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Abstract

A permutation o € S,, contains a pattern m € Sy, if some k-term subsequence of ¢ has
the same relative order as 7. If this isn’t the case, then o avoids w. After going through the
basic definitions, we will prove all patterns of length 3 are Wilf-equivalent. And for our main
result, we prove that | Av,,(123)| = C,, using a recursive argument, and hence all patterns 7
of length 3 follow | Av,,(7)| = C,,.

1 Basic definitions and symmetries

A permutation of [n] = {1,2,...,n} is a bijection o : [n] — [n], written in one-line notation
o = 0102 ---0,. Given a sequence of distinct numbers w = (wy,...,wy), its standardization
std(w) € S is the unique permutation with the same relative order as w.

Definition 1.1 (Pattern containment). Fix = € Sk. A permutation o € S,, contains 7 if there
exist indices 1 < i; < ig < --- < < n such that std(oy,,...,0;,) = 7. Otherwise, o avoids .
We write Av, (1) = {0 € S, : 0 avoids 7}, and Av(m) = U,,>0 Ava (7).

Definition 1.2 (Wilf equivalence). Let 7 and o be permutations (patterns). For each n > 0, let
Av, () = {7 € S, : T avoids the pattern 7},
We say that m and o are Wilf equivalent if
| Avp ()| = | Avp(o)] for all n > 0.

Essentially, 7 and o are Wilf equivalent if, for every n, the number of permutations of length n
avoiding 7 and o are the same.

Example 1.3. The permutation 4251 3 contains the pattern 213 via the subsequence 4, 2,5
(relative order 2,1, 3). It avoids 123 since there is no strictly increasing subsequence of length 3
read left-to-right.

We use three standard involutive symmetries on S,:
o Reverse r(0); = ony1—; (read right-to-left);
o Complement c(o) replaces each value by n + 1 — ;
o Inverse i(c) = o' (swap positions and values).

Each symmetry respects containment: ¢ avoids « iff f(o) avoids f(n) for f € {r,c,i} and their
compositions.

Lemma 1.4. For any pattern m and f in the group generated by r,c,i, | Avy(m)| = | Avy,(f(7))]
for all n.

Remark 1.5. For length 3, the symmetries split S5 into two orbits: {123,321} and {132, 213,231, 312}.
It is a classical theorem of Simion—Schmidt that all six length-3 patterns are nevertheless Wilf-
equivalent (equinumerous avoidance classes). We prove this in the next section.



2 The Simion—Schmidt bijection

Theorem 2.1. For every n > 1 there is a bijection
D Av,(123) — Av,(132),

Proof. For 0 = ajas...a, € Sy, a position i is a left-to-right mintmum (LR-minimum) if a; < a;
for all j < 4. Let the LR-minima of ¢ be at positions

1:i1<i2<--~<ik, mj = Q-

Then mi > mg > - -+ > my, and we can write
0 =mjwymaws ... My Wk,
where each wj is the (possibly empty) block of entries strictly between m; and mj41 (or to the
end).
Step 1: Structure of 123-avoiders.
Lemma 2.2. If 0 € Av,,(123), then each block w; is strictly decreasing from left to right.

Proof. Fix j and consider positions i; +1,...,%j41 — 1. No element smaller than m; can appear
there (otherwise m; would not be an LR-minimum), so every element of w; is > m;. If w;
contained p < ¢ with a, < a4, then

aij

=m; < ap < ag, 1j <p<q,

would be an occurrence of 123, contradicting o € Av,(123). Thus wj; is strictly decreasing. [

Step 2: Our definition of &.
Let 0 = ajaz...a, € Av,(123). We construct 7 = byby...b, = ®(0) as follows.
Maintain:

2z = current LR-minimum among ag, ..., a;, U = {values already used among by, ...,b;}.

Initialize:
b1 = ai, T = aj, U .= {al}.

Fori=2,3,...,n:
e If a; < z (a new LR-minimum of o), set

b =a;, x==a;, UZUU{CL,‘}.

o If a; > x (not an LR-minimum), set

bi=min{t:t >z, t ¢U}, U=UU/{b}.

Lemma 2.3. The sequence T is a permutation of {1,...,n} and has the same LR-minima
(positions and values) as o.

Proof. By construction each b; € {1,...,n} and we never reuse a value, so 7 is a permutation.
We show by induction on ¢ that after step ¢, the LR-minima among positions 1,...,7 coincide
for o and 7, with the same values.

For ¢« = 1 this is clear. Suppose it holds up to i.

If a;11 < x, then a;41 is the new minimum among aq, ..., a;+1, s0 ¢ + 1 is an LR-minimum
of o; we set b;y1 = a;4+1 and update x := a;4+1, so i + 1 is an LR-minimum of 7 with the same
value.

If ajy1 > =z, then a;41 is not an LR-minimum of ¢, and we choose b;+1 > x, so i + 1 is not
an LR-minimum of 7. Thus LR-minima positions and values match at every step. O



Hence, if
g =m1wimawy ... Mk Wk,

we can also write
T =mywimawh ... mpwy

for some blocks w}.

Lemma 2.4. For 7 = ®(0), each block w;- is strictly increasing from left to right.

Proof. Fix j. For positions in w} (between i; and ij41), the current LR-minimum « equals m;
and never changes. Each time we are in this block we apply the second case and set

by =min{t: t >m;, t ¢ U}.

Thus the values assigned in w§~ are taken in strictly increasing order, so w;- is strictly increasing.
O

Step 3: Characterization of 123- and 132-avoidance by blocks.

Lemma 2.5. Let m = myvimaus ... mpur be a permutation written by LR-minima and blocks.
1. m € Av,,(123) if and only if each v; is strictly decreasing.
2. m € Avy,(132) if and only if each vj is strictly increasing.

Proof. (1) The “only if” direction is Lemma Conversely, if each v; is decreasing, any triple
entirely inside some v; has pattern 321, 231, or 213, never 123. If a triple uses m; and two
elements of v;, those two are decreasing, so again cannot form 123 with m; as the smallest. If a
triple uses entries from different blocks, the LR-minima strictly decrease (m; > mg > ...), so
the smallest element comes from the latest block, and the relative order of the other two cannot
give 123 with indices i < j < k. Hence it follows that no 123-pattern appears.

(2) The argument is analogous. If each v; is increasing, no three indices inside one block give
132 (they give 123 or 231). If a triple includes m; and two elements of v;, then m; is the smallest,
and the other two are increasing, so again one does not get 132. If indices lie in different blocks,
the smallest value must come from the latest LR-minimum among them, and a case check shows
this cannot yield b; < by < b; with @ < 7 < k. Conversely, if some v; is not increasing, there
exist p < ¢ in that block with 7, > 7, and m;, < m, < 7, giving a 132-pattern (m;,, 7p, 7y). O

Step 4: Bijectivity.
For o € Av,,(123) write
O =Miwimaawsy ... MEWgk

by LR-minima and blocks; by Lemma each wj is strictly decreasing. Thus ® (o) has the same
LR-minima and each block strictly increasing, so by Lemma [2.5(2) we have ®(c) € Av,(132),
ie. ®: Av,(123) — Av,,(132) is well-defined. Conversely, for 7 € Av,(132) with decomposition
T = mav1mauy ... vy (each v; increasing), define V(1) by keeping the same LR-minima and
rewriting each block v; in decreasing order; then by Lemma we get U(7) € Av,(123). We
It is immediate that ¥(®(c)) = o and ®(¥(7)) = 7 for all 0 and 7, so ¥ = &~ and ® is a
bijection between Av,(123) and Av,(132).

O



3 Catalan Enumeration
Theorem 3.1. For n >0, the numbers A, = | Av,,(132)| satisfy
Ay =1

and, for everymn > 1,

Ay = Z Ak—lAn—k- (1)
k=1

Consequently, A, is the n-th Catalan number

c — 1 <2n>
n+1\n

Proof. We prove this by decomposing a 132-avoiding permutation according to the position of
its largest element n, and inducting.

Step 1: The base case

For n = 0, there is exactly one permutation of the empty set, which vacuously avoids every
pattern. Thus Ay = 1.

Step 2: Decomposition by the position of n

Fix n > 1 and let m € Av,,(132). Let k be the position of the largest element n in 7. We write 7

in the form
m=LnR,

where
o L is the block of the first &k — 1 entries (to the left of n),

e R is the block of the last n — k entries (to the right of n).

Step 3: Key lemma

Lemma 3.2. Let m € Av,(132), and let 1 = Ln R as above. Then every entry in L is larger
than every entry in R.

Proof. Suppose, for contradiction, that there exist x € L and y € R with x < y.

Let x = m; and y = 7;, and let n be at position k. By construction we have i < k < j, so the
positions of (z,n,y) are ordered as i < k < j. The values satisfy x < y < n since n is the largest
element. Therefore, the triple (z,n,y) has relative order (1, 3,2) giving us a contradiction.

Hence no such z < y can exist, and every entry in L is larger than every entry in R. O

Step 4: Counting by the position of n

Fix n > 1 and fix a position k € {1,...,n} for the entry n. By having every entry in L larger
than every entry in R and n being the largest entry, the only way to introduce a 132 pattern
into the permutation would for it to be completely contained in L or R. Hence:

o The block L is (after relabeling) a 132-avoiding permutation on [k — 1], so there are Aj_1
possibilities for L.

o The block R is (after relabeling) a 132-avoiding permutation on [n — k|, so there are A,
possibilities for R.



Thus the number of 132-avoiding permutations 7w € S, in which n occurs at position £ is
Ap1An_.
Summing over all possible positions:
n
An = Z Ak—lAn—/m
k=1

which is exactly the recurrence .
Together with the initial condition Ay = 1, this recurrence uniquely characterizes the Catalan
numbers, so A, = C, for all n > 0. ]

4 Conclusion

By constructing the Simion—Schmidt bijection, we showed that 123 and 132 are Wilf equivalent,
and combining this with Lemma 1.4 it follows that all patterns of length 3 are Wilf equivalent.
Hence, by Theorem 2.1 it follows that all patterns 7 of length 3, | Av,,(7)| = C,,.

Although patterns of length 3 are well studied, there are many interesting problems to solve in
the future about patterns of higher length. For example, it isn’t true that all patterns of length
4 are Wilf equivalent, and we don’t know the number of permutations avoiding higher length
patterns in closed forms.

One natural direction is to study pattern avoidance for longer increasing patterns using the
hook-length formula for standard Young tableaux. Since

[Ava(12-- k) = > (Y

AFn, M <k-1

where f? is given by the hook-length formula, improving our understanding of these hook
products could lead to sharper asymptotics or simpler expressions in special cases like the catalan
numbers.
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