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Abstract

In this expository paper we explore the fundamentals of Ramsey The-
ory, named after Frank Ramsey, a pioneer in the field. Virtually, Ramsey
Theory entails finding order in a substructure of a structure of given size.
We start this paper with several graph theory fundamentals, and then
move on to explore the Friends and Strangers problem, which we extend
to a graph theoretical perspective. Finally, we explore the proof behind
Ramsey’s Theorem.

1 Graph Theory Preliminaries

We assume some level of competence with graph theory, but we will provide
a couple of definitions that will be useful later on. This section will be terse, as
to move on to the main material.
Definition 1.1. A graph is a structure consisting of two sets V and E, where
each element on V is a vertex and each element of E is an edge. The set of
vertices of a graph G is V (G). Similarly, the set of edges of G is E (G).

Graphs are usually represented by pictures, as we have done so in Figure 1.
Vertices are depicted as circle or dots, and each edge is a line connecting two
vertices.

Definition 1.2. An edge which connects the same vertex to itself is a loop.
A set consisting of two or more edges of a graph, if sharing the same ends, are
called a set of multiple edges. [1]

Definition 1.3. A simple graph is one which has no loops or multiple edges.
A multigraph is a graph that has at least one loop or multiple edge.

Refer to Figure 2 to see an example of a simple graph and a multigraph.

Definition 1.4. The order of a graph, denoted |V |. is the number of vertices
it has, and the size of a graph, denoted |E| is the number of edges it contains.

Definition 1.5. Given u, v ∈ V, if uv ∈ E, then u and v are adjacent. If an
edge e has a vertex v as an end, then e and and v are incident
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Definition 1.6. The set of vertices adjacent to v is the neighborhood of v.

Definition 1.7. The degree of a vertex v is the number of edges incident with
v, and is denoted deg(v). [1]

Figure 1: An example of a graph with 6 vertices and 8 edges.

Definition 1.8. The complete graph on n vertices, Kn, is the graph of order
n where uv ∈ E for all u,v ∈ V.

We will now present some definitions regarding subgraphs, which will be
highly useful in our proof of Ramsey’s Theorem.

Definition 1.9. A graph H is a subgraph of graph G if V (H ) ⊆ V(G) and
E (H ) ⊆ E(G). [1]

Note that any graph is a subgraph of itself. This is not true for proper
subgraphs.

Definition 1.10. A subgraph is knows as a proper subgraph if its vertex and
edge sets are not the same as the vertex and edge sets of its ”parent graph”.

Definition 1.11. A subgraph H of G is an induced subgraph of G if H
contains the same edges as G between its own vertices.

Lastly, we will define a clique.

Definition 1.12. A clique of G is a complete subgraph of G. The clique
number of G is denoted ω(G) and is equal to the largest order of the largest
complete graph that is a subgraph of G. [1]

2 An Interesting Problem

In this section, we explore a famous problem in Ramsey Theory, the Friends
and Strangers problem. The Friends and Strangers problem asks to following:
In a party with k≥ 3people, each person is either a friend or a stranger to another
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Figure 2: Example of a simple graph (on left) and a multigraph (on right).

Figure 3: An example representation of the Friends and Strangers problem.
Note that 1 and 2, 3 and 4, along with 1 and 3 are pairwise friends, while 1 and
4, 2 and 4, along with 2 and 3 are pairwise strangers. This disproves the k = 4
case.

person (friendship is mutual, as well as being a stranger to someone else). What
is the smallest value of k such that three people are all (pairwise) strangers or
are all (pairwise) friends?

At first glance this may seem to be a problem that can easily be calculated
by hand, and this is indeed true. The tricky part, though, is to prove that the
answer obtained is the smallest one possible.

To make thinking about this problem easier, we can draw a diagram with
each person represented by a dot, a blue line representing friendship, and a red
line representing strangers. Such a diagram is shown in figure 3.

For the sake of example, let us look at the case k=3. Call the people at
the party person A, person B, and person C. We easily find that k=3 does not
work, since we can let person A be friends with both B and C, and we can let
B and C be strangers to each other. We can also easily see that k=4 doesn’t
work; look at figure 3.

After going through a few more examples, you will probably find that k=6 is
the least possible value. You can easily show that k=5 doesn’t work (see figure
4) and we have already shown that 3 and 4 don’t work. We will prove that k=6
is the smallest value possible by contradiction. Denote the six people people A,
B, C, D, E, and F respectively. Assume that no three are friends and no three
are strangers. Choose one person, say, person E, to analyze. We now have two
cases to look at: Person E has less than 3 (0 to 2) friends, and person E has 3
or more (3 to 5) friends. Let’s start with the second case. Since E has at least
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Figure 4: An example showing that k = 5 does not work. Indeed, there is no
group of three pairwise friends or strangers.

3 friends, we can assume, without loss of generality, that the relationship show
in in Figure 5.A holds. [2] Since no 3 people can be mutual friends, C and F
must be strangers. Likewise, B and C must be strangers. If B and F are friends,
our condition that there are no three people who are friends breaks. If B and F
are strangers, our condition that no three people are stranger breaks. Thus, we
have a contradiction for this case. Now let us turn to case 1. We can take the
same diagram we used for case one, and switch all the original friendships to
stranger relationships. See figure 5.B to see what this new relationships looks
like. We use a similar argument as we did with case 1 — B and C, as well as C
and F, must be friends so that no three people are all strangers. B and F cannot
be friends, since then there will be three mutual friends, and B and F cannot be
strangers, because that will cause three people to be strangers. Thus, this case
also ends in contradiction. Since both our claims result in contradiction, our
initial assumption must be wrong, and we must have at least a group of three
friends or three strangers.

This problem is, indeed, the fundamental problem of Ramsey Theory. To
see why it relates to Ramsey Theory, look at the big picture. All we are trying
to do is create order out of a seemingly random situation.

Note how we have used a graph of sorts to help us visualize this problem.
Naturally, we ask the question ”Does this problem have a graph-theoretic inter-
pretation?”. The answer to this question, as we will see in the next section, is
yes.

3 A Graph Theoretic Interpretation

We convert this problem as follows: Say we have Kn, the complete graph
on n vertices. Each of the six vertices represent a person who is attending the
party. Color an edge blue if the two vertices (people) connecting it are friends,
and color it red if they are strangers. What is the minimum value of k so that
there will always be a blue triangle (group of three friends) or a red triangle
(group of three strangers)?

Clearly this problem is the same as the one we just solved. But how do

4



Figure 5: Figure 5.A (top left) depicts the starting position, without loss of
generality, for the case where E has 3 or more friends. Figure 5.B (bottom
right) depicts the opposite — the case where E has less then three friends.

we prove n=6 is the minimum value in this case? We can do so by using the
pigeonhole principle. Although it is assumed that the reader knows what the
pigeonhole principle is, we will define it here for the sake of posterity.
Theorem 3.1. (Pigeonhole Principle) If we are told to place m > n pigeons in
n holes, then one hole must have at least 2 pigeons.

Although the pigeonhole principle seems very simple, we will see its power
in our proof as follows: Label the six vertices A, B, C, D, E, and F. Choose
one vertex randomly — we will choose vertex B. Clearly, there are five edges
extending out from B. By the pigeonhole principle, three of these edges must
be of the same color (red or blue), since if less than three are red, then at least
three are blue. Now look at the vertices at the other end of these monochromatic
edges. If all of these edges are blue, we have a blue triangle, and we are done.
Similarly, if one of these edges is not blue, the three edges must be all red, and
we are done.

Note that we have used similar but different arguments for both of the
different interpretations for this problem, and they are both quite simple. After
seeing both of these solutions, it is natural to ask whether this relationship
can be generalized. Indeed, the generalization of this problem is known as
Ramsey’s Theorem and was proved by Frank Ramsey in 1930.

4 Ramsey’s Theorem

In this section we prove Ramsey’s Theorem, and proceed to discuss its rela-
tionship with the Friends and Strangers problem.
Theorem 4.1. (Ramsey’s Theorem) Given any positive integers p and q, there
exists a smallest integer n=R(p, q) such that every 2-coloring of the edges of
Kn contains either a complete subgraph on p vertices, all of whose edges are in
color 1, or a complete subgraph on q vertices, all of whose edges are in color 2.
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Proof. We induct on p+q. Our base case is p+q=2, which only arises if
p and q are both 1. It is clear that R(1,1)=1. Assume the theorem holds
whenever p+q < N for some positive integer N. Let P and Q be integers such
that P+Q=N. We have P+Q-1 < N, so we know that (from our inductive
hypothesis), that R(P-1,Q) and R(R,Q-1 ) exist. Now look at any coloring of
Kv in two colors c1 and c2, where v ≥ R(P - 1, Q) + R(P, Q - 1). Let x be a
vertex of Kv. By the pigeonhole principle and because v ≥ R(P 1, Q)+R(P,
Q1 ), we know that of the v - 1 edges that x is incident to, either R(P-1, Q) edges
are in color c1 or R(P, Q-1 ) edges are in color c2. If x is incident to R(P-1, Q)
edges of color c1, consider the KR(P-1,Q) whose vertices are the vertices joined

to x by edges of color c1, that is the subgraph induced by the neighborhood
of x. Because we know that R(P-1, Q) exists, there are two possible cases to
consider. One is that this graph contains a KP-1 with all edges in color c1, in
which case this KP-1 together with x forms a monochromatic KP in color c1.
The other possibility is that KR(P-1,Q) contains a K! with all edges in color

c2. In either case, we can see that R(P, Q) exists. A parallel argument holds if
x is incident to R(P, Q-1 ) edges of color c2, and Kv again contains one of the
required monochromatic complete graphs. Thus, R(P, Q) exists, and in fact,
because we chose v such that v ≥ R(P-1, Q)+R(P, Q-1 ), we know that R(P,
Q) ≥ R(P, Q-1 ) + R(P-1, Q). [1] �

Note that this theorem can be generalized further for any finite number of
colors. Also note that Ramsey’s Theorem proves existence, but does not give
us an easy way to find R(p,q) in general.

Our Friends and Strangers problem immediately tells us that R(3,3)=6. In-
deed the problem, in terms of this theorem, guarantees that there is some small-
est number of people at the party required to ensure that there is either a set
of p mutual acquaintances or q mutual strangers.

5 Conclusion

In this expository paper, we have presented the reader with the fundamentals
of Ramsey Theory, a vast field that still holds much to explore. We hope the
simplicity of the arguments presented as well as the various ideas presented
inspire the reader to explore more by themselves and delve deeper intro this
intriguing subject. Finally, we would like to thank Simon Rubinstein-Salzedo of
Euler Circle for providing guidance while writing this paper.
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