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Abstract
In this paper, we give a brief overview of linear programming. We

discuss the theory behind linear programming and analyse algorithms
that solve the linear programming problem. We also look at open
problems in linear programming.

1 Introduction and Examples

First, we will begin by defining linear programming.

Definition 1. Linear programming is an optimization tool to maximize or
minimize a linear function in several variables under a set of linear con-
straints.

More formally, we must find a vector x ≥ 0 which maximizes yTx subject
to Ax ≤ b where A is a matrix, and y is a vector. The function f(x) = yTx is
known as the objective function. We will look at a simple example to better
understand linear programming problems.

Example 1. Maximize the function f(x, y) = 5x − 2y subject to the con-
straints, 0 ≤ x ≤ 6, 0 ≤ y ≤ 6, y − x ≤ 0, and 3x− 2y ≤ 6.

In order to solve this problem, we would have to use algorithms discussed

later in the article. But from this example, we can see that y =

[
3
−2

]
, the

objective function is f(x, y) = 5x − 2y, A =


1 0
0 1
−1 1
3 −2

, and b =


6
6
0
6

.

For this particular example, the optimal x vector would be

[
6
6

]
. Now let
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us move on to some of the theory behind linear programming and a simple
yet powerful method to solving linear programming problems known as the
graphical method.

2 Theory

First, we will define terms to make discussion of linear programming theory
easier.

Definition 2. A hyperplane is the graph of the solution set of a linear equa-
tion.

Definition 3. A halfspace is the graph of the solution set of a linear inequal-
ity.

From this, we can see that the solution set of a system of linear inequalities
is the intersection of all halfspaces that represent these inequalities. We also
have a name for the graph of this solution set.

Definition 4. A polytope is a region in Rn bounded by finitely many hyper-
planes.

And this means that the solution set of a system of linear inequalities is
a polytope.

Definition 5. The facets of a polytope are defined as the intersection of the
hyperplanes bounding the polytope.

Examples of facets are vertices which are 0-dimensional facets, and edges
which are 1-dimensional facets.

Definition 6. A region S in Rn is convex, if for any a, b ∈ S, the line
segment between a and b is contained in S.

Convexity will be used a lot throughout the article because of the follow-
ing lemma.

Lemma 1. The intersection of halfspaces is convex.
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Proof. First, let us denote the intersection of halfspaces to be S. This region
will be defined by Ax ≤ c. For any two vectors a and b, we must find a
way to represent all points on the line segment connecting a and b. It is not
hard to see that we can represent each point as a function of t ∈ [0, 1], as
a + t ∗ (b − a) = a(1 − t) + b ∗ t. This means that A(a(t − 1) + t ∗ b) =
(1− t)∗A∗ (a)+(t)∗A∗ b ≤ t∗ c+(1− t)∗ c = c which means that all points
on the line connecting a and b are part of S, which concludes the proof.

Since the solution set for a system of linear inequalities is an intersection
of halfspaces, using our lemma 1 we get the following theorem.

Theorem 1. The region that represents the solution to a set of linear in-
equalities is a convex polytope.

Now we will end on the graphical method for solving linear programming
problems.

Theorem 2. The values that maximize a linear objective function will always
be located on the vertices of the solution set of the linear constraints.

Proof. First, we must realize that if we have a line and a linear function,
the minimum and maximum values of the function will take place on the
endpoints of that line. The reason for this is the linear function will keep
increasing or keep decreasing when you go from one point to another, so
to decrease the value of the function as much as possible you must go to
one endpoint, and to increase the value of the function as much as possible
you must go to the other endpoint. Now take any point in our solution set
and draw a line through it. Without loss of generality if we are maximizing
the function, then one of the endpoints of the line will have make the linear
function have a greater value. Next, we take the lowest dimensional facet
that the endpoint is on, and we draw a line through the endpoint such that
the line is contained in the facet. The endpoint of that line when plugged
into the function will have at least as great of a value. We can keep doing
this until we get to a 0-dimensional facet, or a vertex. This means that
the vertices will generate values of the function that are at least as large as
values generated by other points, and thus one of the vertices will maximize
the linear function.

And using this theorem, we find the graphical method to solving linear
programming problems which involves plugging in all vertices of the solution
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set of our constraints into the linear function, and seeing which one maximizes
or minimizes the function. Now we will look at algorithms trying to solve
the linear programming problem.

3 Algorithms

First, we will go over the classical simplex algorithm which goes through
vertices of our constraint solution set region, and constantly improves upon
its optimal solution to get the real optimal solution.

Theorem 3. An algorithm that solves the linear programming problem is
known as the simplex algorithm, and its steps are as follows:

1. Write the objective function as a variable, and bring all variables to
one side of the objective function equation.

2. Convert all linear inequalities into equations using slack variables.

3. Construct a matrix that represents the system of linear equations and
put the objective function with the objective function equation in the
bottom row.

4. Find the pivot column by seeing which coefficient in the bottom row is
the smallest, and the column of that row is the pivot column.

5. Calculate coefficients of each row. The smallest coefficient will identify
the row we will work with. The intersection of this row and the column
in step 4 is known as the pivot element.

6. Use gaussian elimination to make all other entries in this column 0.

7. If there are negative entries in the bottom row, repeat from step 4.
Otherwise, we are finished.

8. To find our answers, take all columns that don’t consist of a 1 and all
other entries to be 0’s, and set their corresponding variables to 0. After
this, solve the system of equation to get optimal values of all variables.

We will not prove that this algorithm works, we will only provide brief
explanation. For step 4, the reason we choose the most negative entry is
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because it has the largest coefficient in the objective function, and using it as
a pivot variable will increase the objective function the quickest. The reason
we choose the smallest quotient in step 5 is because the quotient identifies the
constraint on our pivot variable, and using the row of the smallest quotient
guarantees we do not violate our constraints. Finally, we are finished when
there are no more negative entries in the bottom row, and this happens
because the RHS of the bottom row will be as large as possible because
all variables are positive, and this will identify the maximum value of the
objective function by setting other variables to 0. As far as the runtime
analysis, the algorithm has exponential runtime. This is because it visits 2n

vertices in the worst case scenario. However in practice, it runs in roughly
polynomial time. There are only certain bad inputs that cause it to go
through each vertex.
Now we will briefly go over interior point method. Interior point algorithms
run in polynomial time and traverse the interior of the solution set region of
the constraints, rather than through the vertices like the simplex algorithm.
They can be used to solve nonconvex and convex optimization problems.
However the theory behind the algorithms and the algorithms themselves
are require background knowledge that is too deep for this article. This
concludes our study of linear programming algorithms.

4 Applications

In this section we will discuss applications of linear programming and prob-
lems related to linear programming. First, we will discuss the following
question.

Question 1. Can adjusting pivot rules create simplex variants that are poly-
nomial time?

This question arises from the disproven Hirsch conjecture which discusses
the diameter of polytopes in Euclidean space. So far, there has been no an-
swer to this question and it remains an open problem.
Next we move onto the field of integer linear programming. Integer linear
programming problems are where all unknown variables are integers. This
problem is classified as NP-hard, and there are algorithms that have solved
this problem like the Cutting-Plane Method and the Branch and Bound
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Method. We will not go further into these algorithms because they are be-
yond the scope of this book.
Finally, we will be discussing flow networks. In flow network problems, we
want to maximize the flow through our sink node and this can be formulated
as maximizing a linear objective function. Because of conservation of flow,
we will also have a set of linear constraints. And so we can use linear pro-
gramming algorithms to solve maximum flow problems. This concludes our
study of linear programming.
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