

THE ROGERS-RAMANUJAN IDENTITIES, THEIR COMBINATORIAL INTERPRETATION, AND GENERALIZATION

FINROD FELAGUND

ABSTRACT. The Rogers-Ramanujan identities are proved analytically and their combinatorial interpretation in terms of congruences is subsequently given. Gordon's combinatorial generalization of these identities is then stated.

1. INTRODUCTION

The Rogers-Ramanujan identities are the following two relations between infinite products and infinite series:

$$\begin{aligned} \prod_{n=1}^{\infty} \frac{1}{(1-q^{5n+1})(1-q^{5n+4})} &= 1 + \sum_{k=1}^{\infty} \frac{q^{k^2}}{(1-q)\dots(1-q^k)} \\ \prod_{n=1}^{\infty} \frac{1}{(1-q^{5n+2})(1-q^{5n+3})} &= 1 + \sum_{k=1}^{\infty} \frac{q^{k(k+1)}}{(1-q)\dots(1-q^k)}. \end{aligned}$$

An analytical proof due to Rogers and Ramanujan is given in [RR19]. The left sides have obvious combinatorial interpretations. For example, $\prod_{n=1}^{\infty} \frac{1}{(1-q^{5n+1})(1-q^{5n+4})}$ is the generating function for the number of partitions into parts congruent to 1 or 4 mod 5. The combinatorial meanings of the right sides are less obvious but it turns out that $1 + \sum_{k=1}^{\infty} \frac{q^{k^2}}{(1-q)\dots(1-q^k)}$ is the generating function for the number of partitions with differences at least two. Similarly, $1 + \sum_{k=1}^{\infty} \frac{q^{k(k+1)}}{(1-q)\dots(1-q^k)}$ counts the number of partitions into parts with differences at least 2 and with no 1's. The Rogers-Ramanujan identities have the following combinatorial generalization due to Gordon [Gor61]: The number of partitions of an integer n into parts not congruent to $0, \pm t \pmod{2d+1}$, where $1 \leq t \leq d$, is equal to the number of partitions of

$$n = n_1 + n_2 + \dots + n_k$$

with $n_i \geq n_{i+1}$ and $n_i \geq n_{i+d-1} + 2$ and $n_{k-t+1} \geq 2$.

2. THE ROGERS-RAMANUJAN IDENTITIES

Definition 2.1 (Rogers-Ramanujan functions).

$$\begin{aligned} G(q) &:= 1 + \sum_{k=1}^{\infty} \frac{q^{k^2}}{(1-q)\dots(1-q^k)} \\ H(q) &:= 1 + \sum_{k=1}^{\infty} \frac{q^{k(k+1)}}{(1-q)\dots(1-q^k)} \end{aligned}$$

Of fundamental importance in both the analytical proof of the Rogers-Ramanujan identities and Gordon's combinatorial generalization is the Jacobi Triple Product Identity.

Theorem 2.2 (Jacobi Triple Product Identity). *For all $z \in \mathbb{C}$, and all $|q| < 1$,*

$$\sum_{n=-\infty}^{\infty} q^{n^2} e^{2niz} = \prod_{n=1}^{\infty} (1 - q^{2n})(1 + q^{2n-1} e^{2iz})(1 + q^{2n-1} e^{-2iz}).$$

Remark 2.3. If we denote $\Im(\tau) = t > 0$ and we suppose that $|z| \leq M$ for arbitrary positive real numbers M , then

$$\left| \sum_{n=-\infty}^{\infty} q^{n^2} e^{2niz} \right| \leq \sum_{n=-\infty}^{\infty} |e^{\pi i \tau n^2 + 2niz}| \leq \sum_{n=-\infty}^{\infty} e^{-\pi tn^2 + 2nM}.$$

Since the last series converges, it follows that $\sum_{n=-\infty}^{\infty} q^{n^2} e^{2niz}$ is an entire function of z for every fixed $\Im(\tau) > 0$, and is a holomorphic function of q in the unit disk $|q| < 1$ for every fixed $z \in \mathbb{C}$.

We will give a short proof [And65] of Theorem 2.2 by first proving two lemmas due to Euler [Eul51] after discussing the holomorphic properties of an infinite product.

Lemma 2.4. *Let us denote the infinite product $\prod_{m=0}^{\infty} (1 + y^m \omega)$ by $F(\omega)$ when $|y| < 1$. Then $F(\omega)$ is an entire function of ω for every fixed $|y| < 1$.*

Proof. Let $|\omega| < M$ for an arbitrary positive real number M . Since $|y| < 1$, there exists a minimum non-negative integer M_0 for which $M|y|^m < \frac{1}{2}$ whenever $m > M_0$. For every $m > M_0$, we have, if we make use of the principal branch of the logarithm,

$$|\log(1 + \omega y^m)| \leq M|y|^m \sum_{n=1}^{\infty} \frac{M^{n-1} |y|^{m(n-1)}}{n} \leq M|y|^m \sum_{n=1}^{\infty} \frac{1}{n \cdot 2^{n-1}} \leq 2M|y|^m$$

and since $\sum_{m=M_0+1}^{\infty} |y|^m$ converges, it follows that $\sum_{m=M_0+1}^{\infty} \log(1 + y^m \omega)$ is holomorphic on $|\omega| < M$ if $|y| < 1$ is fixed. From this it follows that

$$\exp \left(\sum_{m=M_0+1}^{\infty} \log(1 + y^m \omega) \right) = \prod_{m=M_0+1}^{\infty} (1 + y^m \omega),$$

and hence $\prod_{m=0}^{\infty} (1 + y^m \omega)$, is an entire function of ω for every fixed $|y| < 1$. ■

Lemma 2.5. *For all $\omega \in \mathbb{C}$ and all y such that $|y| < 1$, we have*

$$\prod_{m=0}^{\infty} (1 + y^m \omega) = \sum_{r=0}^{\infty} \frac{y^{\frac{r(r-1)}{2}} \omega^r}{(1-y) \dots (1-y^r)}.$$

Proof. We denote the Taylor expansion of the left side, which, by the previous lemma, is an entire function of ω provided that $|y| < 1$, by

$$(2.1) \quad F(\omega) = \sum_{n=0}^{\infty} a_n \omega^n.$$

Then it immediately follows that $a_0 = 1$. But now

$$F(\omega y) = \prod_{m=0}^{\infty} (1 + \omega y^{m+1}),$$

so that

$$(1 + \omega)F(\omega y) = F(\omega).$$

Therefore

$$\sum_{n=0}^{\infty} a_n \omega^n y^n + \sum_{n=1}^{\infty} a_{n-1} \omega^n y^{n-1} = \sum_{n=0}^{\infty} a_n \omega^n.$$

Equating coefficients of ω on both sides gives

$$a_n y^n + a_{n-1} y^{n-1} = a_n,$$

so that we have the recurrence relation

$$a_n = \frac{a_{n-1} y^{n-1}}{1 - y^n}$$

for $n \geq 1$. Since $a_0 = 1$, it follows that

$$a_n = \frac{y^{0+1+\dots+(n-1)}}{(1-y)\dots(1-y^n)} = \frac{y^{n(n-1)/2}}{(1-y)\dots(1-y^n)}.$$

The lemma now follows by replacing this value of a_n in (2.1). ■

Lemma 2.6. *For all $|y| < 1$ and $|\omega| < 1$, we have*

$$\prod_{m=0}^{\infty} (1 + y^m \omega)^{-1} = \sum_{r=0}^{\infty} \frac{(-1)^r \omega^r}{(1-y)\dots(1-y^r)}.$$

Proof. Inasmuch as the proof of this lemma is very similar to that of Lemma 2.5, we leave it as an exercise to the reader. ■

We can now prove Theorem 2.2.

Proof. In Lemma 2.5, put $y = q^2$ and $\omega = q e^{2iz}$ to find

$$\begin{aligned} \prod_{n=1}^{\infty} (1 + q^{2n-1} e^{2iz}) &= \sum_{n=0}^{\infty} \frac{e^{2niz} q^{n^2}}{(1-q^2)\dots(1-q^{2n})} = \sum_{n=0}^{\infty} \frac{e^{2niz} q^{n^2} (1-q^{2n+2})(1-q^{2n+4})\dots}{(1-q^2)(1-q^4)\dots} \\ &= \left[\prod_{j=0}^{\infty} (1 - q^{2j+2})^{-1} \right] \left[\sum_{n=0}^{\infty} e^{2niz} q^{n^2} \prod_{m=0}^{\infty} (1 - q^{2n+2+2m}) \right] \\ &= \left[\prod_{j=0}^{\infty} (1 - q^{2j+2})^{-1} \right] \left[\sum_{n=-\infty}^{\infty} e^{2niz} q^{n^2} \prod_{m=0}^{\infty} (1 - q^{2n+2+2m}) \right], \end{aligned}$$

because $\prod_{m=0}^{\infty} (1 - q^{2n+2+2m})$ equals zero whenever n is a negative integer. By making use of Lemma 2.5 again but this time by putting $y = q^2$, and $\omega = -q^{2n+2}$, the last expression equals

$$\left[\prod_{j=0}^{\infty} (1 - q^{2j+2})^{-1} \right] \left[\sum_{n=-\infty}^{\infty} e^{2niz} q^{n^2} \sum_{r=0}^{\infty} \frac{(-1)^r q^{(2n+2)r+r^2-r}}{(1-q^2)\dots(1-q^{2r})} \right],$$

which can be written as

$$\left[\prod_{j=0}^{\infty} (1 - q^{2j+2})^{-1} \right] \left[\sum_{n=-\infty}^{\infty} \sum_{r=0}^{\infty} \frac{(-1)^r e^{2niz} q^{(n+r)^2+r}}{(1-q^2)\dots(1-q^{2r})} \right]$$

We can invert the double sum provided that it converges absolutely. For any fixed q such that $|q| = R$ where $R < 1$, we have

$$\begin{aligned} \left| \sum_{r=0}^{\infty} \frac{(-1)^r e^{2inz} q^{(n+r)^2+r}}{(1-q^2) \dots (1-q^{2r})} \right| &\leq \sum_{r=0}^{\infty} \frac{|e^{2inz}| R^{(n+r)^2+r}}{(1-R^2)^r} \\ &\leq |e^{2inz}| R^{n^2} \sum_{r=0}^{\infty} \frac{R^{r^2+r}}{(1-R^2)^r} = C |e^{2inz}| R^{n^2}, \end{aligned}$$

for some C independent of n . Since $\sum_{n=-\infty}^{\infty} |e^{2inz}| R^{n^2}$ is convergent, the inversion of the double sum is justified, so that

$$\prod_{n=0}^{\infty} (1 + q^{2n+1} e^{2iz}) = \left[\prod_{j=0}^{\infty} (1 - q^{2j+2})^{-1} \right] \left[\sum_{r=0}^{\infty} \frac{(-1)^r e^{-2irz} q^r}{(1-q^2) \dots (1-q^{2r})} \sum_{n=-\infty}^{\infty} e^{2i(n+r)z} q^{(n+r)^2} \right].$$

The ultimate sum being absolutely convergent, we can re-index it by changing n into $n - r$ without altering the value and the right side can be factorised as

$$\left[\prod_{j=0}^{\infty} (1 - q^{2j+2})^{-1} \right] \left[\sum_{r=0}^{\infty} \frac{(-qe^{-2iz})^r}{(1-q^2) \dots (1-q^{2r})} \right] \left[\sum_{n=-\infty}^{\infty} e^{2inz} q^{n^2} \right].$$

But now if we restrict $|qe^{-2iz}| < 1$, we can make use of Lemma 2.6, with $y = q^2$ and $\omega = qe^{-2iz}$ to deduce that

$$\prod_{n=0}^{\infty} (1 + q^{2n+1} e^{2iz}) = \left[\prod_{j=0}^{\infty} (1 - q^{2j+2})^{-1} \right] \left[\prod_{k=0}^{\infty} (1 + q^{2k+1} e^{-2iz})^{-1} \right] \left[\sum_{n=-\infty}^{\infty} e^{2inz} q^{n^2} \right],$$

i.e.

$$\sum_{n=-\infty}^{\infty} q^{n^2} e^{2inz} = \prod_{n=0}^{\infty} (1 + q^{2n+1} e^{2iz})(1 + q^{2n+1} e^{-2iz})(1 - q^{2n+2}),$$

when $|q| < 1$ and $|q| < |e^{2iz}|$. But both sides of the previous equality are entire functions of z for every fixed $|q| < 1$, by Lemma 2.4 and Remark 2.3. Since, moreover, both sides agree on a set of values of z , namely $|e^{2iz}| > |q|$, a subset of which is the open lower half z -plane, containing at least one limit point, therefore both sides agree on the entire complex z -plane for every fixed $|q| < 1$, by analytic continuation. \blacksquare

Two special cases of the Jacobi Triple Product Identity will be relevant to us.

Corollary 2.7. *For $|x| < 1$,*

$$\sum_{n=-\infty}^{\infty} (-1)^n x^{\frac{n(5n+1)}{2}} = \prod_{n=1}^{\infty} (1 - x^{5n-3})(1 - x^{5n-2})(1 - x^{5n}).$$

Proof. Let $q = e^{5\pi i u}$ and $z = (1+u)\pi/2$, where $\Im(u) > 0$, in Theorem 2.2. This gives

$$\sum_{n=-\infty}^{\infty} e^{5\pi i u n^2} e^{\pi i n(1+u)} = \prod_{n=1}^{\infty} (1 - e^{10\pi i u n})(1 + e^{5(2n-1)\pi i u + \pi i(1+u)})(1 + e^{5(2n-1)\pi i u n - \pi i(1+u)}),$$

or, letting $x = e^{2\pi i u}$,

$$\sum_{n=-\infty}^{\infty} e^{\pi i n} x^{\frac{5n^2+n}{2}} = \prod_{n=1}^{\infty} (1 - x^{5n})(1 - x^{5n-2})(1 - x^{5n-3}),$$

as desired. ■

Corollary 2.8. *For $|x| < 1$,*

$$\sum_{n=-\infty}^{\infty} (-1)^n x^{\frac{n(5n+3)}{2}} = \prod_{n=1}^{\infty} (1 - x^{5n-4})(1 - x^{5n-1})(1 - x^{5n}).$$

Proof. The proof proceeds similarly as in the last corollary, except that now we put $q = e^{5\pi i u}$ and $z = (1 + 3u)\pi/2$. ■

Remark 2.9. By absolute convergence, we find that

$$\sum_{n=-\infty}^{\infty} (-1)^n x^{\frac{n(5n+1)}{2}} = \sum_{n=-\infty}^{\infty} (-1)^n x^{\frac{n(5n-1)}{2}},$$

by changing n into $-n$, when $|x| < 1$. Similarly

$$\sum_{n=-\infty}^{\infty} (-1)^n x^{\frac{n(5n+3)}{2}} = \sum_{n=-\infty}^{\infty} (-1)^n x^{\frac{n(5n-3)}{2}}.$$

We will use these representations interchangeably in the rest of the paper without further comment.

Theorem 2.10 (Rogers-Ramanujan Identities).

$$G(q) = \prod_{n=1}^{\infty} (1 - q^{5n+1})^{-1} (1 - q^{5n+4})^{-1}, \quad H(q) = \prod_{n=1}^{\infty} (1 - q^{5n+2})^{-1} (1 - q^{5n+3})^{-1}.$$

We give a sequence of lemmas, in the first of which we define a function $\mathcal{G}(x)$ which generalises the infinite sum of Corollary 2.7 which equals $\mathcal{G}(1)$. We will subsequently find a recurrence, of a similar type as that found in the proof of 2.5, for a closely related function which will then be expressible as a series which generalises both the Rogers-Ramanujan functions $G(q)$ and $H(q)$. This will enable us to prove Theorem 2.10.

Lemma 2.11. *If, for every $x \in \mathbb{C}$, we define*

$$\mathcal{G}(x) := 1 + \sum_{n=1}^{\infty} (-1)^n x^{2n} q^{\frac{n(5n-1)}{2}} (1 - xq^{2n}) \frac{(1 - xq)(1 - xq^2) \dots (1 - xq^{n-1})}{(1 - q)(1 - q^2) \dots (1 - q^n)},$$

then

$$\mathcal{G}(x) = \sum_{n=0}^{\infty} (-1)^n x^{2n} q^{\frac{1}{2}n(5n+1)} (1 - x^2 q^{4n+2}) \frac{(1 - xq) \dots (1 - xq^n)}{(1 - q)(1 - q^2) \dots (1 - q^n)}.$$

Remark 2.12. Although we have used a similar notation, the functions \mathcal{G} and G are obviously different.

Proof.

$$\begin{aligned}\mathcal{G}(x) &= 1 + \sum_{n=1}^{\infty} (-1)^n x^{2n} q^{\frac{1}{2}n(5n-1)} \frac{(1-xq)(1-xq^2)\dots(1-xq^{n-1})}{(1-q)(1-q^2)\dots(1-q^{n-1})} \\ &\quad + \sum_{n=1}^{\infty} (-1)^n x^{2n} q^{\frac{1}{2}n(5n+1)} \frac{(1-xq)(1-xq^2)\dots(1-xq^n)}{(1-q)(1-q^2)\dots(1-q^n)}.\end{aligned}$$

By taking away the first summand of the first infinite series on the right and re-indexing, we deduce that

$$\begin{aligned}\mathcal{G}(x) &= 1 - x^2 q^2 + \sum_{n=1}^{\infty} (-1)^n \left(x^{2n} q^{\frac{n(5n+1)}{2}} - x^{2n+2} q^{\frac{(n+1)(5n+4)}{2}} \right) \frac{(1-xq)\dots(1-xq^n)}{(1-q)\dots(1-q^n)} \\ &= 1 - x^2 q^2 + \sum_{n=1}^{\infty} (-1)^n x^{2n} q^{\frac{1}{2}n(5n+1)} (1 - x^2 q^{4n+2}) \frac{(1-xq)\dots(1-xq^n)}{(1-q)(1-q^2)\dots(1-q^n)}.\end{aligned}$$

■

Lemma 2.13. For \mathcal{G} defined as in the previous lemma,

$$\frac{\mathcal{G}(x)}{1-xq} - \mathcal{G}(xq) = xq(1-xq^2)\mathcal{G}(xq^2).$$

Proof. If we denote the right side by $\mathcal{H}(x)$, then, using the previous lemma

$$\begin{aligned}\mathcal{H}(x) &= xq \\ &+ \frac{1}{1-xq} \sum_{n=1}^{\infty} \left\{ \frac{(-1)^n (1-xq)\dots(1-xq^n)}{(1-q)(1-q^2)\dots(1-q^n)} x^{2n} q^{\frac{1}{2}n(5n+1)} [(1-x^2 q^{4n+2}) - q^n (1-xq^{2n+1})] \right\} \\ &= xq + \frac{1}{1-xq} \sum_{n=1}^{\infty} (-1)^n \frac{(1-xq)\dots(1-xq^n)}{(1-q)\dots(1-q^{n-1})} x^{2n} q^{\frac{1}{2}n(5n+1)} \\ &\quad + \frac{1}{1-xq} \sum_{n=1}^{\infty} (-1)^n \frac{(1-xq)\dots(1-xq^{n+1})}{(1-q)\dots(1-q^n)} x^{2n+1} q^{\frac{1}{2}n(5n+1)+3n+1},\end{aligned}$$

where the last step has been achieved by rewriting

$$(1 - x^2 q^{4n+2}) - q^n (1 - xq^{2n+1}) = (1 - q^n) + xq^{3n+1} (1 - xq^{n+1}).$$

Now we separate the first sum in the first infinite series on the right, re-index, and deduce that

$$\begin{aligned}\mathcal{H}(x) &= xq(1-xq^2) \\ &+ \frac{1}{1-xq} \sum_{n=1}^{\infty} \frac{(-1)^n (1-xq)\dots(1-xq^{n+1})}{(1-q)\dots(1-q^n)} \left[x^{2n+1} q^{\frac{n(5n+1)}{2}+3n+1} - x^{2n+2} q^{\frac{(n+1)(5n+6)}{2}} \right] \\ &= xq(1-xq^2) \left(1 + \sum_{n=1}^{\infty} \frac{(-1)^n (1-xq^3)\dots(1-xq^{n+1})}{(1-q)\dots(1-q^n)} x^{2n} q^{\frac{n(5n+1)}{2}+3n} (1-xq^{2n+2}) \right) \\ &= xq(1-xq^2)\mathcal{G}(xq^2).\end{aligned}$$

■

Lemma 2.14. For $\mathcal{G}(x)$ as in Lemma 2.11, if $|x| \leq 1$, we have

$$\mathcal{G}(x) \prod_{n=1}^{\infty} (1 - xq^n)^{-1} = 1 + \sum_{n=1}^{\infty} \frac{x^n q^{n^2}}{(1-q) \dots (1-q^n)}.$$

Proof. Let us denote the left side by $\mathcal{F}(x)$. Then Lemma 2.13 takes the form

$$\mathcal{F}(x) = \mathcal{F}(xq) + xq\mathcal{F}(xq^2).$$

Then we find that

$$\mathcal{F}(x) = 1 + \sum_{n=1}^{\infty} \frac{x^n q^{n^2}}{(1-q) \dots (1-q^n)}.$$

We omit the last justification because the reader will have no difficulty in supplying it inasmuch as it is completely analogous to the proof of Lemma 2.5 detailed above. \blacksquare

We can now prove Theorem 2.10.

Proof. By putting $x = 1$ and $x = q$ successively in Lemma 2.14, we find, using the Rogers-Ramanujan functions defined in Definition 2.1,

$$\mathcal{G}(1) \prod_{n=1}^{\infty} (1 - q^n)^{-1} = G(q), \quad \mathcal{G}(q) \prod_{n=1}^{\infty} (1 - q^{n+1})^{-1} = H(q).$$

But now, using the definition of \mathcal{G} , given in Lemma 2.11, and Corollaries 2.7 and 2.8 we find that

$$\mathcal{G}(1) = 1 + \sum_{n=1}^{\infty} (-1)^n q^{\frac{n(5n-1)}{2}} (1+q^n) = \sum_{n=-\infty}^{\infty} (-1)^n q^{\frac{n(5n-1)}{2}} = \prod_{n=1}^{\infty} (1-q^{5n-3})(1-q^{5n-2})(1-q^{5n}),$$

and that

$$\begin{aligned} (1-q)\mathcal{G}(q) &= 1 + \sum_{n=1}^{\infty} (-1)^n q^{\frac{n(5n+3)}{2}} - q + \sum_{n=1}^{\infty} (-1)^{n+1} q^{\frac{n(5n+3)}{2}} q^{2n+1} \\ &= 1 + \sum_{n=1}^{\infty} (-1)^n q^{\frac{n(5n+3)}{2}} + \sum_{n=1}^{\infty} (-1)^n q^{\frac{n(5n-3)}{2}} = \sum_{n=-\infty}^{\infty} (-1)^n q^{\frac{n(5n-3)}{2}} \\ &= \prod_{n=1}^{\infty} (1-q^{5n-4})(1-q^{5n-1})(1-q^{5n}). \end{aligned}$$

This means that

$$G(q) = \prod_{n=1}^{\infty} (1-q^{5n-4})(1-q^{5n-1}), \quad H(q) = \prod_{n=1}^{\infty} (1-q^{5n-2})(1-q^{5n-3}).$$

\blacksquare

3. COMBINATORIAL INTERPRETATION OF THE ROGERS-RAMANUJAN IDENTITIES

The two Rogers-Ramanujan Identities proved in the last section

$$\prod_{n=1}^{\infty} (1 - q^{5n-4})(1 - q^{5n-1}) = 1 + \sum_{k=1}^{\infty} \frac{q^{k^2}}{(1 - q) \dots (1 - q^k)}$$

$$\prod_{n=1}^{\infty} (1 - q^{5n-2})(1 - q^{5n-3}) = 1 + \sum_{k=1}^{\infty} \frac{q^{k(k+1)}}{(1 - q) \dots (1 - q^k)}$$

have interesting combinatorial interpretations.

Theorem 3.1. *The number of partitions of a positive integer N into distinct parts with differences at least 2 equals the number of partitions of N into parts congruent to either 1 or 4 modulo 5.*

Proof. In

$$\prod_{n=1}^{\infty} (1 - q^{5n-4})(1 - q^{5n-1}) = 1 + \sum_{k=1}^{\infty} \frac{q^{k^2}}{(1 - q) \dots (1 - q^k)},$$

the left side is the generating function for the number of partitions of N into parts congruent to either 1 or 4 modulo 5. We must now show that the right side is the generating function for partitions of N into distinct parts with differences at least 2. The smallest such partition with k terms is

$$(2k - 1) + (2k - 3) + \dots + 3 + 1 = k^2.$$

Therefore to obtain every partition of the form

$$n_1 + n_2 + \dots + n_k$$

where $n_i > 0$ and $n_i \geq n_{i+1} + 2$ exactly once we must combine termwise¹ to $(2k - 1) + (2k - 3) + \dots + 3 + 1$ every partition of the form

$$m_1 + m_2 + \dots + m_k$$

where $m_i \geq 0$ and $m_i \geq m_{i+1}$ exactly once. The generating function for all such partitions

$$m_1 + m_2 + \dots + m_k$$

is

$$\frac{1}{(1 - q)(1 - q^2) \dots (1 - q^k)}$$

which can be seen by expanding each $(1 - q^i)^{-1}$ into a geometric series as

$$\frac{1}{1 - q^i} = 1 + q^{1+1+\dots+1} + q^{2+2+\dots+2} + q^{3+3+\dots+3} + \dots$$

where we write the exponent of q^{ij} as the sum of i copies of j , for each positive integer j , and by combining terms from any two such geometric series by termwise addition of the partitions in their exponent e.g. in $(1 - q)^{-1}(1 - q^2)^{-1}$ we combine the term q^4 , from the geometric expansion of $(1 - q)^{-1}$, with the term q^{3+3} , from the geometric expansion of $(1 - q^2)^{-1}$, by writing the resulting term as $q^{(4+3)+3} = q^{7+3}$. Therefore the generating function for the partitions

$$n_1 + n_2 + \dots + n_k$$

¹by which is meant $(2k - 1 + m_1) + (2k - 3 + m_2) + \dots + (1 + m_k)$.

is

$$\frac{q^{(2k-1)+(2k-3)+\dots+3+1}}{(1-q)\dots(1-q^k)} = \frac{q^{k^2}}{(1-q)\dots(1-q^k)}.$$

Summing over all nonnegative k , it follows that the generating function for partitions into distinct parts with difference at least 2 is given by

$$1 + \sum_{k=1}^{\infty} \frac{q^{k^2}}{(1-q)\dots(1-q^k)}.$$

■

Example. The partitions of the positive integer 9 into distinct parts with differences at least 2 are 5 in number and they are: $9 = 8 + 1 = 7 + 2 = 6 + 3 = 5 + 3 + 1$. The partitions of 9 into parts $\equiv 1, 4 \pmod{5}$ are also 5 in number and they are: $9 = 6 + 1 + 1 + 1 = 4 + 4 + 1 = 4 + 1 + 1 + 1 + 1 = 1 + 1 + \dots + 1$. As another example, the partitions of 10 into distinct parts with differences at least two are: $10 = 9 + 1 = 8 + 2 = 7 + 3 = 6 + 4 = 6 + 3 + 1$ and they are six in number, as are the partitions of 10 into parts $\equiv 1, 4 \pmod{5}$: $9 + 1 = 6 + 4 = 6 + 1 + 1 + 1 + 1 = 4 + 4 + 1 + 1 = 4 + 1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + \dots + 1$.

Theorem 3.2. *The number of partitions of N into distinct parts with differences at least 2 and with no 1's is equal to the number of partitions of N into parts congruent to either 2 or 3 modulo 5.*

Proof. The proof is similar to the previous one except that now we use the other Rogers-Ramanujan identity

$$\prod_{n=1}^{\infty} (1 - q^{5n-2})(1 - q^{5n-3}) = 1 + \sum_{k=1}^{\infty} \frac{q^{k(k+1)}}{(1-q)\dots(1-q^k)},$$

and we write

$$k(k+1) = 2 + 4 + \dots + 2k.$$

■

4. GORDON'S COMBINATORIAL GENERALIZATION

A combinatorial generalization of the Rogers-Ramanujan identities has been obtained by Basil Gordon [Gor61].

Theorem 4.1. *The number of partitions of an integer n into parts not congruent to 0, $\pm t$ mod $2d+1$, where $1 \leq t \leq d$, is equal to the number of partitions of*

$$n = n_1 + n_2 + \dots + n_k$$

with $n_i \geq n_{i+1}$ and $n_i \geq n_{i+d-1} + 2$ and $n_{k-t+1} \geq 2$.

The Rogers-Ramanujan identities are the special cases $(d, t) = (2, 1)$ and $(d, t) = (2, 2)$ of the previous theorem; for when $d = 2$ and $t = 1$, it says that the number of partitions of an integer n into parts not congruent to 0, 1, 4 mod 5 is equal to the number of partitions of

$$n = n_1 + n_2 + \dots + n_k$$

with $n_i \geq n_{i+1}$, $n_i \geq n_{i+1} + 2$, and $n_k \geq 2$, which is the combinatorial interpretation of the second Rogers-Ramanujan identity:

$$\prod_{n=1}^{\infty} (1 - q^{5n-2})(1 - q^{5n-3}) = 1 + \sum_{k=1}^{\infty} \frac{q^{k(k+1)}}{(1-q)\dots(1-q^k)}.$$

When $d = 2$ and $t = 2$ it says that the number of partitions of an integer n into parts not congruent to $0, 2, 3 \pmod{5}$ is equal to the number of partitions of

$$n = n_1 + n_2 + \dots + n_k,$$

with $n_i \geq n_{i+1}$, $n_i \geq n_{i+1} + 2$ and $n_{k-1} \geq 2$, which is the combinatorial interpretation of the first Rogers-Ramanujan identity

$$\prod_{n=1}^{\infty} (1 - q^{5n-4})(1 - q^{5n-1}) = 1 + \sum_{k=1}^{\infty} \frac{q^{k^2}}{(1-q)\dots(1-q^k)}.$$

Before proving the theorem, let us illustrate some special cases of it.

Example. When $d = 3$ and $t = 1$ it says that the number of partitions of an integer n into parts not congruent to $0, 1, 6 \pmod{7}$ is equal to the number of partitions

$$n = n_1 + n_2 + \dots + n_k$$

with $n_i \geq n_{i+1}$, $n_i \geq n_{i+2} + 2$ and $n_k \geq 2$. Thus, the partitions of 11 into parts congruent to $2, 3, 4, 5 \pmod{7}$ are $11 = 9 + 2 = 5 + 4 + 2 = 5 + 3 + 3 = 5 + 2 + 2 + 2 = 4 + 4 + 3 = 4 + 3 + 2 + 2 = 3 + 3 + 3 + 2 = 3 + 2 + 2 + 2 + 2$, which are 9 in number as are the partitions: $11 = 9 + 2 = 8 + 3 = 7 + 4 = 7 + 2 + 2 = 6 + 5 = 6 + 3 + 2 = 5 + 4 + 2 = 5 + 3 + 3$ which are those of the form $11 = n_1 + n_2 + \dots + n_k$ where $n_i \geq n_{i+2} + 2$ and $n_k \geq 2$.

Example. When $d = 3$ and $t = 2$, the theorem says that the number of partitions of n into parts not congruent to $0, 2, 5 \pmod{7}$ is equal to the number of partitions of $n = n_1 + n_2 + \dots + n_k$ where $n_i \geq n_{i+2} + 2$ and $n_{k-1} \geq 2$. Thus the partitions of 6 with parts $\equiv 1, 3, 4, 6 \pmod{7}$ are: $6 = 4 + 1 = 3 + 3 = 3 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1$ which are five in number, as are the partitions $6 = 5 + 1 = 4 + 2 = 3 + 3 = 3 + 2 + 1$ which are those of the form $9 = n_1 + n_2 + \dots + n_k$ where $n_i \geq n_{i+2} + 2$ and $n_{k-1} \geq 2$.

Example. When $d = 3$ and $t = 3$, the theorem says that the number of partitions of n into parts not congruent to $0, 3, 4 \pmod{7}$ is equal to the number of partitions of $n = n_1 + n_2 + \dots + n_k$ where $n_i \geq n_{i+2} + 2$ and $n_{k-2} \geq 2$. Thus the partitions of 6 with parts $\equiv 1, 2, 5, 6 \pmod{7}$ are: $6 = 5 + 1 = 2 + 2 + 2 = 2 + 2 + 1 + 1 = 2 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1$ which are six in number, as are the partitions $6 = 5 + 1 = 4 + 2 = 4 + 1 + 1 = 3 + 3 = 3 + 2 + 1$ which are those of the form $9 = n_1 + n_2 + \dots + n_k$ where $n_i \geq n_{i+2} + 2$ and $n_{k-2} \geq 2$.

We will now prove the theorem.

Proof of Theorem. In Theorem 2.2, let us put $q = x^{d+1/2}$ and $e^{2iz} = -x^{d-t+1/2}$ so that we get

$$\prod_{n=1}^{\infty} (1 - x^{(2d+1)n})(1 - x^{(2d+1)n-t})(1 - x^{(2d+1)n-2n-1+t}) = \sum_{m=-\infty}^{\infty} (-1)^m x^{(d+1/2)m^2 + (d-t+1/2)m}.$$

But now

$$\prod_{n=1}^{\infty} \frac{(1 - x^{(2d+1)n})(1 - x^{(2d+1)n-t})(1 - x^{(2d+1)n-2n-1+t})}{1 - x^n}$$

is the generating function for the number of partitions of N into parts not congruent to $0, \pm t$ mod $2d - 1$. It follows that, if we denote by $\phi_{dt}(x)$ the generating function for the number of partitions of N of the form $N = N_1 + \dots + N_k$ where $N_i \geq N_{i+1}$, $N_i \geq N_{i+d-1} + 2$ and $N_k - t + 1 \geq 2$, then we must prove that

$$(4.1) \quad \phi_{dt}(x) \prod_{n=1}^{\infty} (1 - x^n) = \sum_{m=-\infty}^{\infty} (-1)^m x^{(d+1/2)m^2 + (d-t+1/2)m}.$$

Now if we write

$$\phi_{dt}(x) = \sum_{n=0}^{\infty} F_{dt}(n)x^n,$$

so that $F_{dt}(n)$, for $n \geq 1$, is the number of partitions of N of the form $N = N_1 + \dots + N_k$ where $N_i \geq N_{i+1}$, $N_i \geq N_{i+d-1} + 2$ and $N_k - t + 1 \geq 2$, and $F_{dt}(0) = 1$, then if we put

$$\phi_{dt}(x) \prod_{n=1}^{\infty} (1 - x^n) = \sum_{n=0}^{\infty} c_{dt}(n)x^n,$$

we have that $c_{dt}(n) = \sum_{(a_1 \dots a_k | b_1 \dots b_l)} (-1)^k$ where the sum is over all partitions denoted by $(a_1 \dots a_k | b_1 \dots b_l)$ which is a partition of n such that

$$n = a_1 + \dots + a_k + b_1 + \dots + b_l$$

where

$$a_i \geq a_{i+1} + 1, \quad b_j \geq b_{j+1}, \quad b_j \geq b_{j+d-1} + 1, \quad b_{l-t+1} \geq 2.$$

We must show that there is a bijection between such partitions with k even and those with k odd except when n has the form

$$n = (d + 1/2)m^2 + (d - t + 1/2)m \quad \text{for } m = 0, \pm 1, \pm 2, \dots$$

and in the case where n has the latter form we will show that the number of partitions where $k \equiv m \pmod{2}$ (i.e. k has the same parity as m) exceeds the number of partitions where $k \not\equiv m \pmod{2}$ by exactly 1. This will then establish Equation 4.1, and hence the theorem. For the bijection the reader is now referred to [Gor61]. ■

REFERENCES

- [And65] {George E.} Andrews. A simple proof of jacobi's triple product identity. *Proceedings of the American Mathematical Society*, 16(2):333–334, 1965.
- [Eul51] Leonhard Euler. Observations analyticas variae de combinationibus. *Commentarii academiae scientiarum Petropolitanae*, pages 64–93, 1751.
- [Gor61] Basil Gordon. A combinatorial generalization of the Rogers-Ramanujan identities. *Am. J. Math.*, 83:393–399, 1961.
- [RR19] L. J. Rogers and S. Ramanujan. Proof of certain identities in combinatory analysis. *Proc. Camb. Philos. Soc.*, 19:211–216, 1919.