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FINROD FELAGUND

Abstract. The Rogers-Ramanujan identities are proved analytically and their combina-
torial interpretation in terms of congruences is subsequently given. Gordon’s combinatorial
generalization of these identities is then stated.

1. Introduction

The Rogers-Ramanujan identities are the following two relations between infinite products
and infinite series:

∞∏
n=1

1

(1− q5n+1)(1− q5n+4)
= 1 +

∞∑
k=1

qk
2

(1− q) . . . (1− qk)

∞∏
n=1

1

(1− q5n+2)(1− q5n+3)
= 1 +

∞∑
k=1

qk(k+1)

(1− q) . . . (1− qk)
.

An analytical proof due to Rogers and Ramanujan is given in [RR19]. The left sides have
obvious combinatorial interpretations. For example,

∏∞
n=1

1
(1−q5n+1)(1−q5n+4)

is the generating

function for the number of partitions into parts congruent to 1 or 4 mod 5. The combina-

torial meanings of the right sides are less obvious but it turns out that 1+
∑∞

k=1
qk

2

(1−q)...(1−qk)

is the generating function for the number of partitions with differences at least two. Sim-

ilarly, 1 +
∑∞

k=1
qk(k+1)

(1−q)...(1−qk)
counts the number of partitions into parts with differences at

least 2 and with no 1’s. The Rogers-Ramanujan identities have the following combinatorial
generalization due to Gordon [Gor61]: The number of partitions of an integer n into parts
not congruent to 0,±t mod 2d+1, where 1 ≤ t ≤ d, is equal to the number of partitions of

n = n1 + n2 + · · ·+ nk

with ni ≥ ni+1 and ni ≥ ni+d−1 + 2 and nk−t+1 ≥ 2.

2. The Rogers-Ramanujan Identities

Definition 2.1 (Rogers-Ramanujan functions).

G(q) := 1 +
∞∑
k=1

qk
2

(1− q) . . . (1− qk)

H(q) := 1 +
∞∑
k=1

qk(k+1)

(1− q) . . . (1− qk)
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Of fundamental importance in both the analytical proof of the Rogers-Ramanujan identi-
ties and Gordon’s combinatorial generalization is the Jacobi Triple Product Identity.

Theorem 2.2 (Jacobi Triple Product Identity). For all z ∈ C, and all |q| < 1,
∞∑

n=−∞

qn
2

e2niz =
∞∏
n=1

(1− q2n)(1 + q2n−1e2iz)(1 + q2n−1e−2iz).

Remark 2.3. If we denote ℑ(τ) = t > 0 and we suppose that |z| ≤ M for arbitrary positive
real numbers M , then

|
∞∑

n=−∞

qn
2

e2niz| ≤
∞∑

n=−∞

|eπiτn2+2niz| ≤
∞∑

n=−∞

e−πtn2+2nM .

Since the last series converges, it follows that
∑∞

n=−∞ qn
2
e2niz is an entire function of z for

every fixed ℑ(τ) > 0, and is a holomorphic function of q in the unit disk |q| < 1 for every
fixed z ∈ C.

We will give a short proof [And65] of Theorem 2.2 by first proving two lemmas due to
Euler [Eul51] after discussing the holomorphic properties of an infinite product.

Lemma 2.4. Let us denote the infinite product
∏∞

m=0(1+ymω) by F (ω) when |y| < 1. Then
F (ω) is an entire function of ω for every fixed |y| < 1.

Proof. Let |ω| < M for an arbitrary positive real number M . Since |y| < 1, there exists
a minimum non-negative integer M0 for which M |y|m < 1

2
whenever m > M0. For every

m > M0, we have, if we make use of the principal branch of the logarithm,

| log (1 + ωym)| ≤ M |y|m
∞∑
n=1

Mn−1|y|m(n−1)

n
≤ M |y|m

∞∑
n=1

1

n · 2n−1
≤ 2M |y|m

and since
∑∞

m=M0+1 |y|m converges, it follows that
∑∞

m=M0+1 log (1 + ymω) is holomorphic
on |ω| < M if |y| < 1 is fixed. From this it follows that

exp

(
∞∑

m=M0+1

log (1 + ymω)

)
=

∞∏
m=M0+1

(1 + ymω),

and hence
∏∞

m=0(1 + ymω), is an entire function of ω for every fixed |y| < 1. ■

Lemma 2.5. For all ω ∈ C and all y such that |y| < 1, we have
∞∏

m=0

(1 + ymω) =
∞∑
r=0

y
r(r−1)

2 ωr

(1− y) . . . (1− yr)
.

Proof. We denote the Taylor expansion of the left side, which, by the previous lemma, is an
entire function of ω provided that |y| < 1, by

(2.1) F (ω) =
∞∑
n=0

anω
n.

Then it immediately follows that a0 = 1. But now

F (ωy) =
∞∏

m=0

(1 + ωym+1),
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so that

(1 + ω)F (ωy) = F (ω).

Therefore
∞∑
n=0

anω
nyn +

∞∑
n=1

an−1ω
nyn−1 =

∞∑
n=0

anω
n.

Equating coefficients of ω on both sides gives

any
n + an−1y

n−1 = an,

so that we have the recurrence relation

an =
an−1y

n−1

1− yn

for n ≥ 1. Since a0 = 1, it follows that

an =
y0+1+···+(n−1)

(1− y) · · · (1− yn)
=

yn(n−1)/2

(1− y) . . . (1− yn)
.

The lemma now follows by replacing this value of an in (2.1). ■

Lemma 2.6. For all |y| < 1 and |ω| < 1, we have
∞∏

m=0

(1 + ymω)−1 =
∞∑
r=0

(−1)rωr

(1− y) . . . (1− yr)
.

Proof. Inasmuch as the proof of this lemma is very similar to that of Lemma 2.5, we leave
it as an exercise to the reader. ■

We can now prove Theorem 2.2.

Proof. In Lemma 2.5, put y = q2 and ω = qe2iz to find
∞∏
n=1

(1 + q2n−1e2iz) =
∞∑
n=0

e2nizqn
2

(1− q2) . . . (1− q2n)
=

∞∑
n=0

e2nizqn
2
(1− q2n+2)(1− q2n+4) . . .

(1− q2)(1− q4) . . .

=

[
∞∏
j=0

(1− q2j+2)−1

][
∞∑
n=0

e2nizqn
2

∞∏
m=0

(1− q2n+2+2m)

]

=

[
∞∏
j=0

(1− q2j+2)−1

][
∞∑

n=−∞

e2nizqn
2

∞∏
m=0

(1− q2n+2+2m),

]
because

∏∞
m=0(1 − q2n+2+2m) equals zero whenever n is a negative integer. By making use

of Lemma 2.5 again but this time by putting y = q2, and ω = −q2n+2, the last expression
equals [

∞∏
j=0

(1− q2j+2)−1

][
∞∑

n=−∞

e2nizqn
2

∞∑
r=0

(−1)rq(2n+2)r+r2−r

(1− q2) . . . (1− q2r)

]
,

which can be written as[
∞∏
j=0

(1− q2j+2)−1

][
∞∑

n=−∞

∞∑
r=0

(−1)re2nizq(n+r)2+r

(1− q2) . . . (1− q2r)
.

]
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We can invert the double sum provided that it converges absolutely. For any fixed q such
that |q| = R where R < 1, we have∣∣∣∣∣

∞∑
r=0

(−1)re2inzq(n+r)2+r

(1− q2) . . . (1− q2r)

∣∣∣∣∣ ≤
∞∑
r=0

|e2inz|R(n+r)2+r

(1−R2)r

≤ |e2inz|Rn2
∞∑
r=0

Rr2+r

(1−R2)r
= C|e2inz|Rn2

,

for some C independent of n. Since
∑∞

n=−∞ |e2inz|Rn2
is convergent, the inversion of the

double sum is justified, so that

∞∏
n=0

(1 + q2n+1e2iz) =

[
∞∏
j=0

(1− q2j+2)−1

][
∞∑
r=0

(−1)re−2irzqr

(1− q2) . . . (1− q2r)

∞∑
n=−∞

e2i(n+r)zq(n+r)2

]
.

The ultimate sum being absolutely convergent, we can re-index it by changing n into n− r
without altering the value and the right side can be factorised as[

∞∏
j=0

(1− q2j+2)−1

][
∞∑
r=0

(−qe−2iz)r

(1− q2) . . . (1− q2r)

][
∞∑

n=−∞

e2inzqn
2

]
.

But now if we restrict |qe−2iz| < 1, we can make use of Lemma 2.6, with y = q2 and
ω = qe−2iz to deduce that

∞∏
n=0

(1 + q2n+1e2iz) =

[
∞∏
j=0

(1− q2j+2)−1

][
∞∏
k=0

(1 + q2n+1e−2iz)−1

][
∞∑

n=−∞

e2inzqn
2

]
,

i.e.
∞∑

n=−∞

qn
2

e2inz =
∞∏
n=0

(1 + q2n+1e2iz)(1 + q2n+1e−2iz)(1− q2n+2),

when |q| < 1 and |q| < |e2iz|. But both sides of the previous equality are entire functions of
z for every fixed |q| < 1, by Lemma 2.4 and Remark 2.3. Since, moreover, both sides agree
on a set of values of z, namely |e2iz| > |q|, a subset of which is the open lower half z-plane,
containing at least one limit point, therefore both sides agree on the entire complex z-plane
for every fixed |q| < 1, by analytic continuation. ■

Two special cases of the Jacobi Triple Product Identity will be relevant to us.

Corollary 2.7. For |x| < 1,

∞∑
n=−∞

(−1)nx
n(5n+1)

2 =
∞∏
n=1

(1− x5n−3)(1− x5n−2)(1− x5n).

Proof. Let q = e5πiu and z = (1 + u)π/2, where ℑ(u) > 0, in Theorem 2.2. This gives

∞∑
n=−∞

e5πiun
2

eπin(1+u) =
∞∏
n=1

(1− e10πiun)(1 + e5(2n−1)πiu+πi(1+u))(1 + e5(2n−1)πiun−πi(1+u)),



5

or, letting x = e2πiu,

∞∑
n=−∞

eπinx
5n2+n

2 =
∞∏
n=1

(1− x5n)(1− x5n−2)(1− x5n−3),

as desired.
■

Corollary 2.8. For |x| < 1,

∞∑
n=−∞

(−1)nx
n(5n+3)

2 =
∞∏
n=1

(1− x5n−4)(1− x5n−1)(1− x5n).

Proof. The proof proceeds similarly as in the last corollary, except that now we put q = e5πiu

and z = (1 + 3u)π/2. ■

Remark 2.9. By absolute convergence, we find that

∞∑
n=−∞

(−1)nx
n(5n+1)

2 =
∞∑

n=−∞

(−1)nx
n(5n−1)

2 ,

by changing n into −n, when |x| < 1. Similarly

∞∑
n=−∞

(−1)nx
n(5n+3)

2 =
∞∑

n=−∞

(−1)nx
n(5n−3)

2 .

We will use these representations interchangeably in the rest of the paper without further
comment.

Theorem 2.10 (Rogers-Ramanujan Identities).

G(q) =
∞∏
n=1

(1− q5n+1)−1(1− q5n+4)−1, H(q) =
∞∏
n=1

(1− q5n+2)−1(1− q5n+3)−1.

We give a sequence of lemmas, in the first of which we define a function G(x) which
generalises the infinite sum of Corollary 2.7 which equals G(1). We will subsequently find a
recurrence, of a similar type as that found in the proof of 2.5, for a closely related function
which will then be expressible as a series which generalises both the Rogers-Ramanujan
functions G(q) and H(q). This will enable us to prove Theorem 2.10.

Lemma 2.11. If, for every x ∈ C, we define

G(x) := 1 +
∞∑
n=1

(−1)nx2nq
n(5n−1)

2 (1− xq2n)
(1− xq)(1− xq2) . . . (1− xqn−1)

(1− q)(1− q2) . . . (1− qn)
,

then

G(x) =
∞∑
n=0

(−1)nx2nq
1
2
n(5n+1)(1− x2q4n+2)

(1− xq) . . . (1− xqn)

(1− q)(1− q2) . . . (1− qn)
.

Remark 2.12. Although we have used a similar notation, the functions G and G are obviously
different.
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Proof.

G(x) = 1 +
∞∑
n=1

(−1)nx2nq
1
2
n(5n−1) (1− xq)(1− xq2) . . . (1− xqn−1)

(1− q)(1− q2) . . . (1− qn−1)

+
∞∑
n=1

(−1)nx2nq
1
2
n(5n+1) (1− xq)(1− xq2) . . . (1− xqn)

(1− q)(1− q2) . . . (1− qn)
.

By taking away the first summand of the first infinite series on the right and re-indexing, we
deduce that

G(x) = 1− x2q2 +
∞∑
n=1

(−1)n
(
x2nq

n(5n+1)
2 − x2n+2q

(n+1)(5n+4)
2

) (1− xq) . . . (1− xqn)

(1− q) . . . (1− qn)

= 1− x2q2 +
∞∑
n=1

(−1)nx2nq
1
2
n(5n+1)(1− x2q4n+2)

(1− xq) . . . (1− xqn)

(1− q)(1− q2) . . . (1− qn)
.

■

Lemma 2.13. For G defined as in the previous lemma,

G(x)
1− xq

− G(xq) = xq(1− xq2)G(xq2).

Proof. If we denote the right side by H(x), then, using the previous lemma

H(x) = xq

+
1

1− xq

∞∑
n=1

{
(−1)n(1− xq) . . . (1− xqn)

(1− q)(1− q2) . . . (1− qn)
x2nq

1
2
n(5n+1)

[
(1− x2q4n+2)− qn(1− xq2n+1)

]}

= xq +
1

1− xq

∞∑
n=1

(−1)n
(1− xq) . . . (1− xqn)

(1− q) . . . (1− qn−1)
x2nq

1
2
n(5n+1)

+
1

1− xq

∞∑
n=1

(−1)n
(1− xq) . . . (1− xqn+1)

(1− q) . . . (1− qn)
x2n+1q

1
2
n(5n+1)+3n+1,

where the last step has been achieved by rewriting

(1− x2q4n+2)− qn(1− xq2n+1) = (1− qn) + xq3n+1(1− xqn+1).

Now we separate the first sum in the first infinite series on the right, re-index, and deduce
that

H(x) = xq(1− xq2)

+
1

1− xq

∞∑
n=1

(−1)n(1− xq) . . . (1− xqn+1)

(1− q) . . . (1− qn)

[
x2n+1q

n(5n+1)
2

+3n+1 − x2n+2q
(n+1)(5n+6)

2

]
= xq(1− xq2)

(
1 +

∞∑
n=1

(−1)n(1− xq3) . . . (1− xqn+1)

(1− q) . . . (1− qn)
x2nq

n(5n+1)
2

+3n(1− xq2n+2)

)
= xq(1− xq2)G(xq2).

■
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Lemma 2.14. For G(x) as in Lemma 2.11, if |x| ≤ 1, we have

G(x)
∞∏
n=1

(1− xqn)−1 = 1 +
∞∑
n=1

xnqn
2

(1− q) . . . (1− qn)
.

Proof. Let us denote the left side by F(x). Then Lemma 2.13 takes the form

F(x) = F(xq) + xqF(xq2).

Then we find that

F(x) = 1 +
∞∑
n=1

xnqn
2

(1− q) . . . (1− qn)
.

We omit the last justification because the reader will have no difficulty in supplying it
inasmuch as it is completely analogous to the proof of Lemma 2.5 detailed above. ■

We can now prove Theorem 2.10.

Proof. By putting x = 1 and x = q successively in Lemma 2.14, we find, using the Rogers-
Ramanujan functions defined in Definition 2.1,

G(1)
∞∏
n=1

(1− qn)−1 = G(q), G(q)
∞∏
n=1

(1− qn+1)−1 = H(q).

But now, using the definition of G, given in Lemma 2.11, and Corollaries 2.7 and 2.8 we find
that

G(1) = 1+
∞∑
n=1

(−1)nq
n(5n−1)

2 (1+qn) =
∞∑

n=−∞

(−1)nq
n(5n−1)

2 =
∞∏
n=1

(1−q5n−3)(1−q5n−2)(1−q5n),

and that

(1− q)G(q) = 1 +
∞∑
n=1

(−1)nq
n(5n+3)

2 − q +
∞∑
n=1

(−1)n+1q
n(5n+3)

2 q2n+1

= 1 +
∞∑
n=1

(−1)nq
n(5n+3)

2 +
∞∑
n=1

(−1)nq
n(5n−3)

2 =
∞∑

n=−∞

(−1)nq
n(5n−3)

2

=
∞∏
n=1

(1− q5n−4)(1− q5n−1)(1− q5n).

This means that

G(q) =
∞∏
n=1

(1− q5n−4)(1− q5n−1), H(q) =
∞∏
n=1

(1− q5n−2)(1− q5n−3).

■
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3. Combinatorial Interpretation of the Rogers-Ramanujan Identities

The two Rogers-Ramanujan Identities proved in the last section
∞∏
n=1

(1− q5n−4)(1− q5n−1) = 1 +
∞∑
k=1

qk
2

(1− q) . . . (1− qk)

∞∏
n=1

(1− q5n−2)(1− q5n−3) = 1 +
∞∑
k=1

qk(k+1)

(1− q) . . . (1− qk)

have interesting combinatorial interpretations.

Theorem 3.1. The number of partitions of a positive integer N into distinct parts with
differences at least 2 equals the number of partitions of N into parts congruent to either 1 or
4 modulo 5.

Proof. In
∞∏
n=1

(1− q5n−4)(1− q5n−1) = 1 +
∞∑
k=1

qk
2

(1− q) . . . (1− qk)
,

the left side is the generating function for the number of partitions of N into parts congruent
to either 1 or 4 modulo 5. We must now show that the right side is the generating function
for partitions of N into distinct parts with differences at least 2. The smallest such partition
with k terms is

(2k − 1) + (2k − 3) + · · ·+ 3 + 1 = k2.

Therefore to obtain every partition of the form

n1 + n2 + · · ·+ nk

where ni > 0 and ni ≥ ni+1 +2 exactly once we must combine termwise1 to (2k− 1)+ (2k−
3) + · · ·+ 3 + 1 every partition of the form

m1 +m2 + · · ·+mk

where mi ≥ 0 and mi ≥ mi+1 exactly once. The generating function for all such partitions

m1 +m2 + · · ·+mk

is
1

(1− q)(1− q2) . . . (1− qk)

which can be seen by expanding each (1− qi)−1 into a geometric series as

1

1− qi
= 1 + q1+1+···+1 + q2+2+···+2 + q3+3+···+3 + . . .

where we write the exponent of qij as the sum of i copies of j, for each positive integer j, and
by combining terms from any two such geometric series by termwise addition of the partitions
in their exponent e.g. in (1 − q)−1(1 − q2)−1 we combine the term q4, from the geometric
expansion of (1 − q)−1, with the term q3+3, from the geometric expansion of (1 − q2)−1,
by writing the resulting term as q(4+3)+3 = q7+3. Therefore the generating function for the
partitions

n1 + n2 + · · ·+ nk

1by which is meant (2k − 1 +m1) + (2k − 3 +m2) + · · ·+ (1 +mk).
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is
q(2k−1)+(2k−3)+···+3+1

(1− q) . . . (1− qk)
=

qk
2

(1− q) . . . (1− qk)
.

Summing over all nonnegative k, it follows that the generating function for partitions into
distinct parts with difference at least 2 is given by

1 +
∞∑
k=1

qk
2

(1− q) . . . (1− qk)
.

■

Example. The partitions of the positive integer 9 into distinct parts with differences at least
2 are 5 in number and they are: 9 = 8 + 1 = 7 + 2 = 6 + 3 = 5 + 3 + 1. The partitions of 9
into parts ≡ 1, 4 mod 5 are also 5 in number and they are: 9 = 6 + 1+ 1+ 1 = 4+ 4+ 1 =
4+ 1+ 1+ 1+ 1+ 1 = 1+ 1+ · · ·+1. As another example, the partitions of 10 into distinct
parts with differences at least two are: 10 = 9 + 1 = 8 + 2 = 7 + 3 = 6 + 4 = 6 + 3 + 1 and
they are six in number, as are the partitions of 10 into parts ≡ 1, 4 mod 5: 9 + 1 = 6+ 4 =
6 + 1 + 1 + 1 + 1 = 4 + 4 + 1 + 1 = 4 + 1 + 1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + · · ·+ 1.

Theorem 3.2. The number of partitions of N into distinct parts with differences at least 2
and with no 1’s is equal to the number of partitions of N into parts congruent to either 2 or
3 modulo 5.

Proof. The proof is similar to the previous one except that now we use the other Rogers-
Ramanujan identity

∞∏
n=1

(1− q5n−2)(1− q5n−3) = 1 +
∞∑
k=1

qk(k+1)

(1− q) . . . (1− qk)
,

and we write

k(k + 1) = 2 + 4 + · · ·+ 2k.

■

4. Gordon’s Combinatorial Generalization

A combinatorial generalization of the Rogers-Ramanujan identities has been obtained by
Basil Gordon [Gor61].

Theorem 4.1. The number of partitions of an integer n into parts not congruent to 0,±t
mod 2d+ 1, where 1 ≤ t ≤ d, is equal to the number of partitions of

n = n1 + n2 + · · ·+ nk

with ni ≥ ni+1 and ni ≥ ni+d−1 + 2 and nk−t+1 ≥ 2.

The Rogers-Ramanujan identities are the special cases (d, t) = (2, 1) and (d, t) = (2, 2) of
the previous theorem; for when d = 2 and t = 1, it says that the number of partitions of an
integer n into parts not congruent to 0, 1, 4 mod 5 is equal to the number of partitions of

n = n1 + n2 + · · ·+ nk
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with ni ≥ ni+1, ni ≥ ni+1 + 2, and nk ≥ 2, which is the combinatorial interpretation of the
second Rogers-Ramanujan identity:

∞∏
n=1

(1− q5n−2)(1− q5n−3) = 1 +
∞∑
k=1

qk(k+1)

(1− q) . . . (1− qk)
.

When d = 2 and t = 2 it says that the number of partitions of an integer n into parts not
congruent to 0, 2, 3 mod 5 is equal to the number of partitions of

n = n1 + n2 + · · ·+ nk,

with ni ≥ ni+1, ni ≥ ni+1 + 2 and nk−1 ≥ 2, which is the combinatorial interpretation of the
first Rogers-Ramanujan identity

∞∏
n=1

(1− q5n−4)(1− q5n−1) = 1 +
∞∑
k=1

qk
2

(1− q) . . . (1− qk)
.

Before proving the the theorem, let us illustrate some special cases of it.

Example. When d = 3 and t = 1 it says that the number of partitions of an integer n into
parts not congruent to 0, 1, 6 mod 7 is equal to the number of partitions

n = n1 + n2 + · · ·+ nk

with ni ≥ ni+1, ni ≥ ni+2 + 2 and nk ≥ 2. Thus, the partitions of 11 into parts congruent
to 2, 3, 4, 5 mod 7 are 11 = 9 + 2 = 5 + 4 + 2 = 5 + 3 + 3 = 5 + 2 + 2 + 2 = 4 + 4 + 3 =
4+3+2+2 = 3+3+3+2 = 3+2+2+2+2, which are 9 in number as are the partitions:
11 = 9 + 2 = 8 + 3 = 7 + 4 = 7 + 2 + 2 = 6 + 5 = 6 + 3 + 2 = 5 + 4 + 2 = 5 + 3 + 3 which
are those of the form 11 = n1 + n2 + · · ·+ nk where ni ≥ ni+2 + 2 and nk ≥ 2.

Example. When d = 3 and t = 2, the theorem says that the number of partitions of n into
parts not congruent to 0, 2, 5 mod 7 is equal to the number of partitions of n = n1 + n2 +
· · · + nk where ni ≥ ni+2 + 2 and nk−1 ≥ 2. Thus the partitions of 6 with parts ≡ 1, 3, 4, 6
mod 7 are: 6 = 4 + 1 = 3 + 3 = 3 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 which are five in
number, as are the partitions 6 = 5 + 1 = 4 + 2 = 3 + 3 = 3 + 2 + 1 which are those of the
form 9 = n1 + n2 + · · ·+ nk where ni ≥ ni+2 + 2 and nk−1 ≥ 2.

Example. When d = 3 and t = 3, the theorem says that the number of partitions of n into
parts not congruent to 0, 3, 4 mod 7 is equal to the number of partitions of n = n1 + n2 +
· · · + nk where ni ≥ ni+2 + 2 and nk−2 ≥ 2. Thus the partitions of 6 with parts ≡ 1, 2, 5, 6
mod 7 are: 6 = 5+ 1 = 2+ 2+ 2 = 2+ 2+ 1+ 1 = 2+ 1+ 1+ 1+ 1 = 1+ 1+ 1+ 1+ 1+ 1
which are six in number, as are the partitions 6 = 5+1 = 4+2 = 4+1+1 = 3+3 = 3+2+1
which are those of the form 9 = n1 + n2 + · · ·+ nk where ni ≥ ni+2 + 2 and nk−2 ≥ 2.

We will now prove the theorem.

Proof of Theorem. In Theorem 2.2, let us put q = xd+1/2 and e2iz = −xd−t+1/2 so that we
get

∞∏
n=1

(1− x(2d+1)n)(1− x(2d+1)n−t)(1− x(2d+1)n−2n−1+t) =
∞∑

m=−∞

(−1)mx(d+1/2)m2+(d−t+1/2)m.
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But now
∞∏
n=1

(1− x(2d+1)n)(1− x(2d+1)n−t)(1− x(2d+1)n−2n−1+t)

1− xn

is the generating function for the number of partitions of N into parts not congruent to 0,±t
mod 2d − 1. It follows that, if we denote by ϕdt(x) the generating function for the number
of partitions of N of the form N = N1 + · · · + Nk where Ni ≥ Ni+1, Ni ≥ Ni+d−1 + 2 and
Nk − t+ 1 ≥ 2, then we must prove that

(4.1) ϕdt(x)
∞∏
n=1

(1− xn) =
∞∑

m=−∞

(−1)mx(d+1/2)m2+(d−t+1/2)m.

Now if we write

ϕdt(x) =
∞∑
n=0

Fdt(n)x
n,

so that Fdt(n), for n ≥ 1, is the number of partitions of N of the form N = N1 + · · · + Nk

where Ni ≥ Ni+1, Ni ≥ Ni+d−1 + 2 and Nk − t+ 1 ≥ 2, and Fdt(0) = 1, then if we put

ϕdt(x)
∞∏
n=1

(1− xn) =
∞∑
n=0

cdt(n)x
n,

we have that cdt(n) =
∑

(a1...ak|b1...bl)(−1)k where the sum is over all partitions denoted by

(a1 . . . ak|b1 . . . bl) which is a partition of n such that

n = a1 + · · ·+ ak + b1 + · · ·+ bl

where
ai ≥ ai+1 + 1, bj ≥ bj+1, bj ≥ bj+d−1 + 1, bl−t+1 ≥ 2.

We must show that there is a bijection between such partitions with k even and those with
k odd except when n has the form

n = (d+ 1/2)m2 + (d− t+ 1/2)m for m = 0,±1,±2, . . .

and in the case where n has the latter form we will show that the number of partitions where
k ≡ m mod 2 (i.e. k has the same parity as m) exceeds the number of partitions where
k ̸≡ m mod 2 by exactly 1. This will then establish Equation 4.1, and hence the theorem.
For the bijection the reader is now referred to [Gor61]. ■
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