0x1)x2)x3). Then, take the second parenthesis and the fifth paren-
thesis to wrap around x2 and x3 to get t = ((x0x1)(x2x3)). Then, s ≤ t.

If sl t, that is if x ≤ t and there is no z such that s ≤ z ≤ t, then s and t form an edge
in the associahedron. Such a poset, whose Hasse diagram is isomorphic to the vertices and
edges of Kn−1 is known as the Tamari lattice Tn. As it turns out, we can similarly construct
a partial order on the permutohedron. This partial order is known as the weak Bruhat order.
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(a) The associahedron K3 [5] (b) Tamari lattice T4 [11]

Figure 7

4 Conclusion

In this paper, we introduced the concept of a polytope and provided a few examples of
common examples of polytopes. We continued to discuss the relation between polytopes
and convex sets and proved some important theorems that can be used to describe intersec-
tions and lattice points in convex sets. Lastly, we discussed two special polytopes and the
combinatorial interpretation of their vertices and faces.
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