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Abstract. In this article, we investigate some of the useful results of graph theory and
how they apply to additive combinatorics.

1. Introduction

Ramsey theory has played an important role in a plethora of mathematical developments
throughout the last century, reaching the area of algebra, combinatorics, analysis and ge-
ometry. In this article, I will discuss some introductory ramsey theory, and its application
onto proving some topics in additive combinatorics, including Schur’s Theorem and Van der
Waerden’s Theorem.

2. Preliminaries

Definition 2.1. A graph G = (V,E) is an ordered pair such that V is a set of elements, as
vertices and E ⊆ {{v1, v2} | v1, v2 ∈ V, v1 6= v2} is the set of edges.

Definition 2.2. An edge e ∈ E is adjacent to the vertex v if v ∈ e.

Definition 2.3. Two vertices v1, v2 ∈ V is adjacent if there exists an edge e ∈ E such that
e = {v1, v2}.

Definition 2.4. A complete graph of n vertices, Kn, is a graph of n vertices and any two
vertices are adjacent.

Definition 2.5. K∞ denotes a complete graph with infinitely many vertices.

Definition 2.6. For a positive integer n, we denote [n] by the set of elements {1, 2, . . . , n}.

Definition 2.7. If a, n are positive integers, we denote [a]n as the set of sequences (a1, a2, . . . , an)
where ai ∈ [a] for all 1 ≤ i ≤ n.

3. Introductory Ramsey Theory

Theorem 3.1 (Finite Ramsey’s Theorem). Let m,n be positive integers. There exists a
positive integer k with m,n < k, such that any graph with at least k vertices and its edges
being colored with red and blue, contains either a monochromatic red Km or a monochromatic
blue Kn.

Definition 3.2. We define the smallest positive integer k satisfying the conclusion of the
theorem above as R(m,n), which is called a Ramsey number.
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Proof. We will now prove that R(m,n) exists by proving that it is bounded by a constant.
We shall establish several facts regarding Ramsey number.

Fact. R(m,n) = R(n,m) for any positive integer m and n.
This is true because we could just swap the colors.

Claim 3.3. For any integer a ≥ 1, R(a, 1) = a.

Proof. Note that K1 contains zero edges, and therefore any coloring of K1 must contain a
blue K1. �

Claim 3.4. For any integer a ≥ 1, R(2, a) = R(a, 2) = a.

Proof. If all of the edges Ka is colored red, it must contain a red Ka. Otherwise, it must
contain at least a blue edge, which is a blue K2. �

Claim 3.5. If m,n ≥ 2, then R(m,n) ≤ R(m− 1, n) + R(m,n− 1).

Proof. We will prove this by induction on m+n. Assume that R(m− 1, n) and R(m,n− 1)
exists, and let X = R(m − 1, n) + R(m,n − 1). We will prove that KX will contain a
monochromatic red Km or a monochromatic blue Kn. Take a red-blue coloring of KX and
choose a vertex v0. If v0 is incident with at least R(m − 1, n) red edges, then the complete
graph determined by their other endpoints either contains a blue Kn (and we’re done) or
a red Km−1. Then add vertex v0 to Km−1 to get a red Km. If not, then v0 is incident
with at least R(m,n − 1) blue edges and the idea is identical. This forces R(m,n) ≤
R(m,n− 1) +R(m− 1, n) since we have proved that if X = R(m,n− 1) +R(m− 1, n), then
KX contains either a monochromatic red Km or a monochromatic blue Kn. �

�

Although it is straightforward to establish Finite Ramsey’s Theorem and Ramsey number
bound for R(m,n), for all m,n ∈ N, it is really difficult to determine its exact value as the
bound established is really loose.

In particular, it is known that R(3, 3) = 6, R(4, 4) = 18, R(5, 5) ∈ [43, 48] and R(10, 10) ∈
[798, 23556], which is really far from being precise.

There exists an interesting generalization of the Finite Ramsey’s Theorem, that is, the
Infinite Ramsey’s Theorem. Before we state the main theorem, we will first recall the
infinite pigeonhole principle (which will just be stated as pigeonhole principle throughout
this article).

Theorem 3.6 (Infinite Pigeonhole Principle). If there are a finite number of pigeonholes
containing an infinite number of pigeons at least one of the pigeonholes must contain an
infinite number of pigeons.

Theorem 3.7 (Infinite Ramsey’s Theorem). Suppose we color the edges of K∞ with finitely
many colors, then there is an infinite monochromatic induced subgraph.

Proof. Fix a vertex v0. By the Pigeonhole Principle, there is a color c0 and infinitely many
vertices w 6= v0 such that the edge v0w has color c0. Let G1 be the subgraph spanned by
these vertices, so all vertices of G1 are connected to v0 by an edge of color c0. Now pick a
vertex v1 of G1. By the same argument there is an infinite subgraph G2 of G1 and a color
c1 such that all vertices of G2 are connected to v1 by an edge of color c1. By induction we
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construct an infinite decreasing sequence of subgraphs Gn and a sequence of colors cn as
well as a sequence of vertices vn ∈ Gn such that each vertex of Gn+1 is connected to vn by
an edge of color cn. Note that this implies that the edge connecting vi and vj has color ci
if i < j. Applying the Pigeonhole Principle again, we get an infinite increasing sequence
`1 < `2 < . . . such that c`1 = c`2 = . . . . By construction, the vertices v`1 , v`2 , . . . span an
infinite monochromatic subgraph. �

4. Schur’s Theorem

In the 1910’s, Schur attempted to prove Fermat’s Last Theorem by reducing the equation
xn+yn = zn modulo a prime p. Although the attempt was unsuccessful, Schur has established
the following classical result, and one of the earliest results in an area now known as additive
combinatorics.

Theorem 4.1 (Schur’s Theorem). Let n be a positive integer. There is a positive integer
N such that for any coloring of {1, 2, . . . , N} using n colors the equation x + y = z has a
monochromatic solution.

Proof. We will color the edges of KN using n colors, by giving the edge ij, where i < j, with
the color that j − i has in the coloring of {1, 2, . . . , N}. By Finite Ramsey’s Theorem,
we know that if N is big enough, then there is a monochromatic triangle, say with vertices
i < j < k. Therefore, j − i, k − i and k − j has the same color. Furthermore, we have

(k − i) = (k − j) + (j − i).

�

In 1916, Schur proved the following problem by using Schur’s Theorem.

Corollary. Let n > 1 be a positive integer. Then for all primes p > s(n), for a function
s : N>1 → N, the congruence

xn + yn ≡ zn (mod p)

has a solution in the integers, such that p does not divide xyz.

Proof. Let p be a large prime and let g be a primitive root modulo p. Color the elements
in the set {1, 2, . . . , p − 1} with n colors, by giving an element a ≡ gj (mod p) the color j
(mod n). If p is large, Schur’s Theorem yields a, b, c of the same color such that a = b + c.
Now, since a ≡ gi, b ≡ gj, c ≡ gk (mod p). We conclude that

gi−j ≡ 1 + gk−j (mod p).

However, since a, b, c are of the same color, we know that i ≡ j ≡ k (mod n), which implies
n | j − i and n | k − i, and therefore, we have

(g
j−i
n )n ≡ 1n + (g

k−i
n )n (mod p)

, and we are done. �
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5. Van der Waerden’s Theorem

In the 1920’s, Van der Waerden proved the following result about monochromatic arith-
metic progressions in the integers.

Theorem 5.1 (Van der Waerden’s Theorem). For all positive integers k and r, there exists a
least integer W (k, r) such that any r-coloring of [W (k, r)] contains a k-term monochromatic
arithmetic progression.

Definition 5.2. We define a set A ⊆ Z to have positive upper density if

lim
N→∞

sup
|A ∩ {−N, . . . , N}|

2N + 1
> 0

In the 1930’s, Erdos and Turan conjectured a stronger statement, that any subset of the
integers with positive density contains arbitrarily long arithmetic progressions.

In the 1970’s, Szemerédi fully settled the conjecture using combinatorial techniques, which
has now became one of the landmark theorems in additive combinatorics.

Theorem 5.3 (Szemerédi’s theorem). Every subset of the integers with positive upper density
contains arbitrary long arithmetic progressions.

We will not go through the proof of Szemeredi’s theorem in this article. Instead, we will
discuss the proof of Van der Waerden’s Theorem.

We will use the idea of color-focusing. Let A1, A2, . . . , As be disjoint arithmetic progressions
of length k − 1, where Ai = {ai, ai + di, . . . , ai + (k − 2)di}. We define Ai to be focused
at f if for all i, we have ai + (k − 1)di = f . Furthermore, if in some coloring, each Ai

is monochromatic, with each Ai receiving a different color, then the progressions together
are said to be color-focused at f . The key idea is that when s = r, an r-coloring of
N containing a set of r color-focused arithmetic progressions A1, A2, . . . , Ar, each of length
k − 1, must contain a monochromatic progressions of length k. Since the common focus f
of the Ai must receive one of the r colors, an r-coloring of N containing a set of r color-
focused arithmetic progressions A1, A2, . . . , Ar of length k−1, must contain a monochromatic
arithmetic progression of length k.

We will proceed by double induction.
By the pigeon hole principle, note that W (2, r) > r because we could take all r elements
to be in different color. To prove that W (2, r) = r + 1, we could see that by pigeonhole
principle, there must exists two of the r+1 numbers that have the same color, which is what
we wanted – therefore W (2, r) = r+1 for all r. Next, suppose that we know that W (k−1, t)
is finite for all t ∈ N. We will show that for a fixed value of r, the value W (k, r) is also finite.
To do this, we will show that for each s ≤ r, there exists a number V (k, r, s) such that any
r-coloring of [V (k, r, s)] contains either

• a monochromatic arithmetic progression of length k, or
• A set A1, A2, . . . , As of color-focused (k−1) term monochromatic arithmetic progres-

sions, together with their common focus.

For the case s = 1, we could just take V (k, r, 1) to be 2 ·W (k − 1, r). Now, suppose that
V (k, r, s− 1) is finite.

Claim 5.4. V (k, r, s) ≤ 2 · V (k, r, s− 1) ·W (k − 1, rV (k,r,s−1)).
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Proof. Suppose we are given an r-coloring of [N ], where N = 2 · V (k, r, s − 1) · W (k −
1, rV (k,r,s−1)). We break the coloring up into 2 ·W = 2W (k − 1, rV (k,r,s−1)) blocks of length
V = V (k, r, s − 1). Now, there are indeed rV ways to color each block, so by construction
(which follows from the induction hypothesis on k), there is a progression of identically col-
ored blocks Bi, Bi+m, . . . , Bi+(k−2)m of length k − 1 among the first W blocks, whose kth
term is also among the 2W blocks colored.

Now we look inside each (identically colored) block B`+jm. By hypothesis (this is the induc-
tion on s), we can find s− 1 color-focused progressions of length k − 1, together with their
focus, within each such block. Suppose that, in color i (where 1 ≤ i ≤ s − 1) and in block
` + jm, where 0 ≤ j ≤ k − 2, the progression is

{ai + jmV, ai + di + jmV, . . . , ai + (k − 2)di + jmV }

with focus f + jmV .
Unless we have a monochromatic k-term progression, all of these focuses f + jmV for 0 ≤
j ≤ k − 2, are colored with a new color w. Now, writing

Ai =

{
{ai, ai + (di + mV ), ai + 2(di + mV ), . . . , ai + (k − 2)(di + mV )} 1 ≤ i ≤ s− 1

{f, f + mV, f + 2mV, . . . , f + (k − 2)mV } i = s,

we observe that A1, A2, . . . , As form a set of s color-focused progressions of length k − 1,
with common focus f + (k − 1)mV , which is not greater than N . This completes the first
induction on s. For the outer induction on k, note that by the argument at the start of this
proof, we must have W (k, r) ≤ V (k, r, r), and we are hence done. �

Van der Waerden’s Theorem cannot be extended to the infinite case, that is, there exists
an r-coloring of N, for r > 1, under which there is no monochromatic infinite arithmetic
progression. We will give a construction for r = 2.

Consider the following coloring: where we color 1 red, 2, 3 blue, 4, 5, 6 red, and so on. The
coloring produced in this way would look like

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . . }

We will label these monochromatic blocks as Bk, where k is the kth block of color. As an
example, B3 = {4, 5, 6}. Now, we label every number in N as f(x, y) to label the yth number
on the xth block Bx. As an example, f(1, 3) = 4 because f(1, 3) denotes the first number
of the third block: in this case is the block B3 = {4, 5, 6}. Suppose that there exists a
monochromatic infinite arithmetic progression. We take two of its successive elements, let it
be f(a, b) and f(c, d). Therefore the difference must be

f(a, b)− f(c, d) =

(
a(a + 1)

2
+ b

)
−
(
c(c + 1)

2
+ d

)
which is a constant since f(a, b) and f(c, d) are two successive elements of an arithmetic
progression. Since this is a constant, there must exists a natural number ` such that

` >

(
a(a + 1)

2
+ b

)
−
(
c(c + 1)

2
+ d

)
= C
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Now, consider B`, where B` has a different color than the color of infinite monochromatic
arithmetic progression

Now, we claim that for any positive integer x, then the interval [x, x + C] must have an
element in common with the infinite arithmetic progression. Now, suppose otherwise. Since
the arithmetic progression has a common difference of C and the arithmetic progression is
of infinite length, we can take the largest element y on the arithmetic progression such that
y < x. Note that y ≥ x − C, or otherwise, (y + C) < (x − C) + C = x, which is a larger
element of the arithmetic progression. Therefore, we have

x− C ≤ y < x =⇒ x ≤ y + C < x + C

As y + C is also the member of the infinite arithmetic progression, and y + C ∈ [x, x + C],
we obtain a contradiction.

To finish this proof, notice that ` > C by construction and B` contains ` consecutive elements
– however, we define B` to have a different color than the color of our infinite monochromatic
arithmetic progression, in which by our previous lemma this is false.
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