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1 Abstract

In this paper, we will explore hyperplane arrangements and their relation to combinatorics. Some
surprising relationships will appear. We will discuss posets, Characteristic polynomials, Whitney’s
Theorem, and Zaslavsky’s Theorem, among others. As a motivating question, before proceeding,
consider how many spaces n lines separates 2 dimensional space into.

2 Introduction to Hyperplane Arrangements

A hyperplane is the generalization of a 2 dimensional plane to higher dimensions, or said more formally

Definition 1 (hyperplane) For a field K, an n−1 dimensional affine hyperplane of Kn is the affine
subspace {v ∈ Kn : a·v = b}. Or alternatively, a hyperplane in Kn is the set of points in Kn satisfying
a linear equation a1x1 + · · ·+ anxn = b, for some a1, · · · , an, b ∈ R

We can use hyperplanes to build hyperplane arrangements, defined as

Definition 2 (hyperplane arrangement) A Hyperplane Arrangement, called A, is the union of a
finite set of hyperplanes. r(A) is a function for how many regions A divides space into.

As an example of r(A), let A be the image below of a hyperplane arrangement in R2, then r(A) is 9.

3 Intersection Posets

Before we can define an intersection poset, we must first define the poset.

Definition 3 (Poset) A poset is a set along with a binary operation (called ≤) where some of the
elements in the poset are comparable.

We can relate posets to hyperplane arrangements by the intersection poset.

Definition 4 (Intersection Poset) The intersection poset of an arrangement A, denoted L(A), as
the set of all non-empty intersections of sets of hyperplanes ordered by reverse inclusion, meaning that
for 2 intersections I1 and I2, I1 ≤ I2 iff I2 ⊂ I2

There are several poset functions that are used on hyperplanes, such as the Mobius function

Definition 5 (Mobius Function) Let P be a finite poset. Define a function µ = µP : Int(P ) → Z,
called the Mobius function of P, by: µ(x, x) = 1, for all x ∈ P µ(x, y) = −

∑
x≤z<y µ(x, z), for all

x < y in P

4 Characteristic Polynomials

A characteristic polynomial is a way of representing a hyperplane arrangement in polynomial form,
like a generating function.

Definition 6 (Characteristic Polynomial) The characteristic polynomial χA(t) of the arrange-
ment A is defined by

χA(t) =
∑

x∈L(A)

µ(x)tdim(x)
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There are several interesting properties of the characteristic polynomial. Let us look at 2 recurrences
related to it.

Theorem 1 (Hyperplane Recurrence)
Let (A, A’ , A”) be a triple of real arrangements with distinguished hyperplane H ′. Then r(A′) =

r(A′) + r(A′′)

As a side note, if rank(A) = rank(A′), then also rank(A) = 1 + rank(A′′). Let us give a proof of this
recurrence. Note that r(A) equals r(A′) plus the number of regions of A′ cut into two regions by H ′.
Let R′ be such a region of A′ . Then R′ ∩H ′ ∈ R(A′′). Conversely, if R′′ ∈ R(A′′) then points near
R′′ on either side of H0 belong to the same region R′ ∈ R(A′), since any H ∈ R(A′) separating them
would intersect R′′ . Thus R′ is cut in two by H ′. We have established a bijection between regions of
A′ cut into two by H ′ and regions of A′′ , establishing the first recurrence.

Now that we have established that recurrence, we come to perhaps the more famous recurrence

Theorem 2 (Deletion Restriction) Let (A,A′, A′′) be a triple of real arrangements. Then χA(x) =
χA′(x)− χA′′(x).

5 Special Arrangements

Some Arrangements of hyperplanes are notable, and we will discuss a few special arrangements in this
section. The first special arrangement is the braid arrangement.

Definition 7 (Braid Arrangement) the braid arrangement is defined as Bn = {xi − xj = 0|i 6= j}

Bn has
(
n
2

)
hyperplanes. To count the number of regions when K = R, note that specifying which

side of the hyperplane xi − xj = 0 a point (a)1, · · · , an) lies on is equivalent to specifying whether
ai < aj or ai > aj . This means that the number of regions is the number of ways that we can specify
whether ai < aj or ai > aj for 1 ≤ i < j ≤ n

The other famous special arrangements are all extensions of the braid arrangement in some way.
For example, in the Shi arrangement, xi−xj = 0, 1 and in the Catalan arrangement, xi−xj = −1, 0, 1.

6 Zaslavsky’s Theorem

Zaslavsky’s Theorem is one of the major theorems in the number of regions in Hyperplane Geometry.

Definition 8 (regions) For an arrangement A in Rn , define the number of regions, denoted r(A),
to be the number of connected components of Rn − ∪H∈AH. Similarly, define b(A) as the number of
relatively bounded regions of of A.

These two definitions are used in Zaslvasky’s Theorem

Theorem 3 (Zaslvasky’s Theorem)

r(A) = (−1)nχA(−1)

and
b(A) = (−1)rank(A)χA(1)

A proof of Zaslavsky’s Theorem: this holds for A = ∅ , since r(∅) = 1 and χ∅(t) = tn. Both r(A) and
(−1)nχA(−1) satisfy the same recurrence, so the proof follows. Now consider the equation. Again
it holds for A = ∅ since b(∅) = 1. (Recall that b(A) is the number of relatively bounded regions.
When A = ∅ , the entire ambient space R n is relatively bounded.) NowχA(1) = χA′(1) − χA′′(1).
Let d(A) = (−1)rank(A)χA(1). If rank(A) = rank(A′) = rank(A′′) + 1, then d(A) = d(A′) + d(A′′).
If rank(A) = rank(A′) + 1 then b(A) = 0 and L(A′) ∼= L(A′′) . Thus we have d(A) = 0. Hence in all
cases b(A) and d(A) satisfy the same recurrence, so b(A) = d(A).

6.1 Whitney’s Theorem

Another good way that characteristic polynomials come into use with hyperplanes is with Whitney’s
Theorem. It gives an alternate expression of how to write a characteristic polynomial.

Theorem 4 (Whitney’s Theorem) Let A be an arrangement in an n-dimensional vector space. Then

χA(t) =
∑

B⊂A,Bcentral

(−1)#Btn−rank(B)

.

In Whitney’s Theorem, the sum is taken over all sets of hyperplanes B of A with a nonempty inter-
section. Now that we have shown Whitney’s Theorem, we will write a proof:

The proof of this theorem requires another theorem, the Crosscut Theorem,
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Theorem 5 (the Cross-Cut Theorem) Let L be a finite lattice. Let X be a subset of L such that such
that if y ∈ L, y 6= 0̂, then some x ∈ Xsatisfies x ≤ y. Let Nk be the number of k-element subsets of X
with join 1̂. Then µL(0̂, 1̂) = N0 −N1 +N2 − · · ·

Now that we have the Crosscut Theorem, we can use that to prove Whitney’s Theorem.
Let z ∈ L(A). Let Λz = x ∈ L(A) : x ≤ z, the principal order ideal generated by z. Recall

the definition Az = {H ∈ A : H ≤ z(i.e., z ⊆ H)}. By the Crosscut Theorem , we have µ(z) =∑
k(−1)kNk(z), where Nk(z) is the number of k-subsets of Az with join z. In other words, µ(z) =∑
B⊆Azz=TH∈BH(−1)#B . Note that z = ∩H∈BH implies that rank(B) = n− dim(z). Now multiply

both sides by tdim(z) and sum over z to obtain the equation

7 Conclusion

Hyperplane arrangements are a fascinating area of study. They appear to be about geometry, but
also involve the tools of combinatorics. There are many subjects in hyperplane arrangements which I
did not cover in this paper, such as Shi and Catalan arrangments.
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