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First, we will go over some key definitions relating to Pattern Avoidance.
We will discuss the properties of 3-digit patterns, including their relation
with the Catalan numbers, the bijection between different 3-digit patterns,
etc. Then, we will move on to 4-digit patterns, first by showing that there
are more 1325 avoiding permutations than 1234 avoiding permutations for
any permutation with more than 7 elements, then we will show the Wilf
Equivalency between certain patterns. In the end, we will go over the ap-
proximation for the number of permutations that avoid certain patterns and
the Stanley Wilf conjecture.

1 3 Digit Patterns and Wilf Equivalency

Definition 1.1: Let p be a permutation on n, and let q = q1q2q3 · · · qk be
a permutation on k, where n ≥ k. If we choose k elements from p while
preserving their order and label them a1a2a3a4 · · · ak, and if for every i, j,
if qi < qj and ai < aj, then we say that the elements a1a2a3 · · · ak forms a
q-pattern.

Example: Let p = 124356 and q = 123. Then the elements 1, 3, 6 in p
forms a q-pattern pattern.

Definition 1.2: Let p be a permutation on n, and let q = q1q2q3 · · · qk
be a permutation on k, where n ≥ k. If no k entries of p forms a q-pattern ,
then p is a q-avoiding permutation

Example: Let p = 34512, q = 132, r = 231, then p avoids q but does
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not avoid r.

The number of q-avoiding n-permutations is denoted by Sn(q). It is very
tempting to ask how many q avoiding permutations of length n are there.
Fortunately, there is an easy way to calculate Sn(q) when q is a 3 digit per-
mutation.

Definition 1.3: For two permutations q and r, q and r are said to be
Wilf-Equivalent if Sn(q) = Sn(r) for all n.

Example: The pattern 123 is Wilf-Equivalent with the pattern 321, be-
cause 321 is the reverse of 123 and the reverse of every permutation that
avoids 123 avoids 321. This sets up a natural bijection between 123-avoiding
permutations and 321-avoiding permutations. Further more, we claim that:

Lemma 1.4: All 3-digit patterns are Wilf-Equivalent.

Proof. There are 6 possible 3-digit patterns: 123, 132, 231, 213, 312, 321.
Any pattern is Wilf-Equivalent with it’s reverse, so we only need to show
that Sn(123) = Sn(132) = Sn(312). We define the complement of an n-
permutation p = p1p2p3p4 · · · pn, pc to be pc1pc2pc3 · · · pcn where pci = n+ 1−
pi. For example, the complement of 21345 is 45321. Moreover, 132 is the
complement of 312. Observe that if a permutation p contains the pattern
132, then pc contains 312(We will formally define and prove reversal and
complementation later in part 2). Thus, Sn(132) = Sn(312).

Now we want to show that Sn(123) = Sn(132). Define the left-to-right
minimum to be an entry such that it is smaller than all entries before is.
For instance, the left-to right minima in 43521 are 4, 3, 2, 1. Note that the
first entry and 1 are always a left-to-right minimum. Now we construct a
bijective function f from the set of all 123-avoiding n-avoiding permutations
to all 132-avoiding n-permutations. It is defined as follows: take any 123-
avoiding n-permutation, we fix all the left-to-right minima, remove all the
other entries, and then place them back from left to right such that every
entry is the smallest element that is still larger than the previous left-to-right
minimum. For example, f(465132) = 456123. Thus, the resulting permuta-
tion is composed of many increasing sequences and any of the elements in
any given sequence is larger than any elements in the sequences that succeed
it.Obviously, such sequence is 132 avoiding.
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The inverse of f is described as such: WE fix all the left-to-right minima
of p, and then put all the other elements into the empty slots between them
in decreasing order. For example, f−1(456231) = 465231. Thus, all the left-
to-right minima are preserved. Note that both the left-to-right minima and
the remaining entries form a decreasing sequence. Therefore, we obtain a
permutation that is a union of two decreasing sequences. Such permutation
has to be 123-avoiding, as for every 3 entries chosen, at least 2 of them belong
to the same sequence. This completes the proof.

To find Sn(q) for all q where the length of q is 3, we only need to find
Sn(132).

Corollary 1.5: Sn(132) = Cn = 1
2n+1

(
2n+1
n

)
, where Cn is the Catalan num-

ber.

Proof. Suppose p is a n-permutation that avoids 132, and the element n is
in the i’th entry. The smallest elements before pi has to be greater than
the largest element that proceeds pi. To prove this, lets assume the con-
trary: there is an element x before pi and element y after pi such that
x < y. If that’s the case, then the sequence x, n, y forms a 132 pattern,
which is impossible. The sequences formed by the entries p1p2p3p4 · · · pi−1
and pi+1pi+2pi+3pi+4 · · · pn both have to be 132-avoiding, and since n can be
in any position, we obtain the following recurrence:

Sm(132) =
n∑

i=1

Si−1(132)Sn−i(132)

Which is the same recurrence as the Catalan numbers. Since their initial
conditions are also the same, they have to be the same.

Thus, we obtain the formula for the number of n-permutations that avoids
q, where q is any 3-digit pattern:

Theorem 1.6: For any permutation pattern of length q, we have

Sn(q) = Cn =
1

2n+ 1

(
2n+ 1

n

)
We went over single pattern avoidance, we can take it a step further and
count the number of n-permutations that avoid two different 3-digit pat-
terns, denoted by An(q, r).
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Lemma 1.7:

(a) An(123, 132) = An(123, 213) = An(231, 321) = An(312, 321);

(b) An(132, 213) = An(231, 312);

(c) An(132, 231) = An(213, 312);

(d) An(132, 312) = An(213, 231);

(e) An(132, 321) = An(123, 231) = An(123, 312) = An(213, 321)

Proof. All of the identities above can be derived through the reversal and
complementation technique demonstrated earlier.

Thus, we split all double restriction permutations into five cases, proposition
1.8 through 1.12 will deal with them separately.

Proposition 1.8: An(123, 132) = 2n−1 for all n ≥ 1

Proof. Let σ be a n permutation that avoids 123 and 132. If σn = n then
everything else must be in decreasing order. Else, if σk = n for some 1 ≤ k <
n, then for all i’s where i < k, we have σi > n−k, and σ1 > σ2 > σ3 · · · σk−1,
while (σk+1σk+2 · · ·σn) also forms a (123, 132) avoiding sequence. Thus we
obtain the recurrence

An(123, 132) =
n−1∑
k=1

1 + An−k(123, 132)

It follows from the recurrence that

An(123, 132) = 2n−1

Proposition 1.9: An(132, 213) = 2n−1 for all n ≥ 1

Proof. Let σ be such a permutation. If σn = n, then σ is the identity
permutation. Else, if σk = n for some 1 ≤ k < n, then we must have
σi = n − k + i for 1 ≤ i ≤ k, and (σk+1σk+2 · · ·σn) also avoids (132, 213).
Since An(132, 213) satisfy the same initial value as An(123, 132), they must
be the same.
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Proposition 1.10: An(132, 231) = 2n−1 for all n ≥ 1

Proof. Let σ be such a permutation, we can create two (132, 231)-avoiding
permutations of length n + 1 by either inserting the element n + 1 at the
beginning or the end. Thus, we have

An(132, 231) = 2An−1(132, 231).

Plugging in the initial conditions, we have

An(132, 231) = 2n−1

Proposition 1.11: An(132, 312) = 2n−1 for all n ≥ 1

Proof. Let σ be such a permutation. If σ1 = n then σi = n + 1 − i for all
1 ≤ i ≤ n. Otherwise, if σk = n where 2 ≤ k ≤ n, then (σ1σ2 · · ·σk−1)
must be a (132, 312) avoiding permutation while σk+i = n− k − i+ 1 for all
1 ≤ i ≤ n− k. Thus,

An(132, 312) = 1 +
n∑

k=2

Ak−1(132, 312)

= 1 +
n−1∑
k=1

Ak(132, 312)

Which is the same one in the previous propositions. Plugging in the initial
condition and solving the recursion gives:

An(132, 312) = 2n−1

Proposition 1.12: An(132, 321) =
(
n
2

)
+ 1 for all n ≥ 1

Proof. Let σ be such a permutation. If σn = n then all the entries that
precedes n form a permutation that avoids (132, 321). Otherwise, n can be in
any position σk where 1 ≤ k ≤ n−1, and (σ1σ2 · · ·σk−1) and (σk+1σk+2 · · ·σn)
form increasing sequences and consist of the largest k − 1 terms and the
smallest n− k terms, respectively. Thus,

An(132, 321) = An−1(132, 321) + n− 1

Solving the recursion completes the proof
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2 4 Digit Patterns

As we’ve shown, it is relatively easy to find the number of q-avoiding per-
mutations if the length of q is three. We now shift our focus to q-avoiding
permutations, if the length of q is four. There are 24 possible explicit q-
patterns of length 4, but we can easily reduce the amount of patterns that
must be given explicit attention. Further reduction requires the use of new
tools to identify Wilf-equivalence.

Definition 2.1: A permutation p = p1p2 · · · pm has a reverse pr, defined
as pr = pmpm−1 · · · p1.

Example: For q = 2143, qr = 3412.

Definition 2.2: A permutation p = p1p2 · · · pm has a complement pc,
where the ith position is occupied by m+ 1− pi.

Example: For p = 1243, pc = 4312.

It is natural to ask about the relationships between a permutation or
pattern p, its reverse pr, and its complement pc.

Proposition 2.1 For all positive integers n,

Sn(p) = Sn(pc) = Sn(pr)

Proof. Suppose that we have a pattern q that is contained by an arbitrary
sequence p = p1p2p3 · · · pn. If we take the reverse of this sequence, then it
is clearly evident that qr is contained by pr. Since reverses are unique for
each permutation, we have established a bijection between finite sets, so they
must be equal in size. This leaves the same number of permutations of [n]
that avoid qr, so they must be the same in size. Similarly, if we take the
complement of p, we obtain the sequence (n + 1 − p1) · · · (n + 1 − pn). We
can manipulate a relation among two arbitrary elements of pattern q, q1, q2
to prove that qc is contained by pc.

q1 < q2

−q1 > −q2
n+ 1− q1 > n+ 1− q2
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Therefore, all the relations in a permutation are flipped by taking comple-
ments. Since the set of relations is flipped in both qc and pc, it follows that
Sn(q) = Sn(qc).

It is also natural to question the Wilf-equivalence of inverse permutations
and patterns. We define inverses with the normal combinatorial definition.

Theorem 2.1 For all positive integer n and patterns q,

Sn(q) = Sn(q−1)

Theorem 2.2 Suppose k is a positive integer, and p is a permutation of
[k + 1, . . . , k + r]. It follows that

Sn(12 . . . kp) = Sn(k(k − 1) . . . 1p)

By taking various reverses, complements, and applying theorems (2.1)
and (2.2), we can limit ourselves to only 4 permutations of interest,

1234, 1324, 1342, 2413.

However, there is one more Wilf-equivalence among this set of permutations.

Theorem 2.3 For all positive integer n,

Sn(1342) = Sn(2413).

Thus, we can reduce the study of all 24 explicit q-patterns of length 4 to
the study of only three non-Wilf-equivalent patterns,

1234, 1342, 1324.

There are many fascinating properties about these three patterns. Some of
the most interesting include (surprising) closed forms regarding Sn(q), where
q is one of the three q-patterns of interest.

Theorem 2.4 For all n, we find that

Sn(1342) = (−1)n−1
7n2 − 3n− 2

2
+3

n∑
i=2

(−1)n−i · 2i+1 · (2i− 4)!

i!(i− 2)!
·
(
n− i+ 2

2

)
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This may be proven using generating functions by deriving the rational form
of the ordinary generating function for Sn(1342, x). The explicit formula is
the first of its kind for a length greater than 3, which are counted by the
Catalan numbers Cn. A similar exact formula exists for Sn(1234).

Theorem 2.5 For all n,

Sn(1234) =
1

(n+ 1)2(n+ 2)

n∑
k=0

(
2k

k

)(
n+ 1

k + 1

)(
n+ 2

k + 1

)
No equivalent exact enumeration exists for Sn(1324). There does, how-

ever, exist a recurrence derived by Marinov[1].

Other interesting facts about the q-patterns of length 4 when consid-
ered in terms of inequalities. Upon viewing successive values of Sn(1234)
and Sn(1324), it is evident that Sn(1234) is generally less than or equal to
Sn(1324).

Proposition 2.2 For all n,

Sn(1234) < Sn(1324)

Proof. To prove this argument, we will need to classify permutations.

Definition 2.3 Permutations p and q are in the same class if the left ot
right minima and right to left maxima of both p and q are the same and are
in the same positions.

Example: 51234 and 51324 are in the same class.

We first prove that each class contains only one 1234 avoiding permuta-
tion. By fixing the positions of minima and maxima, placing elements into
the remaining positions creates an avoiding permutation. If this contained a
1234 subsequence, two entries would necessarily be identical, so this cannot
occur. Then, every class must necessarily contain at least one 1234 avoiding
permutation. In fact, this is the only 1234 avoiding permutation. If any
two entries are placed in increasing order (i.e. changing from the original
decreasing arrangement), they would necessarily form a 1234 pattern.
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We now prove that each class contains at least one 1324 avoiding per-
mutation. Finding a pattern of this sort involves choosing a pattern so that
its first element is a left to right minimum and the fourth a right to left
maximum. Therefore, proving that a permutation avoids 1324 is equivalent
to showing that it doesn’t contain 1324 with a local minimum as the first
element and a local maximum as the last element.

Any 1324 containing permutation will contain a pattern of this type. By
interchanging the second and third elements of this pattern, we can create
a new permutation within the same class without changing the minima or
maxima. After repeating this process for at most

(
n
2

)
times, the resulting

permutation will not have a 1324 pattern. Thus, every class contains at least
one of these permutations. It remains to prove that for all n ≥ 7, classes that
contain more than one 1324 avoiding permutation exist. The class 3−1−7−5
for n = 7 will contain two permutations that contain 1324; we can maintain
this structure by simply adding newer elements for n > 7 to the beginning or
end of the permutation. The new class will obtain two 1324 avoiding permu-
tations. Thus, since each class contains at most 1 permutation that avoids
1234, and each class contains at least one permutation that avoids 1324, we
may conclude that for all n ≥ 7,

Sn(1234) < Sn(1324).

3 Stanley Wilf Conjecture

Here, we show a proof for the Stanley-Wilf Conjecture[2]. Namely:
Theorem 3.1 Recall that Sn(σ) is the set of permutations of [n] that

avoid the pattern σ. Then, there exists some c = c(σ) such that Sn(σ) ≤ cn

for every n.
In order to prove the conjecture, we begin with a proof of the Furedi -

Hajnal Conjecture. We then show that this theorem necessarily implies the
result of the Stanley - Wilf Conjecture,

3.1 Furedi - Hajnal Conjecture

Definition 3.2 Let A and P be matrices where every entry is either a 0 or
a 1. We say that A contains P if P is a submatrix of A. That is, we are
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allowed to delete rows and columns of A to form P , but we are not allowed
to permute them in any way. If A does not contain P , we say that A avoids
P .

Definition 3.3 Define F (n, P ) to be the maximum number of 1 entries
in a nxn matrix avoiding P .

Theorem 3.4 F (n, P ) = O(n).
The crux idea is to formulate a recurrence relation. We assume P to be

a kxk permutation matrix and A to be a nxn matrix with F (n, P ) 1-entries
that avoid P . Furthermore, we assume that k2 divides n.

Let Si,j be a square submatrix of A consisting of entries ai′,j′ , where
i′ ∈ [k2(i − 1), k2i], and j′ ∈ [k2(j − 1), k2(j)]. We further define B with
entries bi,j to be the submatrix of A which bi,j = 0 whenever all the entries
of Si,j are 0.

A block is wide whenever it has 1-entries in at least k different columns,
and it is tall whenever it has 1-entries in at least k different rows.

Lemma 3.5 B avoids P.
Clearly, if B didn’t avoid P , then the block of k 1-entries of B matches with
any arbitrary 1-entry from the corresponding block of A, meaning that A
doesn’t avoid P , which is a contradiction.

Lemma 3.6 The number of wide blocks of the form Cj = {Si,j|i =

1, 2, . . . , n/k2} < k
(
k2

k

)
.

We can just formulate a scheme that over counts the number of wide
blocks. By pigeonhole principle, there exists k blocks in Cj which have a
1-entry in the same column. Now, we can just pick k of the k2 corresponding
1-entries in the columns. However, these entries of A do not avoid P , so
|Cj| < k

(
k2

k

)
. Similarly, we have:

Lemma 3.7 The number of wide blocks of the form Ri = {Si,j|j =

1, 2, . . . , n/k2} < k
(
k2

k

)
.

Lemma 3.8 f(n, P ) ≤ (k − 1)2f(n/k2, P ) + 2k3
(
k2

k

)
n.

Let |X1| be the set of tall blocks, |X2 the set of wide blocks, and |X3|
the set of blocks that are neither wide nor tall. Clearly, any wide or tall
block contains at most k4 1-entries. A block in |X3| contains at most (k− 1)
1-entries. So, our recursion is f(n, P ) < k4|X1|+ (k − 1)2|X3|, and applying
Lemma 3.7, and 3.8, we have our result.

Proof of Theorem 3.4 We can prove a slightly stronger statement.
That is, we show that f(n, P ) ≤ 2k4

(
k2

k

)
n = O(n).

This can be found by strong induction and an application of Lemma 3.8.
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3.2 Deduction of Stanley-Wilf

Definition 3.9 Let Tn(P ) be the set of nxn matrices that avoid P.
An important corollary of this statement is that Sn(σ) ≤ |Tn(P )|. Note

that a permutation σ avoids another permutation π if and only if the per-
mutation matrix σ avoids the permutation matrix π. Now, suppose P is a
permutation matrix corresponding to some σ, then Tn(P ) contains the per-
mutation matrices of all permutations that avoid σ, so Sn(σ) ≤ |Tn(P )|.

At this point, we can try and find a bound of Tn(P ), which also places a
bound on Sn(σ).

Theorem 3.10 For any permutation matrix P , there exists a constant
c = cP such that |Tn(P )| ≤ cn.

Proof of Theorem 3.10
Just note |T2n(P )| ≤ |Tn(P )|15f(n,P ). We can find this by partitioning

T2n into 2x2 blocks, and then setting that 2x2 block to 0 if all the entries
are 0, and setting it equal to 1 otherwise. From Lemma 3.5, this new block
B also avoids P. Any matrix B is a mapping from at most 15w matrices of
T2n(P ), where w is the number of 1-entries in B. Since w < f(n, P ), the
result follows.
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