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Abstract. In this paper, we will look at some important topics, theorems, etc. relating
to Hyperplane Arrangements. We begin by introducing the basic idea in terms of a set of
hyperplanes in a vector space. Once we have the basics, we can look at arrangements such
as the braid arrangement, Shi arrangement, lineal arrangement, Catalan arrangment, and
various others. The majority of this paper is based on Richard Stanley’s ”An Introduction
to Hyperplane Arrangements” [Sta06]

1. Introduction to hyperplanes

First, let’s get a general sense of what a hyperplane is. Generally speaking, a hyperplane of
an n-dimensional space V is a subspace of dimension n− 1. Hyperplanes may be of various
spaces, such as affine, vector, or projective space, which we will define shortly. We may
visualize one possible example of a hyperplane in Figure 1.

Figure 1. A plane is a 2-D hyperplane when embedded in a 3-D space.

In the following definition, we will cover the basic miscellaneous information as well as the
vector/affine space. However, in our later study of the projective space, I will assume the
reader’s knowledge of vector spaces for definitions.

Background 1.1. A transformation is an invertible mapping from a set to itself but retains
some geometric aspect. A group homomorphism from (G, ∗) to (H, ·) is a function f : G→ H
such that for all a, b ∈ G, we have that f(a ∗ b) = f(a) · f(b), where ∗ and · are some
operations. A group action on a space S is group homomorphism of some group into the
group of transformations of S. We call the group with addition as its group operation the
additive group. Finally, recall that a vector space is the set of vectors. Putting this all
together, we have the definition of an affine space: it is a set A together with a vector space−→
A , and a transitive and free action of the additive group of

−→
A on the set A.
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Now we shall give a more formal definition of the hyperplane:

Definition 1.2. A linear hyperplane is an (n− 1)-dimensional subspace of V ,

H = {v ∈ V : α · v = 0},
where α is a fixed nonzero vector in V and α · v is the dot product

(α1, . . . , αn) · (v1 . . . , vn) =
∑

αivi.

An affine hyperplane is a translation

J = {v ∈ V : α · v = a}
of a linear hyperplane, where α is as defined previously and a ∈ K.

Now that we have some background information on hyperplanes, we can now define a
hyperplane arrangement.

Definition 1.3. A finite hyperplane arrangement A is a finite set of affine hyperplanes in
vector space V ∼= Kn, where K is some field.

Remark 1.4. Typically, we take K = R, and this is assumed throughout the paper unless
otherwise noted. Also, it is worth pointing out that in addition to finite hyperplane arrange-
ments, these can also be infinite. However, we will not be discussing the infinite case, so
from here on we will refer to finite hyperplane arrangements as simply arrangements.

Let’s continue going through some of the basic definitions, as they will set the basis for
further exploration. First, let us define a linear form as a linear map from a vector space to
its field of scalars.

Definition 1.5. Suppose the equations of the hyperplanes of A are given by L1(x) =
a1, . . . , Lm(x) = am, where x = (x1, . . . , xn) and each Li(x) is a homogeneous linear form.
Then,

QA(x) = (L1(x)− a1) · · · (Lm(x)− am)

is called the defining polynomial of A.

We may use the defining polynomial to describe the arrangement.

Example. If we fix a single coordinate of an n-dimensional coordinate space, then we obtain
a coordinate hyperplane, which is an (n− 1)-dimensional space. If we have an arrangement
A, which consists of n coordinate hyperplanes , then we have QA(x) = x1x2 · · · xn.

Next, let’s define dimension and rank.

Definition 1.6. The dimension dim(A) of A is dim(V ) = n, and the rank rank(A) of A is
dimension of the space spanned by the normals (objects perpendicular) to the hyperplanes
in A. Furthermore, we say that A is essential if rank(A) = dim(A).

After what we’ve covered so far, we have a corollary (from Richard Stanley’s paper [Sta06])
involving a bit of linear algebra.

Corollary 1.7. Let
W = {v ∈ V : v · y = 0 for all y ∈ Y },

and let H be some element of A. We have that H ∩W is a hyperplane of W , so the set
AW := {H ∩W : H ∈ A} is an essential arrangement in W .
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Proof. Suppose that rank(A) = r and V = Kn. Define Y as a complementary space in Kn

to the subspace X, which is spanned by normals to hyperplanes in A. If the characteristic1

char(K) = 0, then W = X. Furthermore, for every H ∈ A, we have

codimW (H ∩W ) = 1.

Here, H ∩W is a hyperplane of W , so the set AW := {H ∩W : H ∈ A} is an essential
arrangement in W . �

Now, let’s look at a few more basic definitions:

Definition 1.8. A (closed) half-space is a set {x ∈ Rn : x · α ≥ c}, for some α ∈ Rn and
c ∈ R. If H is a hyperplane in Rn, then the complement Rn−H has two (open) components
whose closures are half-spaces.

In other words, R is an n-dimensional convex polyhedron. Note that a convex polyhedron
is the convex hull (it is the smallest convex set containing a shape) of finitely many points.
A bounded polyhedron is called a (convex) polytope. Therefore, if either R or R is bounded,
then R is an n-dimensional polytope.

Definition 1.9. An arrangement A is said to be in general position if

(1) {H1, . . . , Hp} ⊆ A, p ≤ n dim(H1 ∩ · · · ∩Hp) = n− p,

(2) {H1, . . . , Hp} ⊆ A, p > nH1 ∩ · · · ∩Hp = ∅.

Example. The set of two lines is in general position if two of them are not parallel and three
of them do not meet at a point.

Now that we have finished seeing most of the basics, we can look at one example of a
hyperplane arrangement.

Example. The braid arrangement Bn in Kn consists of the hyperplanes

Bn : xi − xj = 0, 1 ≤ i < j ≤ n.

There are plenty of interesting things to be said about this arrangement, which has
(
n
2

)
hyperplanes. First, let’s look at Figure 2 for a visual representation of a possible braid
arrangement. Note that for K = R, a region of an arrangement A is a connected component
of the complement X of the hyperplanes:

X = Rn −
⋃
H∈A

H.

Let R(A) denote the set of regions of A, and let

r(A) = #R(A)

denote the number of regions. In the case of the braid arrangement in Figure 2, we have
r(A) = 6. Note that the closure of a region R of A, denoted R, is a finite intersection of
half-spaces.

When counting the number of regions, we can consider whether ai < aj or ai > aj, because
this is the same as considering which side of the hyperplane xi − xj = 0 a given point

1The characteristic of a ring R, denoted char(R), is the least number of times summing the ring’s multi-
plicative identity to obtain the additive identity.
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Figure 2. The braid arrangement, A3.

lies on. Note that for all permutations w ∈ Sn (permutations of {1, 2, . . . , n}), there is a
corresponding region of Bn, namely

Rw = {(a1, . . . , an) ∈Rn : aw(1) > aw(2) > · · · > aw(n)}.
This gives us a surprisingly simple result: r(Bn) = n!. This is an interesting case, because
the calculation of number of regions is typically not this simple. The braid arrangement is
not essential, because rank(Bn) = n− 1. If char(K) - n, then the space W ⊆ Kn is

W = {(a1, . . . , an) ∈ Kn : a1 + · · ·+ an = 0}.

From the braid arrangement Bn, we have similar arrangements, namely, the generic/semigeneric
braid arrangements, Shi arrangement, linial arrangement, Catalan arrangement, semiorder
arrangement, and threshold arrangement.

Example. The generic braid arrangement is given by xi−xj = aij, where each aij is generic,
meaning that linearly independent over the prime field. The prime field of K is the smallest
subfield which is isomorphic to either Q or Z/pZ if p is some prime. Similarly, the semigeneric
braid arrangement is given by xi − xj = ai, where each ai is generic.

Example. The Shi arrangement is given by xi− xj = 0, 1, which implies the total number of
hyperplanes is n(n− 1).

Example. The semiorder arrangement is given by xi − xj = −1, 1.

Example. The threshold arrangement is given by xi − xj = 0. This example is not actually
a form of the braid arrangement, but it is similar.

Example. The linial arrangement is given by xi − xj = 1.

Example. The Catalan arrangement is given by xi − xj = −1, 0, 1.

Although the following are beyond the scope of this paper (a basic introduction to hyper-
plane arrangements), the reader may enjoy learning more about hyperplane arrangements
in projective spaces and how arrangements relate to the characteristic polynomial.
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