
AN INTRODUCTION TO TOPOLOGICAL COMBINATORICS

NEIL MAKUR

Abstract. We use Sperner’s Lemma, Brouwer’s Fixed Point Theorem, and The Borsuk-
Ulam Theorem to prove combinatorial results.

1. Topological Theorems

1.1. Sperner’s Lemma. The main object of Sperner’s Lemma is a simplex, which is the
analog of triangles in multiple dimensions. An n-simplex can be described as

∆n =

{
(x1, x2, . . . , xn+1) ∈ Rn+1 :

n+1∑
i=1

xi = 1, xi > 0

}
.

The vertices of this simplex are (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1). Note also that this
simplex can be embedded in Rn.

The 2-simplex as we described, and the 2-simplex embedded in R2 are shown in Figure 1.
A 3-simplex embedded in R3 is shown in Figure 2

An n-simplex has n+ 1 faces, each of which is an n− 1-simplex.
We are now ready to state Sperner’s Lemma.

Theorem 1.1 (Sperner’s Lemma). Suppose that we have an n-dimensional polytope divided
into n-simplices. Color each of the vertices of the smaller simplices one of n+1 colors, labeled
1, 2, . . . , n + 1. Call a face of a smaller n-simplex (which is an n − 1-simplex) semi-full if
its vertices are colored 1, 2, . . . , n. Call a smaller n-simplex full if its vertices are colored
1, 2, . . . , n + 1. If NSF denotes the number of semi-full faces on the exterior of the polygon
and NF denotes the number of full simplices, then NSF ≡ NF (mod 2).

One example of Sperner’s Lemma is demonstrated in 2 dimensions in Figure 3, where the
colors 1 2 and 3 correspond to blue red and green respectively. Note that 7 ≡ 5 (mod 2).

We prove this in 2 dimensions, and generalize to n dimensions from there.

Proof in 2 Dimensions. Place a dot on either side of each semi-full edge, as in Figure 4.
We count the number of dots on the inside of the polygon. Each exterior semi-full edge
contributes 1 dot, and each interior semi-full edge contributes 2 dots. Thus, if D denotes
the number of dots on the interior of the polygon, NSF ≡ D (mod 2). Now, suppose that
we have a triangle. If it is a full triangle, there is exactly 1 dot inside of it. If it is not, then
there are 2 or 0 dots inside of it. Thus, NF ≡ D (mod 2). Hence, NSF ≡ NF (mod 2). �

It is now clear how to prove this in n dimensions.

Proof of Theorem 1.1. Place a dot on either side of each semi-full face. We count the number
of dots on the inside of the polytope. Each exterior semi-full face contributes 1 dot, and
each interior semi-full face contributes 2 dots. Thus, if D denotes the number of dots on the
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Figure 1. ∆2 and a 2-simplex embedded in R2

Figure 2. A 3-simplex embedded in R3

Figure 3. A case of Sperner’s Lemma in 2 dimensions.

interior of the polytope, NSF ≡ D (mod 2). Now, suppose that we have a simplex. If it is a
full simplex, there is exactly 1 dot inside of it. If it is not, then there are 2 or 0 dots inside
of it. Thus, NF ≡ D (mod 2). Hence, NSF ≡ NF (mod 2). �
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Figure 4

1.2. The Brouwer Fixed Point Theorem. Recall that compact sets are sets that are
bounded and closed (in Rn). Recall also that all sequences in a compact set contain a
subsequence converging to an element of the set.

Proposition 1.2. Let K ⊆ Rn be compact, and let x1, x2, . . . be a sequence of points in K.
Then there exists a subsequence xa1 , xa2 , . . . converging to a point in K.

Proof. Since K is bounded, it has finite volume. Subdivide it into 2 pieces of smaller volume.
By the pigeonhole principle, at least one of these parts must contain infinitely many of the
xi’s. Pick xa1 in this part. Now, divide this part again in half. Once again, one of these
must contain infinitely many xi’s. Pick xa2 in this such that a2 > a1. Continuing this way,
we get a sequence xa1 , xa2 , . . . that eventually ends up in arbitrarily small spaces. Thus, it
converges to some point x ∈ Rn. As K is closed, x ∈ K. �

Theorem 1.3 (Brouwer’s Fixed Point Theorem). Let K ⊆ Rn be convex and compact, and
let f : K → K be continuous. Then there is some k ∈ K such that f(k) = k.

Proof. We show that it suffices to check this for simplices. Let K ⊆ Rn be convex and
compact, and letDn denote the embedding of ∆n into Rn. We can easily imagine a continuous
bijective function φ : K → Dn. If f : K → K has a fixed point at k, then φ ◦ f ◦φ−1 : Dn →
Dn has a fixed point at φ(k). Conversely, if φ ◦ f ◦ φ−1 has a fixed point at s, then f has
a fixed point at φ−1(s). Thus, we only show this for simplices. Now, as topological objects,
Dn and ∆n are the same. Thus, we prove this for ∆n. Let f : ∆n → ∆n be continuous. For
P ∈ ∆n,

n+1∑
i=1

Pi = 1 =
n+1∑
i=1

f(P )i.

In particular, for every P ∈ ∆n, there is 1 ≤ j ≤ n + 1 such that Pj ≥ f(P )j, as we would
otherwise have

1 =
n+1∑
i=1

Pi <

n+1∑
i=1

f(P )i = 1.

If P happens to be on a k-dimensional subface (i.e. a face of a face of a face, and so on), we
can choose j from among the k+ 1 nonzero coordinates. Suppose that we have a division of
∆n into simplices, we color each vertex P the jth color, where Pj ≥ f(P )j. We may make
this into a coloring satisfying the following properties.
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• Each vertex is colored differently.
• If a vertex is on a k-dimensional simplex, it is colored with one of the colors from the

vertices of that simplex.

We claim that such a coloring has an odd number of semi-full faces. We prove this by
induction on n. If n = 2, let A and B be the vertices colored 1 and 2 respectively. Then
all exterior semi-full edges must fall on AB. If there are no vertices of the triangulation on
AB, there are clearly an odd number of exterior semi-full edges. Suppose that the vertices
A = A0, A1, . . . , A` = B are on the edge. We go from A to B along AB, and keep track of
the number of switches of color. As A and B are colored differently, this must happen an odd
number of times. Now, suppose that this statement is true for n−1, and let A1, A2, . . . , An be
the vertices of ∆n colored 1, 2, . . . , n, so that all exterior semi-full faces occur on A1A2 . . . An.
By our requirements of coloring, A1A2 . . . An is a n−1 simplex with the appropriate coloring.
Thus, there are an odd number of (n− 1)-dimensional exterior semi-full faces. Hence, there
are an odd number of (n− 1)-dimensional full simplices. (n− 1)-dimensional full simplices
are n-dimensional semi-full faces. Thus, there exists an odd number of exterior semi-full
faces.

Thus, our subdivision has an odd number of exterior semi-full faces, so it has an odd
number of full simplices. In particular, there is at least one full simplex.

Let L1, L2, . . . be finer and finer subdivisions of ∆n into simplices, colored as described
above. Pick a full simplex Ti of Li, and pick xi ∈ Ti. Then the sequence x1, x2, . . . has a
convergent subsequence xa1 , xa2 , . . .. Let x be the limit of this sequence. We claim that x is
a fixed point.

Let Dk
i denote the vertex colored i of Tak . Then, limk→∞D

k
i = x for all i. Now, f is

continuous, so

f(x)j = f
(

lim
k→∞

Dk
j

)
j

= lim
k→∞

f(Dk
j )j ≤ lim

k→∞
(Dk

j )j = xj.

We must have equality, so x is a fixed point. �

1.3. The Borsuk-Ulam Theorem.

Definition 1.4. The n-dimensional sphere Sn is the set
{
x ∈ Rn+1 : |x| = 1

}
, and the

n-dimensional ball Bn is the set {
x ∈ Rn : |x| ≤ 1

}
.

The boundary of Bn is in fact Sn−1, not Sn, as Sn is an n-dimensional object embedded
in n+ 1 dimensions, rather than an (n− 1)-dimensional object embedded in n dimensions.

Given x = (x1, x2, . . . , xn) ∈ Rn, we write −x = (−x1,−x2, . . . ,−xn). As Sn ⊆ Rn+1 and
Bn ⊆ Rn, this notation also applies to elements of these sets.

Theorem 1.5 (Borsuk-Ulam). Suppose that f : Sn → Rn is continuous. Then there is some
x ∈ Sn with f(x) = f(−x).

As with Sperner’s Lemma, we prove this in 2 dimensions first, and it becomes clear how
to generalize this.

Proof in 2 Dimensions. Suppose that there is some function f contrary to the Borsuk-Ulam

Theorem. Let f̂ : S2 → R2 be given by f̂(x) = f(x) − f(−x). We then have that f̂ : S2 →
R2 \ {(0, 0)}. Consider the equator α of S2. We claim that f̂(α) cannot encircle the origin.
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If we slide α up to a pole, we get a nonzero point. As f̂ is continuous, if f̂(α) encircled the
origin, it would cross the origin at some point. Thus, it does not encircle the origin. Now,

note that f̂(−x) = −f̂(x). If we split α in half, the first half must wind around the origin
some m + 0.5 times, for m ∈ Z. The second half must similarly wide around the origin

m + 0.5 times. Thus, f̂(α) winds around the origin 2m + 1 times. In particular, it winds
around the origin at least once, so it does encircle the origin, a contradiction. �

It is now clear how to generalize this.

Proof of Theorem 1.5. Suppose that the theorem is false for some f , and let f̂(x) = f(x)−
f(−x). Consider the equator Sn−1, which we call α. Then f̂(α) cannot encircle the origin, as

we may slide the equator to a pole (and so f̂(α) will go to a single nonzero point). However,

f̂(−x) = −f̂(x), so f̂(α) must contain the origin. �

We have a name for functions satisfying f(−x) = −f(x).

Definition 1.6. A function f : Rn → Rm is said to be antipodal if f(−x) = −f(x).

1.4. Equivalent Statements to the Borsuk-Ulam Theorem.

Theorem 1.7. The following are equivalent.

(1) For every continuous function f : Sn → Rn, there is some x ∈ Sn with f(x) = f(−x).
(2) For every continuous antipodal function f : Sn → Rn, there is some x ∈ Sn with

f(x) = 0.
(3) There does not exist a continuous, antipodal mapping f : Sn → Sn−1.
(4) There does not exist a continuous mapping f : Bn → Sn−1 that is antipodal on the

boundary of Bn.

Proof. We show that (1)⇔ (2)⇔ (3)⇔ (4).

(1)⇒ (2) Suppose that f : Sn → Rn is continuous and antipodal. Then there is some x ∈ Sn

with f(x) = f(−x) = −f(x). Thus, f(x) = 0.

(2)⇒ (1) Suppose f : Sn → Rn is continuous. Then f̂(x) = f(x)−f(−x) is antipodal, so there
is some x ∈ Sn with f(x)− f(−x) = 0. Thus, f(x) = f(−x).

(2)⇒ (3) Suppose that there exists a continuous antipodal mapping f : Sn → Sn−1. Then
there exists a continuous antipodal mapping to f : Sn → Rn \ {0}, a contradiction.

(3)⇒ (2) Suppose that f : Sn → Rn is continuous and antipodal, and is nonzero everywhere.

Then, f̂(x) = f(x)
|f(x)| is a continuous antipodal mapping from Sn to Sn−1.

(3)⇒ (4) Suppose that there is a continuous function f : Bn → Sn−1 that is antipodal on the
boundary of Bn. Define π : Bn → Sn by

(x1, x2, . . . , xn) 7→
(
x1, x2, . . . , xn,

√
1− x21 − x22 − · · · − x2n

)
.

Notice that π is continuous and, restricting its image to the upper hemisphere of Sn,
bijective. Write f = g ◦ π−1. Then, f is continuous and antipodal on the equator of
Sn. We can extend f to a continuous antipodal function from Sn to Sn−1.

(4)⇒ (3) Suppose that there is a continuous antipodal mapping f : Sn → Sn−1. Define g =
f ◦ π. Then g : Bn → Sn−1 is continuous and antipodal on the boundary of Bn.

�

Note that (1) is the Borsuk-Ulam Theorem.
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1.5. Topological Consequences of the Borsuk-Ulam Theorem. We provide an alter-
nate proof of the Brouwer Fixed Point Theorem, using the Borsuk-Ulam Theorem.

Alternate Proof of Theorem 1.3. For the exact reason that it suffices to show this theorem
for simplices, it suffices to show this theorem for Bn. Suppose that f : Bn → Bn has no fixed
points. We construct g : Bn → Sn−1 by choosing g(x) to be the intersection of Sn−1 and the
ray from f(x) to x. This is well defined and the identity on the boundary of Bn. In particular,
it is antipodal on the boundary. It is clearly possible to express g(x) in terms of continuous
functions and f(x), which is continuous, so g(x) is continuous, a contradiction. �

We can also prove a theorem regarding coverings of Sn.

Theorem 1.8 (Lyusternik-Shnirel’man). Suppose that U1, U2, . . . , Un+1 are sets covering Sn.
Suppose further that Ui is either open or closed for 1 ≤ i ≤ n. Then one of the Ui contains
a pair of antipodal points.

Proof. Suppose that none of the Ui contains a pair of antipodal points. Define

δ(x, Ui) = inf
u∈Ui

|x− u|

to be the distance from x to Ui. Define a map from Sn to Rn by

x 7→
(
δ(x, U1), δ(x, U2), . . . , δ(x, Un)

)
.

This is continuous, so there is some x with f(x) = f(−x). At least one of x and −x is not in
Un+1, by assumption. Suppose without loss of generality that this is x. Choose i such that
x ∈ Ui. Then, δ(x, Ui) = 0 = δ(−x, Ui).

Suppose that Ui is closed. Then, for ε > 0, there is some uε ∈ Ui with |uε − (−x)| < ε.
Then, u1, u1/2, u1/3, . . . is a sequence converging to −x in Ui, so −x ∈ Ui, a contradiction.

Suppose that Ui is open. By the previous argument, we have that −x ∈ Ui. Now, by
assumption, Ui does not contain a pair of antipodal points, so Ui ⊆ Sn \−Ui. The latter set
is closed, so Ui ⊆ Sn \ −Ui. Thus, −x ∈ Ui ⊆ Sn \ −Ui, so that −x 6∈ −Ui. Thus, x 6∈ Ui, a
contradiction. �

2. Basic Combinatorial Results

2.1. Tucker’s Lemma.

Theorem 2.1 (Tucker’s Lemma). Let T be a subdivision of Bn into simplices that is
antipodally symmetric on the boundary. Write V (T ) for the set of vertices of T . Let
χ : V (T )→ {±1,±2, . . . ,±n} be a coloring satisfying χ(−v) = −χ(v) for v on the boundary
of Bn. Then there exists an edge of T which has vertices labeled by opposite numbers.

We reformulate this to make it easier to prove. We write ∆ for a collection of simplices
with vertices V (∆) = {±1,±2, . . . ,±n}. We say F ⊆ V (∆) forms a simplex if there is no
1 ≤ i ≤ n with i,−i ∈ F . We now have the following equivalent theorem to Tucker’s Lemma.

Theorem 2.2. Let T be a subdivision of Bn into simplices that is antipodally symmetric on
the boundary. Then, there is no map χ : V (T ) → V (∆) that is antipodal on the boundary
and maps simplices of T to simplices of ∆.
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Proof. Suppose that there is such a map χ : V (T ) → V (∆). We describe how to con-
struct a continuous map from Bn to Sn−1 that is antipodal on the boundary. Let x ∈
Bn, and let the vertices of an n-simplex containing x (there may be more than one) be
A1, A2, . . . , An+1. Now, there are unique a1, . . . , an+1 with

∑n+1
i=1 ai = 1 and x =

∑n+1
i=1 aiAi.

Let π : {±1,±2, . . . ,±n} → Rn be given by π(1) = (1, 0, . . . , 0), π(−1) = (−1, 0, . . . , 0),
π(2) = (0, 1, . . . , 0), π(−2) = (0,−2, . . . , 0), and so on. Then, the map

x 7→
n+1∑
i=1

ai(π ◦ χ)(Ai)

is well defined and continuous. Further, it is antipodal on the boundary. �

2.2. Hex. The game of Hex is played between two players, red and green. Each of them
takes turns coloring one hexagon in a grid. An example of a possible grid is shown below.
After all hexagons are filled, red wins if there is a red path connecting the top and bottom,
and green wins of there is a green path connecting the left and right.

We show that this game cannot end in a draw. We first change the hexagons into vertices
and the boundaries between hexagons to edges. We then have to color the vertices.

Suppose that there is a coloring that translates to a drawn hex game. Write R0 for the
red vertices reached from the bottom by a red path, R1 for the remaining vertices, G0 for
the green vertices reached from the left by a green path, and G1 for the remaining green
vertices. Define e1 to be a rightward shift by 1 vertex parallel to the top and bottom sides,
and e2 to be an upward shift by 1 vertex parallel to the left and right sides. Define

f(v) =


v + e1 v ∈ G0

v − e1 v ∈ G1

v + e2 v ∈ R0

v − e2 v ∈ R1

.

No vertex goes off of the board, as we assumed that the game is drawn. Suppose that we
have a triangle with vertices v1, v2, v3. Then, each x in the triangle can be written uniquely
as x =

∑
xivi, where xi ≥ 0 and

∑
xi = 1. We can then define f(x) =

∑
xif(vi), to get

a continuous map. Thus, there is a fixed point x =
∑
xivi, for some triangle with vertices

v1, v2, v3. Let εi ∈ {±e1,±e2} so that f(vi) = vi + εi. We thus have that
∑
xiεi = 0. Now,

as 0 is not a fixed point of f , x 6= 0, so some xi > 0, say x1. Then, at least one of ε2, ε3
must be −ε1. However, this is a contradiction, as elements of G0 (R0) and G1 (R1) cannot
be connected, and so cannot be part of the same triangle.

2.3. Necklace Division. Suppose that two thieves steal a necklace with n different types of
gems on a string, with an even number of each type of gem. Suppose further that they wish
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to cut up the necklace and divide the pieces so that each person receives an equal amount
of each gem.

Theorem 2.3. Suppose that a necklace with n different types of gems on a string is to be split
equally between two people by cutting it into separate pieces and distributing them. Then,
this can be done in n cuts.

Proof. Let us allow ourselves to cut gems into pieces. Scale the necklace to lie in [0, 1], and
cut it into intervals of lengths c1, c2, . . . , cn+1. We define

ai =

{√
ci ci is given to person 1

−√ci ci is given to person 2
.

Then, (a1, a2, . . . , an+1) ∈ Sn. Let bi be the number of gems of type i that the first person
gets. We define f : Sn → Rn by

(a1, a2, . . . , an+1) 7→ (b1, b2, . . . , bn).

This is clearly continuous, so we may apply the Borsuk-Ulam Theorem to find x ∈ Sn with
f(x) = f(−x). Now, swapping the signs of the ai swaps the amounts that the two people
have, so we have a solution if we allow ourselves to cut gems.

Suppose that our solution cuts some gem of type i. Then, it must cut at least one more
gem of type i. Let a be the total number of gems that the first person receives from the cut
up gems, and let b be the total number of gems that the second person receives from the cut
up gems. Then a, b ∈ N, as each person gets a whole number of gems. We may move the
cuts to give person 1 a whole gems, and to give person 2 b whole gems. We may do this for
all i to obtain a division that does not cut gems. �

3. Kneser’s Conjecture

One of the first theorems in combinatorics proved using topological methods is Kneser’s
Conjecture. To discuss this, we need to review some graph theory. Rather than Lovász’s
original proof, we provide a simpler topological proof by Greene.

3.1. Graph Theory. Recall that a graph is a pair G = (V,E) with E ⊆
(
V
2

)
.

Definition 3.1. Given a graph G = (V,E), its chromatic number χ(G) is the smallest
number k ∈ N such that there exists a function c : V → [k] satisfying c(v1) 6= c(v2) when
{v1, v2} ∈ E.

Definition 3.2. Given positive integers n, k with n ≥ 2k, the Kneser graph is KG(n, k),
which has

V =

(
[n]

k

)
E =

{
{e, f} : e, f ∈ V, e ∩ f = ∅

}
.

We have that KG(n, 1) is the complete graph on n vertices Kn. We also have that
KG(2k, k) consists of

(
2k
k

)
/2 pairs of vertices. The easiest graph not of these two forms

is KG(5, 2), which is shown in Figure 5.
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{1, 2}

{4, 5}

{2, 3} {1, 5}

{3, 4}

{3, 5}

{1, 3}

{1, 4}
{2, 4}

{2, 5}

Figure 5. K(5, 2)

3.2. Kneser’s Conjecture. Kneser’s Conjecture investigates the chromatic number of the
Kneser graph. More precisely, we have the following.

Theorem 3.3. The chromatic number of the Kneser graph is χ(KG(n, k)) = n− 2k + 2.

Proof. We first provide a coloring of KG(n, k) using n − 2k + 2 colors. Define c :
(
[n]
k

)
→

[n− 2k + 2] by
u 7→ min

{
min{x : x ∈ u}, n− 2k + 2

}
.

We show that two vertices receiving the same color are not connected. Suppose that u, v ∈(
[n]
k

)
have c(u) = c(v) = c. If c < n − 2k + 2, then c ∈ u ∩ v. If c = n − 2k + 2, then

u, v ⊆ {n − 2k + 2, . . . , n}. However, this contains 2k − 1 elements, so u and v cannot be
disjoint. Thus, χ(KG(n, k)) ≤ n− 2k + 2.

Now, suppose that χ(KG(n, k)) < n − 2k + 2. Let c :
(
[n]
k

)
→ [n − 2k + 1] be a coloring.

Write d = n− 2k + 1. Choose a set X of n vectors on Sd such that any d+ 1 of the vectors
are linearly independent. Identify these vectors with [n]. Then, each vertex of KG(n, k)
corresponds to a set of k vectors on the sphere. Given x ∈ Sd, write

H(x) = {y ∈ Sd : x · y > 0}
for the open hemisphere with pole x. For 1 ≤ i ≤ d, let

Ui =
{
x ∈ Sd : ∃S ⊆ X, |S| = k, c(S) = i, S ⊆ H(x)

}
,

which is clearly open. Let A = Sd \ (U1∪ · · · ∪Ud). We show that none of these sets contains
a pair of antipodal points, obtaining a contradiction.

Suppose that x ∈ Ui, so that H(x) contains a subset of X of order k colored with color i.
H(x) and H(−x) are disjoint, so H(−x) cannot contain a subset of X of order k colored i.

If it did, this would give u, v ∈
(
[n]
k

)
with u ∩ v = ∅ and c(u) = c(v) = i. Thus, −x 6∈ Ui.

Now, suppose that ±x ∈ A. By definition, neither one of H(x) and H(−x) contains a
subset of X of order k. Thus, there are at least n − 2(k − 1) = n − 2k + 2 = d + 1 points
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of X lying on the equator (with respect to x) {y ∈ S2 : x · y = 0}. This is contained in a
subspace of dimension d, which contradicts the fact that any d+ 1 vectors of X are linearly
independent. �

4. Monsky’s Theorem

4.1. Dividing Squares. Suppose that we wish to divide a square into n triangles of equal
area. If n = 2k, this is simple. We divide the square into k rectangles, and cut each rectangle
in half, as below.

However, when n is odd, this problem is not as clear. It turns out that this is impossible.
To do this, we need to discuss norms.

4.2. Norms. Consider the absolute value from R to R, which has

|x| =

{
x x ≥ 0

−x x < 0
.

Let us look at the most important properties of this function. Firstly, |x| ≥ 0 for all x, and
|x| = 0 if and only if x = 0. We also have that |xy| = |x| · |y| and |x+ y| ≤ |x|+ |y|.

Definition 4.1. A norm on R is a function | · | : R→ R≥0 such that

• |x| = 0 if and only if x = 0
• |xy| = |x| · |y|
• |x+ y| ≤ |x|+ |y|.

Proposition 4.2. If | · | is a norm, then | − 1| = |1| = 1, so that | − a| = |a| for any a ∈ R.

Proof. For x 6= 0, |1| · |x| = |1 · x| = |x|, so |1| = 1. We also have that | − 1|2 = | − 1 · −1| =
|1| = 1, so | − 1| = ±1. As | − 1| ≥ 0, | − 1| = 1. �

Norms need not only be defined on R. For example, the p-adic norm | · |p on Q for prime
p is defined as ∣∣∣pk a

b

∣∣∣
p

= p−k p - a, b

and |0|p = 0. It is clear that this is a norm, as it satisfies the three requirements in the
definition. This norm in fact satisfies a stronger condition than the triangle inequality,
known as the ultrametric triangle inequality.

Proposition 4.3. For any r, s ∈ Q, we have |r + s|p ≤ max(|r|p, |s|p).

Proof. Write r = pk a
b

and s = p` c
d
, where p - a, b, c, d. Without loss of generality, suppose

k ≥ `, so that |r|p ≤ |s|p. Then,

|r + s|p =
∣∣∣pk a

b
+ p`

c

d

∣∣∣
p

=
∣∣∣p` (pk−`a

b
+
c

d

)∣∣∣
p

= p−`
∣∣∣∣pk−`ad+ bc

bd

∣∣∣∣
p

= p−`|pk−`ad+ bc|p ≤ p−` = |s|.
�
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We also have a form of equality.

Proposition 4.4. If |·| is a norm satisfying the ultrametric triangle inequality, and |r| 6= |s|,
then |r + s| = max(|r|, |s|).

Proof. Suppose without loss of generality that |r| > |s|, and suppose that |r+s| < |r|. Then,

|r| = |(r + s)− s| ≤ max(|r + s|, |s|) < |r|.
�

Now, the proof of our theorem relies on the following important fact.

Theorem 4.5. There exists a norm | · | on R satisfying the ultrametric triangle inequality
such that |1

2
| = 2.

This can be thought of as “extending” the 2-adic norm from Q to R. We provide a sketch
of the proof of Theorem 4.5. In order to do so, we need Zorn’s Lemma.

Theorem 4.6 (Zorn’s Lemma). Let P be a poset such that, for any totally ordered T ⊆ P ,
there is some a ∈ P with t ≤ a for all t ∈ T . Then there is some p ∈ P such that, if p ≤ q,
p = q.

Sketch of Proof of Theorem 4.5. Consider the pairs (A, | · |), where A is a subring of R con-
taining 1

2
, and | · | is a norm on A satisfying the ultrametric triangle inequality with |1

2
| = 2.

We make this into a poset by defining (A, | · |A) ≤ (B, | · |B) when A ⊆ B and |a|A = |a|B
for all a ∈ A. Suppose that we have a totally ordered subset

{
(Ai, | · |Ai

) : i ∈ I
}

. Define
B =

⋃
i∈I Ai and |a|B = |a|Ai

whenever a ∈ Ai. This is well defined, and we have that
(B, | · |B) ≥ (Ai, | · |Ai

) for all i. Thus, the conditions of Zorn’s Lemma are satisfied, so there
exists a maximal element.

Suppose that (A, | · |) is a maximal element. We claim that A = R. If not, take α ∈ R \A.
Let B be the smallest subring of R containing both A and α. Suppose that α is the root of a
nonzero polynomial with coefficients in A. It is possible to extend | · | to B, but this relies on
results beyond the scope of this paper. If α is not the root of a polynomial with coefficients
in A, we can choose |α| to be whatever we want. Pick |α| = 1. We then have |aαn| = |a| for
a ∈ A. If p(α) = anα

n + an−1α
n−1 + · · · + a1α + a0, we define |p(α)| = max0≤i≤n |ai|. It is

easy to check that this defines a norm on B. �

4.3. Monsky’s Theorem. Throughout this section, we use | · | to refer to a norm which
exists by Theorem 4.5.

Theorem 4.7 (Monsky). It is impossible to dissect a square into an odd number of triangles
with equal area.

Suppose that we have a square with vertices at (0, 0), (1, 0), (1, 1) and (0, 1). We construct
a coloring that we can apply Sperner’s Lemma to. We color a point (x, y)

• blue if |x| ≥ |y| and |x| ≥ 1
• green if |x| < |y| and |y| ≥ 1
• red if |x| < 1 and |y| < 1,

where blue, red and green correspond to colors 1, 2 and 3 respectively. Notice that every
point is colored: if (x, y) is not colored blue or green, then(

|x| < |y| ∨ |x| < 1
)
∧
(
|x| ≥ |y| ∨ |y| < 1

)
.



12 NEIL MAKUR

If |x| < |y|, then |y| < 1, so |x| < 1 and (x, y) is red. If |x| < 1 and |x| ≥ |y|, then |y| < 1,
so (x, y) is red. If |x| < 1 and |y| < 1, then (x, y) is red.

Lemma 4.8. Suppose that we have a full triangle ABC. Then its area [ABC] satisfies∣∣[ABC]
∣∣ ≥ 2.

Proof. Suppose that A = (x1, y1) is red, B = (x2, y2) is green, and C = (x3, y3) is blue.
We claim that (x2 − x1, y2 − y1) is green and (x3 − x1, y3 − y1) is blue. We have that
|x2 − x1| ≤ max(|x2|, |x1|). If |x2| > |x1|, then max(|x2|, |x1|) < |y2|. If |x1| ≥ |x2|, then
max(|x2|, |x1|) < 1 ≤ |y2|. Now, |y2| = max(|y2|, |y1|) = |y2 − y1| (|y2| 6= |y1|). We also have
that |y3 − y1| ≤ max(|y3|, |y1|). If |y3| > |y1|, then max(|y3|, |y1|) ≤ |x3|, and if |y1| ≥ |y3|,
then max(|y3|, |y1|) ≤ |x3|. Now, |x3| = max(|x3|, |x1|) = |x3−x1| (|x3| 6= |x1|). Thus, B−A
is green and C − A is blue. We thus assume A = (0, 0), as this is red.

We have that the signed area of ABC is

[ABC] =
x2y3 − x3y2

2
.

Thus, ∣∣[ABC]
∣∣ =
|x2y3 − x3y2|

|2|
= 2|x2y3 − x3y2|.

We have that |x2| < |y2| and |x3| ≥ |y3|, so |x2y3| < |x3y2|. Thus,

|x2y3 − x3y2| = |x3y2| = |x3| · |y2| ≥ 1.

Thus,
∣∣[ABC]

∣∣ ≥ 2. �

If n is odd, then we show that |1/n| = 1. Notice that |2k| = 2−k, as 2k = (1/2)−k. Now,
write n = 20 + a12

1 + · · ·+ a`2
`, where a1, a2, . . . , a` ∈ {0, 1}. We then have that

|n| = max
{

1,
a1
2
,
a2
22
, . . . ,

a`
2`

}
= 1.

Thus, |1/n| = 1. Thus, if we have a division of the square into n triangles of equal area,
none of the triangles can be full triangles. Monsky’s Theorem is established by the following
lemma.

Lemma 4.9. Any dissection of the square into finitely many triangles must contain a full
triangle.

Proof. Note that (0, 0) is red, (1, 0) is blue, (1, 1) is blue, and (0, 1) is green. Further, along
y = 0, every point is either red or blue, along x = 0, every point is either red or green, and
along x = 1 and y = 1, every point is blue or green. Thus, all exterior semi-full edges lie on
y = 0. Walking from (0, 0) to (1, 0), we start at a red vertex and end at a blue vertex, so we
switch colors an odd number of times. Hence, there are an odd number of exterior semi-full
edges. By Sperner’s Lemma, there are an odd number of full triangles, and so at least one
full triangle. �
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