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1. Introduction

We’ll begin by defining what posets are.

Definition 1.1. A poset (partially ordered set) is a set P and binary relation ≤ such that
all x, y, z ∈ P exhibit the following properties:

(1) Reflexivity: ∀ x ∈ P , x ≤ x.
(2) Transitivity: If x ≤ y and y ≤ z then x ≤ z.
(3) Antisymmetry: If x ≤ y and y ≤ x then x = y.

Elements that satisfy the conditions of the binary relation are said to be comparable. In
contrast, elements can also be incomparable if either x ≤ y or y ≤ x. Hence, when defining
a poset, it is necessary to clarify the exact nature of the relationship between the elements
of the set. The following are a few examples of common posets.

Example. Let A be a set. Then, (P (A),⊆) is a poset. In other words, the elements of the
poset are all the possible subsets of A, and two elements are comparable if one is the subset
of the other. This poset is called the Boolean lattice (Bn) of order n (where Bn = |A|). B3,
for example, is ((1, 2, 3), (1, 2), (1, 3), (2, 3), (1), (2), (3)(∅)).

Example. Let n be a natural number, and let Dn be the set of divisors of n. Then, (Dn, |) is
a poset. Which is to say, two elements of the poset are comparable if one divides the other.
More specifically, D18 is (1, 2, 3, 6, 9, 18).

Posets can also be represented graphically, through the utilization of Hasse diagrams.
In this way, relationships between the elements of the poset can be more easily seen and
analyzed.

Definition 1.2. A Hasse diagram is a graphical representation of a poset with an implied
upward orientation. Points are placed in representation of the elements, and lines are drawn
to signify a relation. The following rules must be adhered to:

(1) Given a poset P , if x, y ∈ P satisfy x ≤ y, then the point representing x must be
drawn lower than the point representing y.

(2) If points x and y reside on the same ’level’ of the diagram, they are necessarily
incomparable. However, this doesn’t imply the converse.

It is important to note that loops and implicit relations need not be drawn, as partial
orders are inherently reflexive and transitive. The following examples are Hasse diagrams of
the posets given above.
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Example. B3

Example. D18

2. Simplicial Complexes

In this section, we will cover their fundamentals; we’ll give a bit of background on the basic
analytic geometry of Euclidean space, and finally define exactly what simplicial complexes

are.

Definition 2.1. A set of points, (a0, ..., an), is said to be geometrically independent if––for
any real scalars ti––the equations

n∑
i=0

ti = 0 and
n∑
i=0

tiai = 0

necessarily imply that t0 = t1 = ... = tn = 0.

Theorem 1. In general, the set of points (a0, ..., an) is only geometrically independent if
and only if the vectors

a1 − a0, a2 − a0, · · · , an−1 − a0, an − a0
are linearly independent.

Proof. Suffice to say, it’s most appropriate to begin with a definition clarifying exactly what
linear independence means. A set of vectors [v0, ..., vn] is linearly independent if the following
vector equation:

x0v0 + x1v1 + · · ·+ xn−1vn−1 + xnvn
has only the trivial solution x0 = x1 = ... = xn−1 = xn = 0. Otherwise, the vector set is
linearly dependent.
In other words, a linearly independent set of vectors is one in which no vector can be formed
with a linear combination of any number of the other vectors.
Applying this definition to the theorem statement, lets suppose that the displacement vectors
a1−a0, a2−a0, ..., an−1−a0, an−a0 are linearly independent vectors of points a0, ...an. Then,
let t0, t1, ...tn be real numbers satisfying the following equations.

n∑
i=0

ti = 0 and
n∑
i=0

tiai = 0
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This, then implies that t0 = −
∑n

i=1 ti and hence, the following equation can be derived:

0 =
n∑
i=0

tiai = t0a0 +
n∑
i=1

tiai =
n∑
i=1

ti(ai − a0)

In utilizing the definition of linear independence of the vectors ai − a0, we know that

t1 = t2 = ... = tn−1 = tn = 0.

However, t0 is also equivalent to 0, as we previously found that t0 = −
∑n

i=1 ti. Thus, since
all ti are necessarily equivalent to 0, the points a0, ...an are geometrically independent. �

Definition 2.2. The span (a0, ..., an) forms an n-plane, which consists of all points x of Rn

such that

x =
n∑
i=0

tiai

in which
∑
ti = 1. In order to further clarify, we will present an elementary theorem

elucidating the nature of such n-planes.

Theorem 2. If (a0, ..., an) is geometrically independent, and if w lies outside the plane that
these points span, then (w, a0, ..., an) is geometrically independent.

Proof. A span of a group of points a0, ..., an is essentially the set of all linear combinations
of the vectors a1 − a0, a2 − a0, ..., an−1 − a0, an − a0. This span of a certain group of vectors
is always subspace of Rn.
Hence, if w lies outside the span of these points, this implies:

tn+1(w − a0) +
n∑
i=0

ti(ai − a0) = 0 where
n+1∑
i=0

ti = 0

Which is to say, w−a0 is linearly independent from ai−a0. Because of Theorem 1, we know
linear independence implies geometric independence, and hence (w, a0, ..., an) is geometrically
independent.

�

Definition 2.3. Given that (a0, ..., an) is a geometrically independent set in Rn, we can
define the n-simplex σ spanned by a0, ..., an in which ti ≥ 0 for all i and

x =
n∑
i=0

tiai where
n∑
i=0

ti = 1.

The numbers ti are determined uniquely by the value of x, and as such, they are called the
barycentric coordinates, ti(x), of the point x.

The points a0, ..., an that span σ are called the vertices of the simplex. Any simplex
spanned by the subset of (a0, ..., an) is called a face of σ. The face spanned by the subset
(a0, ..., ai−1, ai+1, ..., an) is known as the face opposite of ai. The faces of σ not including
itself are called the proper faces of σ; the union of these faces is called the boundary of σ

and is denoted as Bd σ. The interior of σ, or open simplex, is defined as Int σ = σ− Bd σ.

Theorem 3. An n-simplex is a figure in Rn such that it is geometrically similar to the
standard N-simplex in the respective dimension.
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Proof. We can begin by visualizing simplices in low dimensions. The 0-simplex is just a
point. Intuitively, a 1-simplex consists of a0, a1 and all points on the line segment conjoining
a0 and a1. This is represented by the equation

x = t0a0 + (1− t0)a1
where 0 ≤t0 ≤1. In much the same way, the 2-simplex is spanned by a0, a1, and a2 and
equals the triangle having these three points as its vertices. Its equation is as follows:

x =
2∑
i=0

tiai = t0a0 + (1− t0)[(
t1
λ

)a1 + (
t2
λ

)a2]

where λ = 1− t0. The expression in brackets represents the line segment between a1 and a2
because (t1+t2)

λ
= 1 and t1, t2 ≥ 0. Here, x is a point on the line segment joining a0 and a

point on a1a2. σ equals the union of all such line segments, and thus forms a triangle.
In the same vein, the following equation for the generalization can be derived:

x =
n∑
i=0

tiai = t0a0 +
(
t1a1 +

(
t2a2 + · · ·+ (1− (t0 + t1 + · · ·+ tn−2))(

tn−1

λ
an−1 +

tn
λ
an)
))

where λ = (1 − (t0 + t1 + ... + tn−2)). Here, all points x lie on the face connecting a0 to
the N-1 simplex formed by (a1, ..., an). Finally, because σ is, once again, a union of all such
faces, it takes the form of the standard geometrical N-simplex. �

The following theorems concern the fundamental properties of simplices.

Theorem 4. The barycentric coordinates, ti(x), of x with respect to (a0, ..., an) are contin-
uous functions of x.

Proof. Because we already know that the values of the barycentric coordinates (ti(x)) are
uniquely determined by x, these coordinates are indeed a function of x. Now, simply proving
continuity remains.
We can define the n − plane P to be the set of points spanned by all z =

∑n
i=0 λiai such

that λ ∈ R. This is essentially a superset of the simplex σ (which is defined by having the
extra condition that

∑n
i=0 ti = 1.

Thus ti is continuous over R as P → R. Continuity over σ naturally follows, as a restriction
of a continuous map is in turn itself continuous. �

Theorem 5. σ is equivalent to the union of all line segments joining a0 to the points on the
simplex spanned by (a0, ..., an). Two such line segments only intersect at the point a0.

Proof. Given the definition of a simplex, we know that it consists of all points
x =

∑n
i=0 siai where si ≥ 0 and

∑n
i=0 si = 1. From theorem 3, we know that the line segment

t0a0 + (1− t0)
∑n

i=1 siai, where 0 ≤ t0 ≤ 1, is also contained in the simplex σ.
Verifying the first part of the proof, given a point

∑n
i=0 tiai in σ with t0 6= 1, we can set

si = ti
1−t0 for i = 1, ..., n. This then shows that every point in the simplex spanned by.

a0, ..., an is in the union of the line segments. a0 is also in the union, since it is in each line
segment.
Proving the second portion of the theorem statement, a0 is clearly a common point of inter-
section in the union of all line segments. Assume that there is another point of intersection
y. Then, the segments must lie on the same line. However, this contradicts the notion that
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each point a0, ..., an is geometrically. independent. Thus, the only point of intersection must
be a0. �

Definition 2.4. A geometric simplicial complex K in Rn is a collection of simplices in Rn.

A couple of examples of simplicial complex in the various dimensions are given below.

(a) (b)

Theorem 6. Every simplicial complex satisfies the following two properties:

(1) Every face of a simplex of K is in K.
(2) The intersection of any two simplices of K is a face of each of them.

Proof. First, we can assume that K is a simplicial complex. From this, condition (1) is
immediate, as a simplicial complex can only ever be formed out of a collection of smaller
simplices. However, we have yet to prove the second. Given two simplices σ and τ , we can
show that if their interiors have a point x in common, then σ = τ .
Let s = σ ∩ τ ; if s were a proper face of σ, then x would belong to Bd σ, which it does not.
Therefore, s = σ. In much the same way, we can prove s = τ . Therefore, the intersection of
any two simplices must be a face. �

3. Order Complexes and Face Posets

A simplicial complex is associated to every poset.

Definition 3.1. To every poset P , one can associate a simplicial complex 4(P ), called the
order complex of P . The vertices of 4(P ) are the elements of P and the faces of 4(P ) are
the chains (i.e. the totally ordered subsets) of P .

Definition 3.2. To every simplicial complex, 4, one can associate s specific poset P (4)
called the face poset of 4, which is defined as the poset of non-empty faces ordered by
inclusion.

If we start with a simplicial complex 4, take its face poset, and then take the order
complex 4(P (4)), we get a simplicial complex known as the first barycentric subdivision
of 4. This figure is minutely dissimilar to the original complex. However, when we
atttribute a topological property to a poset, the geometric realization of the order complex
of the poset also has that property.

Theorem 7. Posets and T0 topological spaces are in a one-to-one correspondence.

Proof. A space satisfies the T0 axiom if no two points have an exactly identical set of open
neighborhoods. In other words, for any two points in the topological space x, y ∈ X, there
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is an open set U such that x ∈ U and y /∈ U or y ∈ U and x /∈ U . (Note that open sets of a
topological space are simply the members of said space).

We must show that this finite topological space and a partially ordered set are, in fact, the
same concept. Given a finite topological. space X, we can first note that the intersection of
arbitrary open sets is open, as there are only a finite number of open sets to begin with.

Thus, for each x ∈ X, we can define the minimal open set Ux to be the intersection of all
open sets in X containing x. The set of these Ux forms a basis for the space X, and we can
call this basis the minimal basis. It is called in such a way, because any other basis B for X
must contain this minimal basis.

We can define a topology on X as the topology with a basis of sets {y ∈ X|y ≤ x} for all
x ∈ X. According to this definition, if y ≤ x, then y is contained in every basis element
that also contains x. Thus y is contained in the intersection as well. as Ux. On the other
hand, if, in a finite topological space, y ∈ Ux, then y ≤ x. Hence, according to these two
definitions, y ≤ x if and only if y ∈ Ux.

Finally, if X is a T0 finite topological space with x, y ∈ X, then x ∈ Uy and y ∈ Ux implies
that x and y are the same point. Translating this to poset terminology, x ≤ y and y ≤ x
implies x = y. Thus, all the requirements for a poset have been fulfilled and a one-to-one
correspondence can be drawn. �
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