THE ROGERS-RAMANUJAN IDENTITIES, THEIR COMBINATORIAL
INTERPRETATION, AND GENERALIZATION

FINROD FELAGUND

ABSTRACT. The Rogers-Ramanujan identities are proved analytically and their combina-
torial interpretation in terms of congruences is subsequently given. Gordon’s combinatorial
generalization of these identities is then stated.

1. INTRODUCTION

The Rogers-Ramanujan identities are the following two relations between infinite products
and infinite series:
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An analytical proof due to Rogers and Ramanujan is given in [RR19] The left sides have
obvious combinatorial interpretations. For example, Hflo | T +1)(1 Py is the generating

function for the number of partitions into parts congruent to 1 or 4 mod 5. The combina-
2
torial meanings of the right sides are less obvious but it turns out that 1+, m

is the generating function for the number of partitions with differences at least two. Sim-
ilarly, 14+ "7, % counts the number of partitions into parts with differences at

least 2 and with no 1’s. The Rogers-Ramanujan identities have the following combinatorial
generalization due to Gordon |Gor61]: The number of partitions of an integer n into parts
not congruent to 0, ¢ mod 2d + 1, where 1 <t < d, is equal to the number of partitions of

n=mny+ng+---+ng

with n; > n;1 and n; > njpg 1 +2 and g4 > 2.

2. THE ROGERS-RAMANUJAN IDENTITIES

Definition 2.1 (Rogers-Ramanujan functions).
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Of fundamental importance in both the analytical proof of the Rogers-Ramanujan identi-
ties and Gordon’s combinatorial generalization is the Jacobi Triple Product Identity.

Theorem 2.2 (Jacobi Triple Product Identity). For all z € C, and all |q] < 1,
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Remark 2.3. If we denote (1) =t > 0 and we suppose that |z| < M for arbitrary positive
real numbers M, then

o oo o
‘ Z qn262ni2| < Z ‘eﬂi7n2+2niz| < Z €f7rt112+2nM.

n=—oo n—=—oo n=—oo

Since the last series converges, it follows that >~ ¢" €27 is an entire function of z for

every fixed (1) > 0, and is a holomorphic function of ¢ in the unit disk |¢| < 1 for every
fixed z € C.

We will give a short proof |[And65| of Theorem by first proving two lemmas due to
Euler [Eul51] after discussing the holomorphic properties of an infinite product.

Lemma 2.4. Let us denote the infinite product [ [ ~_ (1 +y"w) by F(w) when |y| < 1. Then
F(w) is an entire function of w for every fived |y| < 1.

Proof. Let |w| < M for an arbitrary positive real number M. Since |y| < 1, there exists
a minimum non-negative integer M, for which M|y|™ < % whenever m > M,. For every

m > My, we have, if we make use of the principal branch of the logarithm,

[log (1 +wy™)| < My[™ - <M"Y~ < 2My|
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and since Y, o [y[™ converges, it follows that Y, . log (1 +y™w) is holomorphic

on |w| < M if |y| < 1is fixed. From this it follows that

exp( Z log(1+ymw)>: H (1+y"w),

m=Mop+1 m=Mop+1

and hence [[)-_ (1 + y™w), is an entire function of w for every fixed |y| < 1. [

Lemma 2.5. For allw € C and all y such that |y| < 1, we have
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Proof. We denote the Taylor expansion of the left side, which, by the previous lemma, is an
entire function of w provided that |y| < 1, by

(2.1) F(w) = Zanw”.

Then it immediately follows that ay = 1. But now
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so that
(1+w)F(wy) = F(w).
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Equating coefficients of w on both sides gives

Therefore

n n—1
anly + p—1Y = Up,

so that we have the recurrence relation
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for n > 1. Since ag = 1, it follows that
o y0+1+~-~+(n—1) _ yn(n—l)/Q
-y A=y (I-y). Iy
The lemma now follows by replacing this value of a,, in ({2.1)). [
Lemma 2.6. For all |y| <1 and |w| < 1, we have
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Proof. Inasmuch as the proof of this lemma is very similar to that of Lemma [2.5] we leave
it as an exercise to the reader. [
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We can now prove Theorem [2.2]

Proof. In Lemma [2.5] put y = ¢ and w = ¢e** to find
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because [[7_ (1 — ¢*"™22™) equals zero whenever n is a negative integer. By making use

(1—gq
of Lemma [2.5| again but this time by putting y = ¢?, and w = —¢*"2, the last expression

equals
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which can be written as
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We can invert the double sum provided that it converges absolutely. For any fixed ¢ such
that |¢| = R where R < 1, we have
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for some C' independent of n. Since Y °° e 2mZ|R”2 is convergent, the inversion of the

double sum is justified, so that
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The ultimate sum being absolutely convergent, we can re-index it by changing n into n — r
without altering the value and the right side can be factorised as

- 242\ —1 - (—ge )" T inz n?
[H“‘q ) ”Zu—q%...(l—q%)] [Z < ]

j=0 r=0 n=-—00

But now if we restrict |ge=%*| < 1, we can make use of Lemma [2.6, with y = ¢* and
w = ge~?* to deduce that
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when |¢| < 1 and |g| < |e*#|. But both sides of the previous equality are entire functions of

z for every fixed |¢| < 1, by Lemma and Remark . Since, moreover, both sides agree
on a set of values of z, namely [e*?| > |q|, a subset of which is the open lower half z-plane,
containing at least one limit point, therefore both sides agree on the entire complex z-plane
for every fixed |g| < 1, by analytic continuation. [

Two special cases of the Jacobi Triple Product Identity will be relevant to us.

Corollary 2.7. For |z| <1,
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Proof. Let ¢ = €™ and z = (1 + u)m/2, where $(u) > 0, in Theorem This gives
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or, letting © = ¥,
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as desired.
[

Corollary 2.8. For |z| <1,

[e's) n( i) [e's)
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Proof. The proof proceeds similarly as in the last corollary, except that now we put ¢ = €™
and z = (1 4 3u)m/2. [
Remark 2.9. By absolute convergence, we find that
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by changing n into —n, when |z| < 1. Similarly
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We will use these representations interchangeably in the rest of the paper without further
comment.

Theorem 2.10 (Rogers-Ramanujan Identities).

Glg) = [L - =™ Hig) =[]0~ (1 - g

We give a sequence of lemmas, in the first of which we define a function G(z) which
generalises the infinite sum of Corollary which equals G(1). We will subsequently find a
recurrence, of a similar type as that found in the proof of 2.5] for a closely related function
which will then be expressible as a series which generalises both the Rogers-Ramanujan
functions G(q) and H(q). This will enable us to prove Theorem [2.10]

Lemma 2.11. If, for every x € C, we define

NSy e o (L 2g) (1 —2g?) (1= 2" )
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Remark 2.12. Although we have used a similar notation, the functions G and G are obviously
different.



Proof.
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By taking away the first summand of the first infinite series on the right and re-indexing, we
deduce that
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Lemma 2.13. For G defined as in the previous lemma,

1g_(_;;)q — G(zq) = 2q(1 — 2¢°)G(x¢?).

Proof. 1f we denote the right side by H(z), then, using the previous lemma
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where the last step has been achieved by rewriting
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Now we separate the first sum in the first infinite series on the right, re-index, and deduce
that
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Lemma 2.14. For G(z) as in Lemma if |x| <1, we have

Q()H(l—xq —1+Zl_q 1_q)

Proof. Let us denote the left side by F(z). Then Lemma takes the form
F(x) = F(zq) + 2qF (2q*).

Then we find that

n?

_Hzl—q (=g

We omit the last justification because the reader will have no difficulty in supplying it
inasmuch as it is completely analogous to the proof of Lemma detailed above. |

We can now prove Theorem [2.10}

Proof. By putting x = 1 and x = ¢ successively in Lemma we find, using the Rogers-
Ramanujan functions defined in Definition [2.1],

Hl—q )~ =Gl(a), H — ")~ = H(q).

But now, using the definition of G, given in Lemma [2.11] and Corollaries [2.7] and [2.8 we find
that
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3. COMBINATORIAL INTERPRETATION OF THE ROGERS-RAMANUJAN IDENTITIES

The two Rogers-Ramanujan Identities proved in the last section

- 5n—4 S5n—1y _ - qkz
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have interesting combinatorial interpretations.

Theorem 3.1. The number of partitions of a positive integer N into distinct parts with
differences at least 2 equals the number of partitions of N into parts congruent to either 1 or
4 modulo 5.

Proof. In

o0 k2

(1 . q5n—4)(1 5n 1 1+ ’
I Sotie
the left side is the generating function for the number of partltlons of N into parts congruent
to either 1 or 4 modulo 5. We must now show that the right side is the generating function
for partitions of N into distinct parts with differences at least 2. The smallest such partition
with k£ terms is

2k —1) + (2k = 3) + -+ 3+ 1 =K.
Therefore to obtain every partition of the form
ny+ng + -+ ng

where n; > 0 and n; > n;; + 2 exactly once we must combine termwiseﬂ to (2k—1) + (2k —
3) + -+ + 3+ 1 every partition of the form

mi+mg+ -+ my

where m; > 0 and m; > m;,, exactly once. The generating function for all such partitions
mip+mg+ -+ my

is ]

(1-=q)1—g*)...(1—¢")
which can be seen by expanding each (1 — ¢*)~! into a geometric series as

- I 2 S
where we write the exponent of ¢/ as the sum of i copies of j, for each positive integer j, and
by combining terms from any two such geometric series by termwise addition of the partitions
in their exponent e.g. in (1 —¢) (1 — ¢*)~! we combine the term ¢*, from the geometric
expansion of (1 — ¢)~!, with the term ¢*>™3, from the geometric expansion of (1 — ¢*)~*,
by writing the resulting term as ¢33 = ¢"*3. Therefore the generating function for the
partitions

ny+ne + -+ ng

by which is meant (2k — 1 +my) 4+ (2k — 3 +ma) 4+ --- + (1 + my).



is
2
q(2k 1)+(2k—3)+-+3+1 qk

1-q)...(0=¢")  (1-q...(01—g")
Summing over all nonnegative k, it follows that the generating function for partitions into
distinct parts with difference at least 2 is given by

1+§:

k2

(1—gq)...(1—¢g*)

Example. The partitions of the positive integer 9 into distinct parts with differences at least
2 are 5 in number and they are: 9=8+1=7+2=6+3 =5+ 3+ 1. The partitions of 9
into parts = 1,4 mod 5 are also 5 in number and they are: 9=6+1+14+1=44+4+1=
44+14141414+1=1+1+---+1. As another example, the partitions of 10 into distinct
parts with differences at least two are: 10=9+1=842=7+3=6+4=6+3+1 and
they are six in number, as are the partitions of 10 into parts = 1,4 mod 5: 9+1 =644 =
6+1+1+14+1=44+4+1+1=44+14+1+1+14+141=1+1+14+---+1.

Theorem 3.2. The number of partitions of N into distinct parts with differences at least 2
and with no 1’s is equal to the number of partitions of N into parts congruent to either 2 or
3 modulo 5.

Proof. The proof is similar to the previous one except that now we use the other Rogers-
Ramanujan identity

o0

[T0- 0= =143,

n=1

P+

(1—q)...(1—¢g*)’

and we write
k(k+1)=2+4+ -+ 2k.

4. GORDON’S COMBINATORIAL GENERALIZATION

A combinatorial generalization of the Rogers-Ramanujan identities has been obtained by
Basil Gordon |Gor61].

Theorem 4.1. The number of partitions of an integer n into parts not congruent to 0, £t
mod 2d + 1, where 1 <t < d, is equal to the number of partitions of

n=mny+ng+---+ng
with n; > nieq and n; > njg1 + 2 and ng_q > 2.

The Rogers-Ramanujan identities are the special cases (d,t) = (2,1) and (d,t) = (2,2) of
the previous theorem; for when d = 2 and ¢ = 1, it says that the number of partitions of an
integer n into parts not congruent to 0,1,4 mod 5 is equal to the number of partitions of

n=mniy+ng+---+ng
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with n; > n;y1,n; > n;q + 2, and n, > 2, which is the combinatorial interpretation of the
second Rogers-Ramanujan identity:

vt — 1—q (1—=g*)

When d = 2 and ¢ = 2 it says that the number of partitions of an integer n into parts not
congruent to 0,2,3 mod 5 is equal to the number of partitions of

n=ny+ng+- -+ ng,

with n; > n;yq1,n; > ni1 + 2 and ng_q > 2, which is the combinatorial interpretation of the

first Rogers-Ramanujan identity

o0 oo k2
(1 _q5n—4)(1 5n 1 —
1l P 2Ll

Before proving the the theorem, let us illustrate some special cases of it.

Example. When d = 3 and ¢t = 1 it says that the number of partitions of an integer n into
parts not congruent to 0,1,6 mod 7 is equal to the number of partitions

n=ny+ng+---+ng

with n; > n;1,n; > ni9 + 2 and n, > 2. Thus, the partitions of 11 into parts congruent
t0 2,3,4,5 mod 7are 11 =9+2=5444+2=54+3+3=5+4+24242=4+4+3=
4434+24+2=34+3+34+2=3+2+242+2, which are 9 in number as are the partitions:
11=94+2=843=74+4=7T+24+2=64+5=6+3+2=5+4+2=>5+ 3+ 3 which
are those of the form 11 = n; +ny + - - - + n, where n; > n; o + 2 and ng > 2.

Ezxample. When d = 3 and t = 2, the theorem says that the number of partitions of n into
parts not congruent to 0,2,5 mod 7 is equal to the number of partitions of n = n; + ns +

-+ 4+ ny where n; > n;io + 2 and ni_; > 2. Thus the partitions of 6 with parts = 1,3,4,6
mod 7are: 6=44+1=3+3=34+1+1+1=1+1+1+1+1+4 1 which are five in
number, as are the partitions 6 =5+1=4+4+2 =3+ 3 =3+ 2+ 1 which are those of the
form 9 =ny +no + - - - + ng where n; > n;1 0 + 2 and ny_; > 2.

Ezxample. When d = 3 and t = 3, the theorem says that the number of partitions of n into
parts not congruent to 0,3,4 mod 7 is equal to the number of partitions of n = ny; + ny +
-+ 4+ ny where n; > n;io + 2 and ni_o > 2. Thus the partitions of 6 with parts = 1,2,5,6
mod 7are: 6=5+1=242+2=24+24+14+1=24+14+1414+1=14+14+14+1+1+1
which are six in number, as are the partitions 6 = 54+1=442=44+14+1=34+3=3+2+1
which are those of the form 9 = ny + ny + - - - + ng where n; > n;, 0 + 2 and ng_o > 2.

We will now prove the theorem.

Proof of Theorem. In Theorem [2.2] let us put ¢ = 2%t/2 and €% = —2% /2 5o that we
get

H(l _ x(2d+1)n)(1 N m(Qd-{-l)n—t)(l B x(2d+1)n—2n—1+t) _ Z (_1)mx(d+1/2)m2+(d—t+1/2)m‘

n=1 m=—o0
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But now

00 (1 _ x(2d+1)n)(1 _ I(Qd-l—l)n—t)(l _ x(2d+1)n—2n—1+t)

H 1 —an
is the generating function for the number of partitions of N into parts not congruent to 0, ¢
mod 2d — 1. It follows that, if we denote by ¢4(z) the generating function for the number
of partitions of N of the form N = N; + ...+ N where N; > N;11, N; > N; 41 + 2 and
Np —t+1 > 2, then we must prove that

(4.1) par(x) [JA =2y = D (—1yma@rt/Amira=tia/zm,
n=1 m=—00

Now if we write -
ﬁbdt@) = Z th(n)$n,
n=0

so that Fy(n), for n > 1, is the number of partitions of N of the form N = Ny + -+ 4+ Ny
where N; > N1, N; > Niig1+2and Ny —t+ 1> 2, and Fyu(0) = 1, then if we put

du(e) [[0—2") = 3 caln)a”,

we have that cg(n) = Z(al...ak|b1...bl)(_1)k where the sum is over all partitions denoted by
(ay...aglby ...b) which is a partition of n such that

n=aj+-+ap+b+-+b
where
a; > ai;r+1, by >bjp1, by >bjpg1+1, b1 =2
We must show that there is a bijection between such partitions with k even and those with
k odd except when n has the form

n=(d+1/2)m*+(d—t+1/2)m form=0,+1,+£2, ...

and in the case where n has the latter form we will show that the number of partitions where
k = m mod 2 (i.e. k has the same parity as m) exceeds the number of partitions where
k #Z m mod 2 by exactly 1. This will then establish Equation .1, and hence the theorem.
For the bijection the reader is now referred to [Gor61]. |

REFERENCES

[And65] {George E.} Andrews. A simple proof of jacobi’s triple product identity. Proceedings of the American
Mathematical Society, 16(2):333-334, 1965.

[Eul51] Leonhard Euler. Observationes analyticae variae de combinationibus. Commentarii academiae sci-
entiarum Petropolitanae, pages 64-93, 1751.

[Gor61] Basil Gordon. A combinatorial generalization of the Rogers-Ramanujan identities. Am. J. Math.,
83:393-399, 1961.

[RR19] L. J. Rogers and S. Ramanujan. Proof of certain identities in combinatory analysis. Proc. Camb.
Philos. Soc., 19:211-216, 1919.



	1. Introduction
	2. The Rogers-Ramanujan Identities
	3. Combinatorial Interpretation of the Rogers-Ramanujan Identities
	4. Gordon's Combinatorial Generalization
	References

