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1. Introduction

The necklace splitting problem is an interesting problem in topological combi-
natorics. One variation of this problem is splitting a necklace with n beads of d
types between 2 different people using no more than d cuts. This can be proven
using the Ham Sandwich theorem and a moment curve. The proof outlined in this
paper was presented in [3].

The necklace splitting problem can also be solved when k people split a necklace
with kad beads of type d. It was solved by Noga Alon in 1987 using the Hobby-
Rice theorem in [4]. This problem has many applications including in VLSI circut
design [7].

2. Necklace Splitting Between 2

Theorem 2.1. Every open necklace with d kinds of beads can be divided
equally between two people using no more than d cuts.

This can be proved using the Ham Sandwich theorem. The original formulation
is that given a slice of ham and a slice of cheese on a board there exists a straight
line that divides them both into equal proportions.

Ham-Sandwich Theorem A single plane can divide 3 objects in half.

To prove the Ham Sandwich theorem the Borsuk-Ulam Theorem is needed. The
proof for the Ham Sandwich theorem was presented by [6].

Borsuk-Ulam Theorem Every continuous map f :Rn →Sn identifies a pair of
antipodal points.

Proof. For each three objects there will be three planes of the same gradient that
cuts each object in half. Two distances, d1 and d2 can be defined by the distances
between the three planes. Those two distances can be written as coordinates (d1,
d2). Antipodal points always will map to negatives of one another because they are
opposites. But, by the Borsuk-Ulam Theorem there is at least one pair of antipodal
points that map to the same coordinate. This point must be (0,0) because it is
the only point that is a negative of itself. If there is a point at (0,0) it means there
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is no distance between the three planes. Therefore the three objects can be cut in
half by one plane. �

The Ham Sandwich theorem has to be generalized in order to prove the Necklace
Splitting Problem.

Theorem 2.2(Finite Ham-Sandwich). Let A1, A2, ..., Ad ∈Rd be disjoint finite
sets in general position such that no more than d points of A1∪...∪Ad are contained
in any hyperplane. Then, there exists a hyperplane h that bisects each Ai such that
there are exactly b1

2
|Ai|c points from Ai, in each of the open half spaces defined

by h.

To prove this problem we also need a lemma for a moment curve. This is just a
way of arranging the necklace so you are able to prove the theorem.

Lemma 2.3 A moment curve γ in Rd is defined as γ = {(t,t2, . . . , td) ∈ Rd t
∈ Rd }. No hyperplane h ⊂ Rd intersects the moment curve γ in Rd in more than
d points.

Proof. The intersection of hyperplane h defined by a1x1 + a2x2+ · · · +adxd = b
and γ is given by the solutions to the polynomial a1t + a2t

2+ · · · +adt
db = 0,

which as at most d distinct roots. �

Using all of this it is possible to prove Theorem 2.1:

Proof. We consider beads to the put on the moment curve γ(t) = (t, t2, . . . , td)
in Rd where the kth bead is placed at γ(k) = (k, k2, . . . , kd). It is not hard to
check that the points {γ(k)}k=1,...,n are in general position. Ai can be defined:

Ai= {γ(k) — kth bead is of type i, k=1, . . ., n}

By the finite ham sandwich theorem there intersects a hyperplane h that bisects
each Ai. Furthermore, by Lemma 2.3 this hyperplane meets the curve γ at most
d points. �

3. Necklace Splitting with Multiple People Background

Theorem 3.1 Given an open necklace with d different types of beads there are
at most (k-1)d cuts needed to split the necklace evenly amongst k people.

This can be proven logically. The arrangement of the beads that would require
the most cuts is if each type of bead was next to each other. In that case you
would need to make k-1 cuts for each type of beads to evenly divide it.
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This can also be proven algebraically using a generalization of the Borsuk-Ulam
theorem. To prove this problem the necklace must be made continuous. This
would occur by making each bead a line segment of that color. The cuts could
then occur on any of the infinite points on that line. In the case that the continuous
splitting cuts inside the beads, the cuts can be shifted over so they are only made
within the beads. This is why the continuous version can be used to prove the
discrete version of the problem.

Definition 3.2 A k-splitting of a of the necklace is a partition of the necklace
into k parts, each consisting of a finite number of non overlapping intervals of
beads whose union captures precisely ai beads of color i, 1 ≤ i ≤ d. The size of
the k-splitting is the number of cuts that form the intervals of the splitting which
is k-1.

Definition 3.3 Let I= [0, 1] be the unit interval. An interval d-coloring is a
coloring of the points of I by d colors, such that for each i, 1 ≤ i ≤ d, the set of
points colored i is measurable.

Theorem 3.4 Every interval d-coloring has a k-splitting size of (k-1)d.

This is the same as Theorem 3.1. Theorem 3.4 also follows from the two following
propositions:

Proposition 3.5 Theorem 3.4 holds for every prime k.

Proposition 3.6 The validity of Theorem 3.4 for (d, k) implies its validity for
(d, kl)

Proof. To obtain a kl splitting size of (k × l − 1)× d given an interval d-coloring.
Start by using (k - 1)d cuts to form k families of intervals each capturing 1

k
of the

measure of each color. For each of these families, consider the interval coloring
formed by placing its intervals next to each other and rescaling to total length 1.
Using (l - 1)d cuts, we obtain an l-splitting of this coloring. Transforming back to
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the original interval coloring, this adds together to k(l- 1)d more cuts, so altogether
we have (k - l)d + k(l- 1)d = (kl - 1)d cuts which form the desired kl-splitting. �

4. Proof of Theorem 3.1

To prove theorem 3.1 we need the Hobby-Rice Theorem, a generalization of
the Borsuk-Ulam theorem [2]. It can be generalized to fit the necklace splitting
problem.

Theorem 4.1 Let u1,u2 ,..., ud, be d continuous probability measures on the unit
interval. Then it is possible to cut the interval in (k - 1)d places and partition the
(k - 1)d + 1 resulting intervals into k families F1,F2,...,Fk such that ui(∪Fj) = 1/k
f or all 1 ≤ i ≤ d, 1 ≤ j ≤ k. The number (k-l)d is best possible.

Given d measures u1 ,..., ud on the unit interval, a k-splitting of size r is a
sequence of numbers 0 = y0 ≤ y1 . . . ≤yr ≤ yr+1 and a partition of the family
of r + 1 intervals F= {[yi, yi+1]: 0 ≤ i ≤ r }into k pairwise disjoint subfamilies F1

,..., Fk whose union is F, such that for each 1 ≤ j ≤ k and 1 ≤ i ≤ d,

µi(∪Fj) =
1

k
µi([0, 1])

Theorem 3.1 as written above does not use the fact that d measures come from
an interval coloring. The only requirement is that the measures are continuous
and the sum of the d lengths of an interval is its length. Therefore we can write
the theorem differently.

Lemma 4.2 Let m1,m2,...,md, be d continuous measures on the unit interval
and suppose

m1([0, α]) + ...+md([0, α]) = α

for all 0 ≤ α ≤ 1 then for all k ≥ 1 there exists a k-splitting size of (k-1)d.

Theorem 3.1 can now be proved.

Proof. Let µ1, µ2, . . . , µd be d continuous measures on the unit interval I.
Suppose E ≤ 0. Define the following d measures m1, . . . ,md on I. For i ≤ j ≤ d
put mj = µj/k and define md = (µi + E ×mL)/(1 + E)× k. Put m = m1 + . . .
+ md and define f : [0,1] → [0,1] by f(x)=m([0,x]). The function f is continuous,
onto, and strictly increasing. Because of this its inverse f−1 is continuous and
strictly increasing.

For 1 ≤ j ≤ d let m
′
j be the measure given by m

′
j(S)=mj(f

−1(S)). Clearly, for
every 0 ≤ α ≤ 1

m
′

j([0, α] + ...+m
′

d([0, α]) =
∑

t
j=1mj(f

−1[0, α] = m([0, f−1(α)]) = α

Therefore, by Lemma 4.2 there is a k-splitting size of (k-1)d for the measures m
′
1,

m
′
2, . . . m

′

d The function f−1 will carry this k-splitting into a k-splitting of the
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same size for the measures m1,m2, ...md.Let F1, F2, ..., Fk be the k collections of
intervals that form this spitting. By the definition of the m

′
i’s these collections

almost form a k-splitting for the original measures µ1, µ2, ..., µd.

µ(∪Fj) =
1

k
µi([0, 1])

for 1 ≤ i<d 1 ≤ j ≤ k

µ(∪Fj) + EmL(∪Fj) = (1 + E)/k

for 1 ≤ j ≤ k This means that

1

k
− k − 1

k
E ≤ µd(∪Fj) ≤

1 + E
k

for 1 ≤ j ≤ k

By choosing a sequence EI → 0 and obtaining a convergent subsequence of the
sequence of k-splittings of size (k-1)d satisfying the two above equations for these
EI ’s we obtain a k-splitting size (k-1)d for the measures µ1, ..., µd. �

5. Conclusion

The necklace problem is a popular problem in topological combinatorics. In this
paper we proved that when k=2 a necklace with d different types of beads can be
split equally using no more than d cuts. This was proven using the Finite Ham
Sandwich Theorem. We also proved that when k>2 the number of cuts is (k -
1)d using the Hobby-Rice Theorem. The problem can be used to efficiently divide
different things equally, which can be especially helpful in the field of computer
science.
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