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Abstract. Catalan numbers are some of the most ubiquitous numbers, appearing in many
ostensibly unrelated combinatorial problems. In this expository paper, we will discuss the
Catalan numbers from both an algebraic and a combinatorial perspective. We will begin
by introducing their explicit formula and recurrences. Then, we will move into a discussion
of some of the counting problems Catalan numbers solve, either forming bijections between
different problems or showing that the problem satisfies the Catalan numbers’ recurrence
relation and initial conditions. Finally, we will discuss the generating function and growth
rate of Catalan numbers.

1. Algebraic Introduction

Definition 1.1 (Catalan numbers). Catalan numbers are numbers of the form Cn = 1
n+1

(
2n
n

)
for nonnegative n.

We can immediately note that the binomial coefficient in the explicit formula indicates
that the Catalan Numbers will appear in combinatorial problems. Although we can glean
this important information from the explicit formula, the explicit formula is not very useful
for much more than calculating Catalan numbers for large n. In fact, more useful for our
discussion of the Catalan Numbers are its Recurrence Relations.

Theorem 1.2 (First Recurrence Relation). Given the initial condition C0 = 1,

n−1∑
i=0

CiCn−i−1.

Many combinatorial proofs for the Recurrence Relation exist, with one prominent one
using Dyck paths. However, we can also prove this recurrence relation purely algebraically
using the explicit formula for the Catalan numbers and a helper function a(n, j).

Proof of Theorem 1.2. We define

a(n, j) :=
2j − n

2n(n+ 1)

(
2j

j

)(
2n− 2j

n− j

)
.

We claim that a(n, i+ 1)− a(n, i) = CiCn−i−1. Before we evaluate the left hand side, we
can expand the right hand side. By doing so, we know into which form we want to mold the
left hand side. We have

CiCn−i−1 =
1

i+ 1

(
2i

i

)
1

n− i

(
2n− 2i− 2

n− i− 1

)
.

Now, we can move into simplifying our left hand side, keeping in mind that we seek to
manipulate it to be in form of the expression above.
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Using our formula for a(n, j), we get that the left hand side is equivalent to

a(n, i+ 1)− a(n, i) =
2i+ 2− n
2n(n+ 1)

(
2i+ 2

i+ 1

)(
2n− 2i− 2

n− i− 1

)
− 2i− n

2n(n+ 1)

(
2i

i

)(
2n− 2i

n− i

)
.

Factoring out common factors and simplifying, we get

=
1

2n(n+ 1)

(
2n− 2i

n− i

)(
2n− 2i− 2

n− i− 1

)(
4i+ 2

i+ 1
(2i+ 2− n)− 2n− 2i− 2

n− i
(2i− n)

)
.

We notice that the denominators i + 1 and n − i are also on the right hand side of the
equation we are trying to prove, so we factor them out, getting

=

(
2n−2i
n−i

)(
2n−2i−2
n−i−1

)
2n(n+ 1)(i+ 1)(n− i)

((2i+ 2)(2i+ 2− n)(n− i)− (4n− 4i− 2)(2i− n)(i+ 1)) .

Simplifying the expression yields

=

(
2n−2i
n−i

)(
2n−2i−2
n−i−1

)
2n(n+ 1)(i+ 1)(n− i)

(2n(n+ 1)) =

(
2n−2i
n−i

)(
2n−2i−2
n−i−1

)
(i+ 1)(n− i)

,

which is equal to our right hand side of CiCn−i−1. Therefore, we have shown that
a(n, i+ 1)− a(n, i) = CiCn−i−1. Now, we can plug this into our recurrence, getting

n−1∑
i=0

a(n, i+ 1)− a(n, i),

which telescopes down to a(n, n)− a(n, 0). This simplifies to

=
2n− n

2n(n+ 1)

(
2n

n

)(
2n− 2n

n− n

)
− −n

2n(n+ 1)

(
0

0

)(
2n

n

)

=
1

2(n+ 1)

(
2n

n

)
+

1

2(n+ 1)

(
2n

n

)
=

1

n+ 1

(
2n

n

)
.

Thus, we are done; we have shown that
∑n−1

i=0 CiCn−i−1 = Cn. �

Theorem 1.3 (Second Recurrence Relation). The Catalan numbers also satisfy the recur-
rence Cn+1 = 4n+2

n+2
Cn, with C0 = 1.

Although this recurrence may be less prominent than the first in the discussion of Catalan
numbers, it’s actually quite powerful, as we’ll discover in the rest of this paper. Before we
begin looking at applications of Theorem 1.3, let’s prove it.

Proof of Theorem 1.3. Let’s consider the ratio Cn+1

Cn
. Using the explicit formula for Cn, we

get

Cn+1

Cn

=
1

n+2

(
2n+2
n+1

)
1

n+1

(
2n
n

) =
(n+ 1)(2n+ 2)!n!2

(n+ 2)(2n)!(n+ 1)!2
=

(2n+ 1)(2n+ 2)(n+ 1)

(n+ 2)(n+ 1)2
=

4n+ 2

n+ 2
.

Therefore, Cn+1 = 4n+2
n+2

Cn. �

This recurrence relation helps us gain greater insight on some properties of the Catalan
numbers, such as growth rate and its generating function, as we’ll discuss later in this paper.
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Figure 1. A 6× 6 Dyck Path, denoted by RURRUURRURUU

2. Catalan Objects

Now that we have introduced the Catalan numbers algebraically, its time to move onto a
discussion of the Catalan numbers in their natural habitat: combinatorics.

There are a few main ways to prove that the Catalan numbers answer a combinatorial
problem. The first way is to show a bijection from the problem to another problem that
Catalan numbers answer; if we show that two problems are equivalent, and we already know
that the Catalan numbers answer one, then the Catalan numbers must answer the other.

The second way to show that Catalan numbers answer a combinatorial problem is to show
that the answer to the problem adheres to either the Catalan numbers’ initial conditions and
recurrences, or the Catalan numbers’ explicit formula. Although we will not review the proof
in this paper, one classic proof that the Catalan numbers count the number of Dyck paths
uses the second strategy, showing that the number of Dyck paths is equal to the Catalan
numbers.

Definition 2.1 (Dyck paths). An n × n Dyck path is a path from (0, 0) to (n, n) taking
steps to the north and east and never going above the line y = x [RS21].

Theorem 2.2 (Dyck paths). Catalan numbers count the number of n× n Dyck paths.

It is sometimes useful to denote Dyck paths as a sequence of Rs and Us, in which the Rs
represent a movement rightward by one unit and the Us represent a movement upward by
one unit. Figure 1 shows one example of a Dyck Path and the corresponding sequence of Rs
and Us.

Now that we have defined the Dyck paths and established that the Catalan numbers
count them, we can discuss other combinatorial questions the Catalan numbers answer.
Specifically, we will investigate a simple proof that uses a bijection to prove that the Catalan
numbers answer the problem.

Question 2.3 (Bertrand’s Ballot Problem). Two candidates participate in an election in
which Candidate A and Candidate B both receive n votes. What is the number of ways that
the votes can be counted such that Candidate B is never ahead of Candidate A?
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Solution To Question 2.3. We can consider each way to count the votes as a sequence of
As and Bs. An A in the sequence represents a vote being counted for Candidate A,
and a B in the sequence represents a vote being counted for Candidate B. Thus, we can
consider the sequences of length 2n containing n As and n Bs. One such sequence is
AAA · · ·AAABBB · · ·BBB. We seek to find the number of ways to permute this sequence
such that the number of As is always greater than or equal to the number of Bs. We notice
that this restricted permutation problem sounds familiar; it mirrors the idea of Dyck paths,
in which the number of steps to the right must always be greater than or equal to the number
of steps upward (to ensure that the path never crosses y = x).

To formally show that the number of ways to count the vote is equal to the number of
Dyck paths on an n × n board, we form a bijection. We define a function f from X, the
set of valid sequences of As and Bs, to Y , the set of Dyck paths on an n × n board. Our
function f works as follows: first, it converts the As and Bs in the sequence to Rs and Us
respectively. Then, it forms a Dyck Path using the sequence of Rs and Us, as described
above—letting an R in the sequence represent a movement one unit rightward and letting a
U in the sequence represent a movement one unit upward. It is straightforward to show that
f is a function and not just a relation, so we will move onto showing that f is a bijection.

Now, to show that f is a bijection, we have to show that it is both an injection and a
surjection. First, we show that f is an injection by proving that if f(x) = f(y), then x = y.
This is relatively simple; consider the identical Dyck paths f(x) and f(y). We can write out
the sequences of Rs and Us that correspond to these Dyck paths, yielding sequence S1 and S2.
We note that because the Dyck paths are identical, the sequences S1 and S2 must also be the
same. Then, we replace the Rs with As and the Us with Bs. Clearly, our new sequences R1

and R2 are identical, since identical transformations acted on identical sequences. Therefore,
we have shown that if f(x) = f(y), then x = y, so we have an injection.

Now, we must show that f is a surjection. Thus, we must show that at least one sequence
of As and Bs corresponds to each Dyck Path on an n× n board. We consider an arbitrary
Dyck Path D with sequence representation S3. We can recover a valid sequence of As and
Bs by converting the Rs in S3 to As and the Us to Bs, getting some sequence R3. We claim
that this sequence R3 is a valid sequence of As and Bs for any Dyck Path D. Since the
number of Rs is greater than or equal to the number of Us for any point in the sequence S3,
the number of As is greater than or equal to the number of Bs for any point in the sequence
R3. Therefore, we have recovered a valid x such that f(x) = y for any y, and thus we have
shown that f is a surjection.

Now, we have shown that f is both an injection and a surjection. Therefore, f : X → Y
is a bijection, and thus, |X| = |Y |. Since we know that |Y | = 1

n+1

(
2n
n

)
, |X| = 1

n+1

(
2n
n

)
= Cn.

Thus, the number of ways that the votes can be counted such that Candidate B is never
ahead of Candidate A is Cn. �

Although formalizing the bijection proved slightly tedious, the bijection between Dyck
paths and the ways to count the ballots was relatively clear to see. For our next theorem,
we will consider a counting problem for which the bijection is less obvious.

Definition 2.4 (Triangulations of a Convex Polygon). A triangulation of a convex polygon
is formed by drawing diagonals between non-adjacent vertices, provided you never intersect
another diagonal (except at a vertex), until all possible choices of diagonals have been used
[Hea02].
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P1 P2

P3

P4

P5P6

P7

P8

(a) Triangle P1P2P3 separates the
octagon into the triangle P1P2P3 and
the heptagon P3P4P5P6P7P8P1.

P1 P2

P3

P4

P5P6

P7

P8

(b) Triangle P1P2P6 separates the
octagon into the triangle P1P2P6, the
quadrilateral P1P6P7P8, and the
pentagon P2P3P4P5P6.

Figure 2. An Octagon in two stages of the inductive step.

Now that we’ve defined triangulations, we can state our theorem.

Theorem 2.5 (Triangulations of a Convex Polygon). The number of triangulations of a
convex n-gon is Cn−2.

Where do we start in forming a bijection? Forming a bijection to Dyck paths seems
difficult, as there doesn’t appear to be a simple way to convert triangulations to Dyck paths.
Many of the classic proofs that the Catalan numbers count the number of triangulations of
a convex (n+ 2)-gon use a bijection to binary trees or complete parenthesizations. However,
in the interest of trying something different and perhaps more insightful, we will attempt to
use the first strategy we discussed: showing that the number of triangulations of a convex
(n+ 2)-gon satisfies the same recurrence and has the same initial conditions as Cn.

Proof of Theorem 2.5. We will proceed by strong induction on n. Starting with n = 3 as
our base case, we clearly see that there is only 1 = C1 way to triangulate a convex triangle.
Now, we consider an n-gon with vertices P1, P2, . . . Pn−1, Pn. We will consider the edge P1P2.
We note that P1P2 must belong to exactly one triangle in the triangulation. Therefore, we
can do casework on the point that completes the triangle with P1 and P2.

Consider the point P3 completing the triangle. Since P1, P2, and P3 are consecutive
vertices on our n-gon, our triangle P1P2P3 splits the n-gon into an (n − 1)-gon and the
triangle, as depicted in Figure 2a. Our inductive hypothesis tells us that there are Cn−3

ways to triangulate the (n− 1)-gon, and our original triangle is clearly already triangulated.
Therefore, the case of the point P3 contributes Cn−3 = Cn−3C0 triangulations to our total.

Next, we consider the point P4 completing our triangle. We see that P1P2P4 splits the
n-gon into the triangle P1P2P4, another triangle, and an (n− 2)-gon. Again, by our induc-
tive hypothesis, we know that there are C1 ways to triangulate a 3-gon and Cn−4 ways to
triangulate an (n − 2)-gon. Since the triangulations of the 3-gon and the (n − 2)-gon are
independent, we multiply to get a contribution of C1Cn−4 triangulations from the case of the
point P4.

Similarly, we find that the case of P5 forms a 4-gon and an (n − 3)-gon, giving us a
contribution of C2Cn−5 cases from the case of the point P5.
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Generally, the triangle Pi splits the n-gon into an (i − 1)-gon and an (n − i + 2)-gon, as
shown in Figure 2b. The (i− 1)-gon and the (n− i+ 2)-gon together give us a contribution
of Ci−3Cn−i by our inductive hypothesis.

Therefore, summing over i, we get that the total number of triangulations is
n∑

i=3

Ci−3Cn−i =
n−3∑
i=0

CiCn−3−i = Cn−2.

Therefore, we have completed our inductive step, as we have shown that if our hypothesis
is true for all i < n, then our hypothesis is true for n. Thus, we are done, and we have
proven that the number of triangulations of a convex (n+ 2)-gon is Cn. �

There are other Catalan Objects we can consider; in fact, Richard Stanley has compiled
over 200 combinatorial interpretations of the Catalan numbers [Sta15]! With the strategies
described above, one is well-equipped to prove that the Catalan numbers answer many of the
combinatorial equivalences described. Instead of attempt to chip away at the more than

(
200
2

)
bijections between Catalan Objects one can prove, we will shift our discussion to analytic
combinatorics.

3. Analytic Combinatorics on the Catalan numbers

We will begin our discussion of analytic combinatorics with the generating function for
the Catalan numbers.

Theorem 3.1 (Generating Function). The generating function for Cn is C(x) = 1−
√

1−4x
2x

.

The classic proof of the Generating Function of the Catalan numbers uses the first recur-
rence relation:

∑n−1
i=0 CiCn−i−1. However, in my research, I did not come across any proof

of the Generating Function using the less prominent second recurrence relation; thus, in the
interest of trying something new (and perhaps less formulaic), we will take a different ap-
proach to the classic one, instead using the multiplicative recurrence relation for the Catalan
numbers.

In our proof of Theorem 3.1, we will need to take the limit of C(x) at x = 0. Therefore,
we need to show that there is some nonzero radius of convergence around x = 0; if there
isn’t any nonzero radius of convergence around x = 0, then there are no values of x from
which to approach x = 0 in our limit.

We do not need to be exact, as we can take the limit at x = 0 as long as there is some
finite radius of convergence. Thus, we will just show that the radius of convergence is at
least 1

5
.

Lemma 3.2. The radius of convergence of C(x) =
∑∞

n=0 Cnx
n around x = 0 is at least 1

5
.

Proof of Lemma 3.2. To show that C(x) has a radius of convergence of at least 1
5

around

x = 0, we must show that C(x) converges for all x : −1
5
≤ x ≤ 1

5
.

Using our recurrence relation Cn+1 = 4n+2
n+2

Cn, we note that Cn+1 < 4Cn. Thus, Cn <
4nC0 = 4n. Although we can make stricter bounds for Cn, we find that this is sufficient, as
we have

∞∑
i=0

(
1

5

)n

4n =
1

1− 4
5

= 5.

Since Cn < 4n, Cn

5n
< 4n

5n
. Thus,
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∞∑
i=0

(
1

5

)n

Cn <

∞∑
i=0

(
1

5

)n

Cn = 5.

Therefore, C(1
5
) converges by the comparison test. We note that if 0 < i < 1

5
, then

C(i) < C(1
5
), so C(i) converges by the comparison test. Therefore, we have shown that if

0 < x ≤ 1
5
, then C(x) converges.

Now, we must show that if −1
5
≤ x < 0, then C(x) converges. We can use the comparison

test again, this time comparing C(−i) with C(i) for 0 < i ≤ 1
5
. Denote the nth terms of

C(−i) and C(i) as an and bn respectively. We note that a2n = b2n = i2nC2n and a2n+1 =
−i2n+1C2n+1 < b2n+1 = i2n+1C2n+1. Since an ≤ bn for all nonnegative n,

C(−i) =
∞∑
j=0

aj <

∞∑
j=0

bj = C(i).

Since we have already shown that the right hand side converges for 0 < i ≤ 1
5
, we know

that the left hand side, C(−i), also converges.
Therefore, we have shown that if −1

5
≤ i < 0 or 0 < i ≤ 1

5
, then C(i) converges (and C(0)

converges trivially). Thus, we have shown that C(x) has a radius of convergence of at least
1
5
, and we are done. �

Now that we have shown that C(x) has a finite radius of convergence around x = 0, we
can prove Theorem 3.1.

Proof of Theorem 3.1. We seek to find C(x) by manipulating our second recurrence relation:
Cn+1 = 4n+2

n+2
Cn. We multiply by n+2 on both sides of our recurrence, getting (n+2)Cn+1 =

(4n+ 2)Cn. Now, we multiply both sides by xn and sum over n, getting
∞∑
n=0

(n+ 2)Cn+1x
n =

∞∑
n=0

(4n+ 2)Cnx
n.

Distributing the n+ 2 and the 4n+ 2 yields
∞∑
n=0

nCn+1x
n + 2

∞∑
n=0

Cn+1x
n = 4

∞∑
n=0

nCnx
n + 2

∞∑
n=0

Cnx
n.

We now investigate each term individually, attempting to manipulate it to be in terms of
C(x). We will begin with the simplest one, the second term on the right hand side. We see
that

2
∞∑
n=0

Cnx
n = 2C(x) .

Now, we will move onto the second term on the left hand side, which is similar. We can
multiply by x

x
to get the summation in the form of Cix

i

2
∞∑
n=0

Cn+1x
n =

2

x

∞∑
n=0

Cn+1x
n+1.

Next, we reindex the summation to get

=
2

x

∞∑
n=1

Cnx
n =

2

x
(−1 +

∞∑
n=0

Cnx
n) =

2

x
(C(x)− 1) .
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Now, we move onto the first term on the right hand side. This term is more complicated
because of the n, so we take inspiration from the fact that d

dx
xn = nxn−1. We seek to eliminate

the n, so using derivatives, we attempt to get rid of the factor of n in the summation. Using
this strategy, we have

4
∞∑
n=0

nCnx
n = 4x

∞∑
n=0

nCnx
n−1 = 4x

∞∑
n=0

d

dx
(Cnx

n) = 4x
d

dx

(
∞∑
n=0

Cnx
n

)
.

This is simply 4xC ′(x) .

Finally, we move onto the first term of the left hand side, which is the trickiest to get in
terms of C(x). We will first get rid of the factor of n, as above.

∞∑
n=0

nCn+1x
n = x

∞∑
n=0

nCn+1x
n−1 = x

∞∑
n=0

d

dx
(Cn+1x

n) = x
d

dx

(
∞∑
n=0

Cn+1x
n

)
.

We already know that
∑∞

n=0Cn+1x
n = 2

x
(C(x)− 1) from above, so we can plug that in to

get

= x
d

dx

(
2

x
(C(x)− 1)

)
= x

d

dx

(
2

x
C(x)− 2

x

)
.

Using the product rule for derivatives, we get

= x

(
− 1

x2
C(x) +

1

x
C ′(x) +

1

x2

)
=
−C(x)

x
+ C ′(x) +

1

x
.

Now, we can substitute our manipulated expressions back into our equation, getting(
−C(x)

x
+ C ′(x) +

1

x

)
+

2

x
(C(x)− 1) = 4xC ′(x) + 2C(x).

We now have a differential equation. Isolating C ′(x) gives us

C ′(x) =
(1− 2x)C(x)− 1

x(4x− 1)
.

The solution to the differential equation is

C(x) =
c1

√
1− 4x

x
+

1

2x
=

1 + c
√

1− 4x

2x
.

,
where the constant c = 2c1. To find c, we examine C(0). Because C(x) =

∑∞
n=0 Cnx

n,
C(0) = C0 = 1. Additionally, since C(x) is a polynomial function, and is thus continuous,

lim
x→0

C(x) = C(0) = 1;

recall that this limit is well-defined due to Lemma 3.2.
Therefore, we have that

lim
x→0

C(x) = lim
x→0

1 + c
√

1− 4x

2x
= 1.

Plugging in x = 0 to C(x) gives us 1+c
0

. There are two cases: 1 + c 6= 0 or 1 + c = 0. If
1 + c 6= 0, then C(x) has an asymptote at x = 0. However, this isn’t possible, as C(x) is
the sum of several continuous functions; thus, it must be continuous. Therefore, 1 + c must
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O R P

Q

Figure 3. Diagram not to scale.

equal 0. Since that means that direct substitution evaluates to 0
0
, we can use L’hôpital’s

Rule to simplify our limit, getting

lim
x→0

1−
√

1− 4x

2x
= lim

x→0

4/2(1− 4x)−1/2

2
= lim

x→0

1√
1− 4x

= 1.

Therefore, we have confirmed that c = −1, and we have found the generating function for
the Catalan numbers:

C(x) =
1−
√

1− 4x

2x
.

�

Now that we’ve found the generating function for the Catalan numbers, let’s put it to use.

Question 3.3. Consider a circle centered at O with radius r. Points P and Q are on the
circumference of circle O such that the altitude of 4OPQ from Q to R has length 1, as
depicted in Figure 3. Why do the Catalan numbers appear in the decimal expansion of RP ,
when r is of the form 5 · 10n?

Solution to Question 3.3. Let’s solve for RP . We know that RP = OP − OR, and since
OP = r, we just have to find OR. Since 4ORP is a right triangle, we find that OR =√
OQ2 −QR2 =

√
r2 − 1. Therefore, RP = r−

√
r2 − 1. We seek to show that this is related

to the generating function in some way. We will attempt to manipulate our expression to

get it in the form of 1−
√

1−4x
2x

. We have

r −
√
r2 − 1 =

1−
√

1− 1
r2

1/r
.

Multiplying by 2r
2r

, we get

=
2r

2r

1−
√

1− 1
r2

1/r

 =
1

2r

1−
√

1− 1
r2

1/2r2

 .
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By the definition of C(x), this is equal to

=
1

2r
C(

1

4r2
).

Now, we can plug in r = 5 · 10n. This yields

=
1

10n+1
C

(
1

102n+2

)
=

1

10n+1

∞∑
i=0

Cn

102nx+2x
.

Therefore, our generating function reveals why the Catalan numbers appear in the decimal
expansion of r −

√
r2 − 1 when r is 5 times a power of 10.

�

Now that we’ve completed our discussion of the generating function for the Catalan num-
bers, we can begin unraveling the growth rate of Catalan numbers. First, we’ll consider the
ratio between consecutive elements, then we’ll discuss an asymptotic approximation of the
Catalan numbers.

Theorem 3.4. As n grows, Cn+1

Cn
approaches 4.

The theorem is fairly easy to prove since we already have a recursion for Cn that deals
with the ratio between consecutive terms.

Proof of Theorem 3.4. We have that Cn+1 = 4n+2
n+2

Cn. Therefore, Cn+1

Cn
= 4n+2

n+2
. Finally,

lim
n→∞

4n+ 2

n+ 2
= 4.

Thus, we are done. �

This result leaves us with an interesting question. We know that the ratio between con-
secutive Catalan numbers approximates 4 for large n. Then, how much does 4n differ from
Cn? It turns out that Stirling’s approximation can help us answer this question.

Theorem 3.5 (Stirling’s approximation). Stirling’s approximation states that

lim
n→∞

n!√
2πn

(
n
e

)n = 1.

Because the derivations of Stirling’s approximation require prerequisite understanding not
assumed in this paper, we will not prove it here [Con16].

Now that we have Stirling’s approximation, we can begin discussing the asymptotic ap-
proximation for the Catalan numbers.

Theorem 3.6. We can approximate Catalan numbers with the following limit:

lim
n→∞

Cn

4nn−
3
2π−

1
2

= 1.

This theorem has some similar elements to Stirling’s approximation. Additionally, the fact
that Cn can be expressed in terms of factorials makes it even more enticing to use Stirling’s
approximation to attempt to prove Theorem 3.6, as we’ll do in the following proof.



CATALAN NUMBERS 11

First Proof of Theorem 3.6. We will directly consider the limit of 4n

Cn
as n goes to ∞. This

gives us

lim
n→∞

4n

Cn

= lim
n→∞

4n(n+ 1)(n!)2

(2n)!
,

by the explicit formula for the Catalan numbers. We now use Stirling’s approximation,
getting that our limit is equal to

lim
n→∞

4n(n+ 1)(
√

2πn(n/e)n)2

√
4πn(2n/e)2n

.

Simplifying the numerators and denominators yields

lim
n→∞

4n(n+ 1)(2πn)(n/e)2n

2
√
πn(n/e)2n22n

= lim
n→∞

4n(n+ 1)
√
πn

4n
= lim

n→∞
(n+ 1)

√
πn ≈ lim

n→∞

√
πn

3
2 .

Therefore, we have that

lim
n→∞

4n

Cn
= lim

n→∞

√
πn

3
2 ,

and thus

lim
n→∞

Cn

4nn−
3
2π−

1
2

= 1.

�

Although we have only shown that the ratio is 1 as n tends to ∞, we can note that the
ratio is fairly close to 1 even for smaller n; for n = 20, the ratio is approximately 0.946,
and for n = 50, the ratio is approximately 0.978. The reason for this is that Stirling’s
approximation for n! is also a good approximation for small n; since our result depends
on Stirling’s approximation, the rate of convergence transfers from the independent to the
dependent approximation.

Although our proof is succinct because it uses Stirling’s approximation, it may feel a bit
uninspired, as we are just plugging in our approximation and simplifying. Therefore, we’ll
discuss another proof that may be more intuitive.

Before beginning the proof, let’s state and prove a useful lemma.

Lemma 3.7.
n−1∏
i=0

(
1 +

3

2i+ 1

)
=

√
πΓ(n+ 2)

Γ(n+ 1
2
)
,

where the Gamma function Γ(n) is an extension of the factorial function.

Proof of Lemma 3.7. We will prove our lemma by induction. Our base case is n = 1, which
gives us

0∏
i=0

(1 +
3

2i+ 1
) = 1 + 3 = 4 and

√
πΓ(n+ 2)

Γ(n+ 1
2
)

=
2
√
π√

π/2
= 4.

Therefore, our base case is complete.
Now, we move onto our inductive step. We have that

n−1∏
i=0

(
1 +

3

2i+ 1

)
=

√
πΓ(n+ 2)

Γ(n+ 1
2
)
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by our inductive hypothesis. Now, we multiply both sides of the equation by 1 + 3
2n+1

to get

=
n∏

i=0

(
1 +

3

2i+ 1

)
=

√
πΓ(n+ 2)

Γ(n+ 1
2
)
· 2n+ 4

2n+ 1
=

√
πΓ(n+ 2)

Γ(n+ 1
2
)
· n+ 2

n+ 1
2

.

Using the fact that Γ(x+ 1) = xΓ(x), we get that this is equal to

=

√
πΓ(n+ 3)

Γ(n+ 3
2
)
,

so we have

=
n∏

i=0

(
1 +

3

2i+ 1

)
=

√
πΓ(n+ 3)

Γ(n+ 3
2
)
,

and thus our inductive step is done. �

Now that we have proven Lemma 3.7, we are ready to complete our second proof of
Theorem 3.6.

Second Proof of Theorem 3.6. We begin with our recurrence relation for Cn: Cn+1 = Cn
4n+2
n+2

,
with initial value C0 = 1. Clearly, we have

Cn =
n−1∏
i=0

4i+ 2

i+ 2
=

n−1∏
i=0

4− 6

i+ 2
.

We know that 4n =
∏n−1

i=0 4, so we have

4n

Cn

=
n−1∏
i=0

4

4− 6
i+2

=
n−1∏
i=0

1

1− 3
2i+4

=
n−1∏
i=0

2i+ 4

2i+ 1
=

n−1∏
i=0

(
1 +

3

2i+ 1

)
.

By Lemma 3.7, we know that

n−1∏
i=0

(
1 +

3

2i+ 1

)
=

√
πΓ(n+ 2)

Γ(n+ 1
2
)
.

We have a few options here. We can use Stirling’s approximation as before, or we can
attempt to evaluate the ratio without it using the properties of the Gamma function. Since
the second derivative of Γ(x) is positive for nonnegative x (which follows from Γ(x + 1) =

xΓ(x)), Γ(x) increases at a faster rate for larger x. Thus, we can set bounds on Γ(n+2)

Γ(n+ 1
2

)
as

follows:
Γ(n+ 1

2
)

Γ(n− 1)
· Γ(n+ 2)

Γ(n+ 1
2
)
<

Γ(n+ 2)

Γ(n+ 1
2
)
· Γ(n+ 2)

Γ(n+ 1
2
)
<

Γ(n+ 2)

Γ(n+ 1
2
)
·

Γ(n+ 7
2
)

Γ(n+ 2)
.

Simplifying, then taking the square root, we get√
Γ(n+ 2)

Γ(n− 1)
<

Γ(n+ 2)

Γ(n+ 1
2
)
<

√
Γ(n+ 7

2
)

Γ(n+ 1
2
)
.

Using Γ(x+ 1) = xΓ(x), we can simplify the bounds to get

√
n3 − n < Γ(n+ 2)

Γ(n+ 1
2
)
<
√
n3 + 4.5n2 + 5.75n+ 1.875.
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Dividing by n
3
2 on both sides, we get√

1− 1

n2
<

Γ(n+ 2)

Γ(n+ 1
2
)n

3
2

<

√
1 +

4.5

n
+

5.75

n2
+

1.875

n3
.

Since

lim
n→∞

√
1− 1

n2
= lim

n→∞

√
1 +

4.5

n
+

5.75

n2
+

1.875

n3
= 1,

we know that limn→∞
Γ(n+2)

Γ(n+ 1
2

)n
3
2

= 1, and thus

lim
n→∞

Γ(n+ 2)

Γ(n+ 1
2
)

= n
3
2 .

Since we’ve already established that

4n

Cn

=

√
πΓ(n+ 2)

Γ(n+ 1
2

,

we now have

lim
n→∞

4n

Cn

= lim
n→∞

√
πΓ(n+ 2)

Γ(n+ 1
2

= lim
n→∞

√
πn

3
2 .

Rearranging, we get

lim
n→∞

Cn

4nn−
3
2π−

1
2

= 1,

and we are done.
�

Thus, we have proven Theorem 3.7 without using Stirling’s approximation, instead just
using our multiplicative recurrence and the properties of the Gamma function.

Our discussion of the growth rate of the Catalan numbers prompts one final question:
Why do Dyck paths, Triangulations of Convex Polygons, or other Catalan Objects see an
increase of a factor of approximately 4 as n grows? We can dive into casework for Dyck paths
(or any other Catalan Object), but it’s messy. Furthermore, checking small cases doesn’t
seem promising, as the ratio between consecutive Catalan numbers isn’t close to 4 for small
n.

It seems that our only hope is finding why the number of Dyck paths grows by 4n+2
n+2

,

but this also seems rather difficult, especially since 4n+2
n+2

isn’t even an integer for most n.
Therefore, we close our discussion of Catalan numbers with this question remaining.
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