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Abstract

In this paper we provide a brief introduction to combinatorial species and
illustrate their use in counting problems. Combinatorial species allows us to
give an algorithmic description of many counting problems which translates int
generating functions. Much of the material is taken from Combinatorial Species
and Tree-like Structures by F. Bergeron, Bergeron F, Gilbert Labelle, Pierre
Leroux. This paper is a part of Combinatorics class of 2021 and serves as a
resource where students can learn from.

1 Introduction

Combinatorial species provide a way of deriving generating functions of discrete struc-
tures which allow us to count these structures. Category theory provides a useful
language for concepts that arise here but it’s not necessary to category theory to
work with cominatorial species. We begin by introducing combinatorial species and
some applications.
A structure s is a construction which one performs on a set X. For example con-
sider the set U = {a, b, c, d, e} and let γ = {(a, e), (b, e), (c, e), (d, e)}. Figure below
expresses structure s = {U, γ} as a directed graph.
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The main property will be the transport of structures along bijections. Following
example illustrates this.

Example. Consider the structure in uor previous figure and the set V = {a1, a2, a3, a4, a5}.
Let σ : U → V be a bijection. Replace each element of U by an element of V via the
bijection σ. Then the structure t = {V, τ} which is the directed graph is isomprphic
to the graph above.

We can consider two structures equivalent if they are isomorphic or one can be ob-
tained from other by replcaing labels. We may also consider the isomorphism type
or equivalence class of all structures which are equivalent.

We can define species formally as follows

Definition 1.1. A species of structures is a rule F which produces

1. For each fiite set U a finite set F [U ]

2. For each bijection σ : U → V , a function F [σ] : F [U ]→ F [V ].

Furthurmore the functions should satisfy

1. For all bijections σ : U → V and τ : V → W

F [σ ◦ τ ] = F [σ] ◦ F [τ ]

2. For the identity map I : U → U ,

F [IU ] = IF [U ]

The following are equivalent

1. s ∈ F [U ]

2. s is an F - structure on U

3. s is a structure of species F on U

Example. Let End(U) denote the set of endofunctions i.e. f : U → U . So (γ, U) ∈
End(U) iff

γ ⊂ U × U and (∀x)[x ∈ U −→ (∃!y)[y ∈ U and (x, y) ∈ γ]]

Let σ : U → U be a bijection. Then it’s easy to see that F [σ] = σγσ−1. Index the
elements of U and V such that f(ui) = vi. WLOG , assume that f(ui) = uj. Then
σγσ−1(ui) = vj.

Definition 1.2. Consider two F structure s1 ∈ F [U ] and s2 ∈ F [V ]. A bijection
σ : U → V is an isomorphism of s1, s2 if s2 = F [σ](s1). We say that these structures
have the same isomorphism type.
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Proposition 1.3. F [σ] is a bijection.

Proof. It suffices to show that F [σ] has an inverse. σ being a bijection it has an
inverse σ−1. From the definition of species we have

F [σ ◦ σ−1] = F [IU ] = F [σ−1 ◦ σ] = IF [U ]

�

By set-theoretic axioms we can introduce the following species

• The species A of rooted trees

• The species G of simple graphs

• The species Gc of connected graphs

• the species a of trees

• The species D of directed graphs

• The species Par of set partitions

• The species p of subsets i.e., p[U ] = {S|S ⊆ U}

• The species End of endofunctions

• The species Inv of involutions

• The species S of permutations

• The species C of cyclic permutations

• The species L of linear orders

When structure of species F is simple it can be useful to define the species by descrip-
tion of set F [U ] and transport along bijections F [σ]. the following exapmles illustrate
this

• The species E, of sets is defined as E[U ] = {U}

• The species ε, of elements is defined as ε[U ] = U

• The X , of species of characteristic singeltions is defined by setting

X[U ] =

{
{U} if |U | = 1

∅ otherwise

• The species En where n ∈ N is defined as

En[U ] =

{
{U} if |U | = n

∅ otherwise
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2 Generating functions

An F − structure s ∈ F [U ] is referred to as labelled structure while the isomorphis
class of the F − structure is unlabelled. Note that F is a bijection , the cardinality of
F [U ] only depends upon the cardinality of U and not the elements of U . From here
on we let U = [|U |]. The following three series are

1. The exponential generating function F (x) for labelled eumeration

2. The ordinary generating function F̃ (x) for unlabelled enumeration

3. The cycle index series ZF (x1, x2, ...)

2.1 Exponential generating function

Definition 2.1. The exponential generating function of a species of structures F is
the formal power series

∞∑
n=0

fn
xn

n!

where fn = |F ([n])|. Taking the taylor seies expansion at the origin ,

n![xn] = n!
dn

dxn
F (x)

∣∣
x=0

= fn

Example. It is easy to verify by direct enumeration the following identities

1. L(x) =
1

1− x

2. S(x) =
1

1− x

3. C(x) = − log(1− x)

4. E(x) = ex

5. En(x) =
xn

n!

2.2 Type generating function

We define an equivalence class ∼ on F [n] for s, t ∈ F [n] by setting

s ∼ t iff they have the same isomorphism type

s, t are in the same isomorphism type if there exists a permutation π : [n]→ [n] such
that F [π](s1) = s2. By definition isomorphism type of F structures is an equivalence
class of F structures on [n]. Denote T (Fn) to be the quotient set F [n]/ ∼.
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Definition 2.2. The type generating series of species of structure F is the formal
power series

F̃ (x) =
∞∑
n=0

f̃nx
n

where f̃n = |T (Fn)|.

Example. By direct enumeration it is easy to yield the following generating functions

1. L̃(x) =
1

1− x

2. S̃(x) =
∏n

k=1

1

1− xk

3. C̃(x) =
x

1− x

4. Ẽ(x) =
1

1− x

5. Ẽn(x) = xn

2.3 Cycle index series

Definition 2.3. Let U be a finite set and σ be a permutation of U . The cycle type
of the permutation σ is the list (σ1, σ2, . . .) where σi is the number of i−cycles in the
cycle decomposition of the permutation. Let

fix(σ) = σ1

Each permutation σ of [n] induces a permutation of set F ([n]) of F -structures of
[n].

Definition 2.4. The cycle index series of a species of structures F is the formal
power series

ZF (x1, x2, . . .) =
∑
n≥0

∑
σ∈Sn

fixF [σ]xσ11 x
σ2
2 . . .

where Sn is the group of permutations of [n] and fixF [σ] is the number of F -structures
on [n] fixed by F [σ].

Theorem 2.5. (Burnside’s lemma) let G be a finite group that acts on a set X.
For each g ∈ G let fix(g) denote the set of elements in X that are fixed by g i.e.
fix(g) = {x ∈ X|g · x = x}. Burnside’s lemma asserts the following formula for the
number of orbits, denoted |X/G|

|X/G| = 1

|G|
∑
g∈G

|fix(g)|
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Theorem 2.6. For any species of structures F we have

• F (X) = ZF (x, 0, 0, . . .)

• F̃ (X) = ZF (x, x2, x3, . . .)

Proof. Note that

ZF (x, 0, 0, . . .) =
∑
n≥0

1

n!

(∑
σ∈Sn

fixF [σ]xσ10σ2 . . .

)

for a fixed n , xσ10σ2 . . . is not zero iff σ1 = n i.e. the identity permutation. Note
that from the definition of species, F [Id] = IdF [n] and so fixF [Idn] = fn. Our sum
becomes ∑

n≥0

1

n!
fixF [Idn]xn

=
∑

fn
xn

n!

so our claim follows. Our second claim follows from Burnsides lemma by noting that
f̃n is the number of orbits of Sn acting on [n].

Remark 2.7. For all species F and all permutations σ of U , the cycle type ((F [σ])1, (F [σ])2, . . .)
only depends upon the cycle type (σ1, σ2, . . .) and is easily checked using functoriality
of F i.e. for all sets U and V such that ∃ a bijection from U to V the permutation in-
duced by σ on F [U ] corrosponds to the permutation induced by σ on F [V ]. Hence, all
permutations having the same cycle type contribute to the same monomial and since
by next proposition the number of permutations having cycle type (n1, n2, n3, . . .) is
given by

n!

1n1n1!2n2n2!3n3n3! . . .

the cycle index of any species is

ZF (x1, x2, x3, . . .) =
∑

n1+2n2+3n3+...<∞

fixF [n1, n2, n3, . . .]
xn1
1 x

n2
2 . . .

1n1n1!2n2n2!3n3n3! . . .

Theorem 2.8. (orbit-stabiliser theorem) If a finite group G acts on a set X, then for
every x ∈ X, we have |G| = |O(x)||Stab(x)| where O(x) is the orbit of x and Stab(x)
is the stabiliser of x.

Proposition 2.9. Conjugating does not change cycle type i.e. for σ, τ ∈ Sn , the
cycle type of σ is same as that of cycle type of σ ◦ τ ◦ σ−1.

Proof. Suppose η = σ ◦ τ ◦ σ−1 and τ(i) = j. Now notice that

η(σ(i)) = σ ◦ τ ◦ σ−1 ◦ (τ(i)) = σ ◦ τ(i) = σ(j)

so the cycle structure of η and σ is same. �
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Example. Number of permutation of cycle type (n1, n2, . . . , nk) is

n!

1n1n1!2n2n2! . . . knknk!

Define a group action · on Sn such that σ · γ = σ ◦ γ ◦ σ−1. From proposition above
conjugating does not change the cycle type of a permutation and that σ ◦ γ = σ ◦ τ
if and only if γ = τ . Thus the size of orbit is

n!

1n1n1!2n2n2!3n3n3! . . . nnnnn!

and we know that |Sn| = n! so by orbit stabiliser theorem we get that

fixF [n1, n2, n3, . . .] = 1n1n1!2
n2n2!3

n3n3! . . . n
nnnn!

and the cycle index polynomial of the species S of permutations is

ZS(x1, x2, . . .) =
∏
i≥1

1

1− xi

Example. As an example of theorem above consider the species S of permutations. It
follows that

ZS(x, 0, 0, . . .) =
1

1− x
= S(x)

ZS(x, x2, x3, . . .) =
1

(1− x)(1− x2)(1− x3) . . .
= S̃(x)

which can be verified from examples in previous section.

�

3 Operations on species

In this section we introduce the reader to basic operations on generating functions.
Given a sequence {ai}∞i=0 we define its ordinary generating function to be∑

i≥1

aix
i

and it’s exponential generating function to be∑
i≥1

ai
xi

i!

addition and multiplication of ordinary generating functions are as follows∑
i≥1

aix
i +
∑
j≥1

bjx
j =

∑
k≥1

(ak + bk)x
k

7



(∑
i≥1

aix
i

)(∑
j≥1

bjx
j

)
=
∑
k≥1

xk

(
k∑

n=1

anbk−n

)
and addition and multiplication of exponential generating functions as follows∑

i≥1

ai
xi

i!
+
∑
j≥1

bj
xj

j!
=
∑
k≥1

(ak + bk)
xk

k!(∑
i≥1

ai
xi

i!

)(∑
j≥1

bj
xj

j!

)
=
∑
k≥1

xk

k!

( ∑
m+n=k

(
k

n

)
anbm

)
Note that if f(x) is the generating function for {ai}∞i=0 then the generating function
for {bi}∞i=0 where bi =

∑
k≤i ak is

f(x)

1− x
Composition f ◦g of power series is defined if and only if [x0]g(x) = 0 i.e. the constant
term in g is zero.

3.1 Sum of species of structures

Definition 3.1. Let F,G be two species of structures. The species F + G called as
sum of F and G defined as a (F + G) structure on U is the disjoint union of F and
G structures on U . In other words, for any finite set U ,

(F +G)[U ] = F [U ] +G[U ] (′+′ stands for disjoint union)

Furthermore for all bijections σ : U → V

(F +G)[σ](s) =

{
F [σ](s) if s ∈ F [U ]

G[σ](s) if s ∈ G[U ]

The operation of addition is commutative and associative upto isomorphism. Given
two species F and G, it’s easy to see that the associated series of species F +G satisfy

a)(F +G)(x) = F (x) +G(x)

b) ˜F +G = F̃ (x) + G̃(x)

c)ZF+G = ZF + ZG

The operation of adition can be extended to summable families of species a s following
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Definition 3.2. A family (Fi)i∈I of species of structures is said to be summable if
for any finite set U , Fi[U ] = ∅, except for a finite number of indices i ∈ I. The sum
of summable family (Fi)i∈I is said to be species

∑
i∈I Fi defined by the equalities

a)

(∑
i∈I

Fi

)
[U ] =

∑
i∈I

Fi[U ] = ∪i∈IFi[U ]× {i}

b)

(∑
i∈I

Fi

)
[σ](s, i) = (Fi[σ](s), i)

3.2 Product of species of structures

As an instance of product of species consider any permutation. A permutation
consists of a set of fixed points and a set of non-trivial cycles. We say that the
species S of permutations is the product of the species E of sets and species Der of
derangements written as S = E ·Der Formally, product of species is defined as follows

Definition 3.3. Let F and G be two species of structures. The species F ·G called
as the product of species F and G, is defined as follows: an (F ·G) structure on U is
an ordered pair s = (f, g) where

1. f is an F structure on a subset U1 ⊆ U

2. g is a G structure on a subset U2 ⊆ U

3. U1 and U2 partition U i.e. U1 ∩ U2 = ∅ , U1 ∪ U2 = U

The transport along bijection σ : U → V is carried out by setting, for each F · G
structure s = (f, g) on U ,

(F ·G)[σ](s) = (F [σ1](f), G[σ2](g))

where, σ1 is the restriction of σ on U1 and σ2 is the restriction of σ on U2.

The product of species is associative and commutative upto isomorphism but in gen-
eral F ·G and G ·F are not identical. It is easy to see that if F and G are two species
of structures, the series associate with F ·G satisfy

1. (F ·G)(x) = F (x)G(x)

2. ˜F ·G(x) = F̃ (x)G̃(x)

3. ZF ·G(x1, x2, x3, . . .) = ZF (x1, x2, x3, . . .)ZG(x1, x2, x3, . . .)

Example. Using the above discussion and the fact that S = E ·Der we have

(a) 1
1−x = exDer(x)
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(b)
∏

k≥1
1

1−xk = 1
1−xD̃er(x)

(c)
∏

k≥1
1

1−xk
= exp

(
x1 + x2

2
+ x3

3
+ . . .

)
· ZDer(x1, x2, x3, . . .)

Thus we deduce that

Der(x) =
e−x

1− x
which produces the classical formula

dn = n!

(
1− 1

1!
+

1

2!
− . . .+ (−1)n

n!

)

3.3 Substitution of species of structures

As a motivating exaample consider the speces of endofunctions. We associate a
diagraph to a endofunction α : U → U be setting the set U to be the set of vertices
and V = {(u1, u2)|u1, u2 ∈ U, α(u1) = u2} to be the set of edges. Elements of U can
now belong to two categories

1. The points for which there exists k > 0 such that αk(u) = u(recurrent points)

2. The points for which αk(u) 6= u for all k > 0(non-recurrent points)

Below figure shows that endofunctions can be identified as permutations of rooted
trees(note that we have displayed a 3-cycle and a 4-cycle of rooted trees also notice
that the root is the vertex attached to the cycle which are all recurrent states ).

Thus every endofunction can be identified by permutation of rooted trees or in other
words by placing a S structure on a set of disjoint A structures.
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Definition 3.4. Let F and G be two species of structures such that G[∅] = ∅. The
species F ◦ G also denoted as F (G), called the composite of G in F , is defined as
follows : an (F ◦G)-structure on U is a triplet s = (π, α, γ) where

1. π is a partition of U

2. α is an F -structure on the set of classes of π

3. γ = (γp)p∈π, where for each class p of π, γp is a G structure on p.

The transport along bijection σ : U → V is carried out by setting , for any F ◦ G
structure s = (π, α, (γp)p∈π) on U,

(F ◦G)[σ](s) = (π, α, (γp)p∈π

where

1. π is a partition of V obtained by transport of π along σ

2. for each p = σ(p) ∈ π, the structure γp is obtaied by structure γp by G-transport
along σ|p

3. the structure α is obtained from the structure α by F -transport along the
bijection σ induced on π by σ

also the series related to F ◦G satisfy

1. (F ◦G)(x) = F (G(x))

2. ˜(F ◦G)(x) = ZF (G̃(x), G̃(x2), G̃(x3), . . .)

3. ZF◦G(x1, x2, x3, . . .) = ZF (ZG(x1, x2, x3, . . .), ZG(x2, x4, x6, . . .))

Example. From the combinatorial equation at End = S ◦ A we deduce that

1. End(x) = S ◦ A = 1
1−A(x)

2. Ẽnd(x) = ˜(S ◦ A)(x) = ZS(Ã(x), Ã(x2), Ã(x3), . . .)

3. ZEnd = (ZS ◦ ZA)(x1, x2, x3, . . .)

4 Some applications

In this section we provide solutions to combinatorial problems using species.
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Example. Consider the species A of rooted trees. We could generate rooted trees bi
first picking a root and then attaching trees to the vertex which is picked as a root.
This is exactly the definition of product of species. Thus we have

A(x) = xeA(x)

We recover cayley’s formula from here via lagarange inversion as(
d

dz

)n−1
(exp(z))n

∣∣
z=0

= nn−1

Thus there are nn−1 rooted trees on n vertices.

Example. Consider the species Par of partitions. Then any partition of a set is a set
of non-empty sets. Thus if we let E+ to be the species of non-empty subsets then we
have

Par = E(E+)

which gives us

1. Par(x) = ee
x−1

2. P̃ar(x) =
∏

k≥1
1

1−xk

Example. Suppose we want to count the number of set partitions of of set U into
subsets with cardinality greater than some fixed k. Then the associated species is
E(E≥n) where E≥n is the species described by

E≥n[U ] =

{
|U | if |U | ≥ n

∅ otherwise

The generating function is given by

Par≥k = ee
x−

∑k
i=0

xi

i!

Example. There’s also an alternative way to look at derangements. Any derangements
is a set of cycles with such that each cycle has at least two elements. So derangements
are equivalent to the species E(C≥1) where C≥1 is the species of cycles with no fixed
points. Thus C≥1(x) = − log(1− x)− x and our generating function is

e− log(1−x)−x =
e−x

1− x

Example. Let B be the species of binary trees. Then any binary tree is a pair of
binary trees or a single vertex. Thus the species of binary trees satisfies

B = x+ E2 ◦B
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and this translates to

B(x) = x+
B(x)2

2

and can be solved to

B(x) = 1−
√

1− 2x =
∞∑
n=1

1 · 3 · 5 · . . . · (2n− 3)
xn

n!

Example. Suppose we want to count number of surjections from [n] to [r]. Let n ≥ r
otherwise the number of surjections is zero. Assume that σ : [n]→ [r] is a surjection.
Any surjection can be identified from the set {σ−1(i)|i ∈ [r]}. Thus any surjection
is a set consisting of r non-empty sets. This translates to the species Er(E≥1) whose
generating function is

(ex − 1)r

and notice that

[xk](ex − 1)r =
r∑
i=0

(−1)i
(
r

i

)
(r − i)n

Example. Consider the species Inv of involutions. Clearly an involution can have
cycles of size 1 or 2. Thus the species Inv is isomorphic to E(C≤2) where C≤2 is the

species one cycle and a two cycle whose generating function is x + x2

2
. Thus the

exponential generating function of involutions is ex+
x2

2 . So the number of involutions
on a n set is

bn/2c∑
k=0

n!

k!(n− 2k)!2k
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