Roth’s Theorem in ) and Zy

Stephen Zhou
November 2025

Abstract

Roth’s Theorem states that any subset of the natural numbers with
positive density contains a three term progression. We introduce the
method Fourier analysis on finite groups, and use it to prove a quantita-
tive versions of Roth’s theorem in Fj; and Zxy, using the density increment
method.

1 Introduction

Additive combinatorics is the subfield of combinatorics that asks questions about
the additive properties of numbers, instead of their multiplicative properties,
such as factoring. An example theorem in additive combinatorics is Van Der
Waerden’s Theorem.

Theorem 1. Let Ay,..., A, be subsets of N with Ay U---U A, =N. Then for
any value of k, there exists an A; that has a length k arithmetic progression.

A length k arithmetic progression is also known as a k-AP. Equivalently, the
partition into Aq,..., A, can be viewed as coloring the integers with r colors.
Van der Waerden’s Theorem was strengthened into Szemeredi’s Theorem.

Definition 1. The density of A C N is
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if it exists.

Theorem 2 (Szemeredi’s Theorem). Let A € N have positive density. Then
for any k € N, A has an arithmetic progression of length N.

Notice that any coloring the integers with r colors must have one color with
positive density. Szemeredi’s theorem remained as a conjecture for a long time,
before Szemeredi proved it using graph theory in 1975. Klaus Roth proved the
k = 3 case of this theorem in 1956 using Fourier analysis. It is this theorem we
will be focusing on.



Theorem 3 (Roth’s Theorem). Let A € Z have positive density. Then A has
a 3-AP.

Actually, Roth found a quantitative bound.

Theorem 4 (Roth’s Theorem, quantitative version). Let A € [N] be 3-AP free.
Then the mazimal size of |A] is O(N/loglog N).

We will prove this version of his Roth’s theorem, as well as an analogue in

[y with a simpler proof and a bound of O(p"/n).

2 Fourier analysis on F)

In R, Fourier series allow us to write periodic functions f : R/Z — C as sums
of multiples of the ”frequencies” €2™"*. We can do a similar thing for functions
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f:Fy — C. Definew =e» .

Definition 2. The Fourier transform of f : ¥y — C is the function f: Fp —C
defined by

Fr) == 3 fa)yria). @)
p zGFg

Notice that f(O) = pi veFn f(z) is the average of f(x). This coefficient
will often be distinguished from the others. The reason anyone cares about

Fourier transforms is

Theorem 5 (Fourier inversion). Let f : F; — C. Then

f@) =" Fr)w(@). (3)
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Notice that

waﬁibg )
z€Fy
This allows us to prove Fourier inversion by just plugging in the definition of a
Fourier transform into the formula.

We can get a much more conceptual explanation by viewing the set of all
functions f : Fy — C as a p"-dimensional vector space. We can define an inner
product on this vector space as

() = = 3 F@lao) (5)

z€Fy

and a norm

1f1l2 = (F, )12, (6)



It is simple to check that (-,-) is an inner product. Then

1 ifr=s
ry Vs) — s— r = 7
(s s) E gl {0 s (7)
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so the characters 7, are mutually orthogonal unit vectors. Since there are p™
different characters, and the vector space is p"-dimensional, the characters form
an orthonormal basis. We call this basis the fourier basis. Thus, for any f :
Fy — C, we can write

flz)= Z<7rvf>%"- (8)

reFy

Since (v, f) = f(r), we have proven Theorem 5.

Next, we will prove Parseval’s identity, which for Fy, basically converts the
inner product for functions f(x) in ”physical space” into an inner product for
their Fourier transforms f(r) in "frequency space”. This new inner product
isn’t all that different.

Definition 3. Let the inner product {(-,-),2 be defined as

and the norm be ||f||ez = <f,f)1/2.
It is clear that (-, )2 is an inner product.

~

Theorem 6 (Parseval’s identity). For any f,g:Fy — C,(f,g) = (f,g)e, or

— Z F@g@) =3 Fr)atr). (10)
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Specifically, in the case f = g, we have that ||f||2 = ||ﬂ|gz, or
— Z F@)P =D 1f(r) (11)
z€Fy refy

Proof. By the linearity of the inner product and the orthogonality of the Fourier
basis, we have

(f,g) = e g) = S % Fr)g) ) = 3 Flrg(r). (12)
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Now we define the convolution operation.



Definition 4. Let f,g : F) — C. Then the convolution f x g : F) — C is
defined as

(f*9)(= Z FW)glz —y). (13)
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That is, f x g is the average of f(y)g(z) over y, z such that x = y + 2.
The reason we care about convolutions is that the Fourier transform turns
convolutions into multiplication.

Theorem 7. For any f,g:F,; — C,

— ~

frg(r) = f(r)g(r). (14)
Proof. Expanding, we get
Fro) = o Yo = 1 S LS fole -y =
P QL‘EFZ p JL‘EF" p yeFn?
2n Z Z f w (15)
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Swapping the order of summation and substituting in z = z + y, we have

DI WIICEEE

yeFn zeFn
St | |5 X fee | = Foa. (6)
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Thus f+g(r) = f(r)g(r). O

3 Roth’s Theorem for ]Fg

We now define a functional that helps us count the number of 3-APs in a subset
ACTFL.
="p

Definition 5. For any f,g,hf : IFZ — C, we define

A(f,9:h) S f@)g(a + y)h(z + 2y). (17)
p z,yEFy
and
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0 ifxgA

is the probability that a randomly chosen(possibly trivial) 3-AP is in A.
Our proof of Roths Theorem has three steps.

Notice that if f is an indicator function 14(z) = then As(14)

1. Prove that if A does not contain a nontrivial 3-AP, then 14 has a large
Fourier coefficient 1 4(r).

2. If 14 has a large Fourier coefficient 1/,2(7“)7 then there exists a hyperplane
P €} such that the density of A in P is large.

3. Repeat the density increment.
To begin, we express Ag in terms of f
Lemma 1. Let f:Fy — C. Then
A(f,g,h) =D F(r)g(—2r)h(r). (19)

refy

Proof. Let a = x,b=x+y,c =+ 2y and g;(b) = g(—b/2). Applying Fourier
inversion and the convolution identity to A, we get

A(z,y,2) = Y flx)g(z +y)h(z + 2y)

z,yeFn
S fa)g()h)

a—2b+c=0

> fl@)gi(b)hb)

a-+b+c=0
= f* g1 h(0)

=" frgh(r)

refy

In particular, we have Az(f) = > cpn Fr)2f(=2r).
The following lemma formalizes our intuition that a subset of A with small
Fourier coefficients should have about as many 3-APs as a random set.

Lemma 2. Let A € Fy and a = |A|/p". Then

[As(1a) — | < gljglﬁ(r)lllfllg- (21)



Proof. By Lemma 1, we get that

ZlA —2r) = 14(0)% + > Ta(r)*Ta(-2r).  (22)

r#0
Since 14(0) = a,
[As(1a)— 3|<;1A r)|2[Ta( 2r)|<max|1A |;|1A ? = max|Laf [ Lal3

O
Now we can complete the first step.

Lemma 3. Let A € F} and oo = |A|/p™. Then if A is 3-AP-free and o® > 1%,
there exists v # 0 such that [14(r)| > a2/2.

Proof. Since A is 3-AP-free, all 3-APs are trivial, so A3(14) = Z‘—:. By Lemma
2

a’ — ﬁ < mngTA(T)HITAH = glagliA(T)la- (23)
Since a? > % we get that a® — o 2 0‘7 So maXT¢0|1A( )| > a?/2. O

Now we prove that a large Fourier coefficient implies a density increment.

Lemma 4. Let A € Fy and o = |A|/p". If there exists r € F) such that
|TA(r)| > 6, then A has density at least o+ 8/2 in some hyperplane.

Proof. Let - be the set of vectors in [}, orthogonal to r. Viewing rt as a

subspace of Fy, r+ has cosets Ry = r+, Ry, .. .,Rp_1. For any coset R;, v-r

is constant for all v € R;. So we will assume that v-r = ¢ for all v € R;. Let
= |AN R;|/p"~! be the density of A in R;. Then we have

w T 1 = A
%:1,4 :5¥aiw. (24)
xelFn 1=

The last equality follows by grouping the xs by coset. Notice that pa =3, a;.
By the triangle inequality,

- p—1 p—1 p—1
pé < =D (i —a)w'| < (i —a) =) (@i —a)|+a; — a).
i=0 i=0 i=0

So there exists some j such that |(a; — a)| + o —a > ¢. This is equivalent to
a; —a>8/2. O

Combining the previous two lemmas, we get



Lemma 5 (Density Increment). Let A € F}) and o = |A[/p". If A is 3-AP-free
and o > 2/p™, then A has density at least o + o2 /4 in some hyperplane.

By repeating this, we prove Roth’s Theorem for F}.

Proof of Roth’s Theorem in F};. Repeatedly apply Lemma 5 to a 3-AP-free A €
;. Say we can do this m times. Then we get a chain of subspaces F) = Vp 2
Vi D -+ D V,_1, where V; has dimension n — i. Let the strictly increasing
sequence o; = |A N V;|/p"~% be the density of A in V;. Then for 0 < i < m,
204;2 < |V4|, by the conditions of Lemma 5. And since we can only apply
Lemma 5 m times, we have that 2a,,? > |V;|. Each round, the density increases
by at most a?/4. So it takes at most [4/a] turns for a; to double. Then it
takes [1/a] turns for a; to double again. Since a; < 1, the total number of
rounds m is bounded by a geometric sequence, meaning m = O(1/a). But
|Vin—1] = p"~™ < 20,2 < 2a~2. Taking logs, we get that a = O(1/n), which is
exactly what we wanted. O

We have gotten a bound of O(p™/n) on cap sets. Improving this bound is
an interesting problem.

4 Fourier analysis in Zy

Now we will modify our proof to count arithmetic progressions in Z. The quan-
titative version of Roth’s Theorem we will prove is

Theorem 8. Let A € [N] be 3-AP free. Then the mazimal size of A is
O(N/loglogn).

We will use Fourier analysis on Z,, = Z/NZ. This is a variation of Roth’s
original proof, which used Fourier analysis over Z. Fourier analysis over Zy is
basically analogous to Fourier analysis over Fy.

Definition 6. Let f: Zy — C. Then the Fourier transform of f is

= 3 fen @, (25)

TELN

where v, (x) = e2™r*/N

All the theorems proven about Fourier transforms in [y} also hold for Fourier
transforms over Zy, but with p™ replaced by 1/N. More generally, this type of
Fourier analysis works for all finite abelian groups.

5 Roth’s Theorem over 7Z

From now on, we will assume N is odd, so that 2 has an inverse in Z/NZ. Our
proof of Roth’s Theorem for Z will have the same density increment as the proof
for IF). Recall that the function A helps count the number of 3-APs in A.



Definition 7. Let f,g,h: Z/NZ — C. Define

Mfgh) =5z O f@le+y)he+2y) (20)

z,yEZ/NZ

Although A(14,14,14) counts 3-AP density in Zy, these are not exactly
the same as 3-APs in Z because we can ”cycle back”. So we need to be a bit
more clever. Let B = AN[N/3,2N/3|. Notice that if z,y, z are a 3-AP with
x4+ 2z—2y=0in Zy, then z,y, z is also an 3-AP in Z if z,y € B. Thus the
number of Z 3-AP’s in A is at least A(1p,1p,14).

We now prove an analogue to Lemma 2 for A(1p,14,14).

Lemma 6. Let A € [N], B = An[¥,2Y] and define a = |A|/N, = |B|/N.
Then

[A(Lp, 1, 1) = 0%5] < max|T(r)|5. (27)

Proof. By Lemma 1, we have A(1p,1p,14) =), 15(r)21a(r) = a?B+3, 40 1p(r)2Ta(r).
Thus,

A(1p.1p,14) — a8 = Y " 1p(r)*La(r)
r#O
<Z\1B |<max|1A ZlB
r#0 r#0

— 1 2 — i
- IF%<|1A(7~)|H1BH2 = rpggcllA(r)\BN-

We conclude that a a 3-AP-free set must have a large Fourier coefficient.

Lemma 7. Let A € [N],B = (An[%,2Y]) and o = |A|/N,B = |B|/N. 1,
A is 7 3-AP-free and N > 32072, then either ﬁ(k) > %2 for some k # 0, or

B < a/4.

Proof. If A is 3-AP-free, then A(lfg, IE, IZ) = /N. Now assume that I;(k) <
2
& forallk # 0 and 8 > /4.
Then, by the previous lemma, we get

ATp, 15, Ta) 2 af - 8. (28)
The bounds turn this into
3
—~ e~ o
Allg,15,14) > —.
(1p,1B,14) > 39
But N > 32a~2 and 8 < a/4, so this contradicts A(I/E, iz, 1/2) = j/N. O



Now we try to find a density increment. In ¥}, we found a subspace A had
higher density in. But Z doesn’t have subspaces, so we need to use another
kind of substructure. It turns out to be appropriate to restrict to arithmetic
subprogressions.

To construct the arithmetic progression we want, we need to use the pigeon-
hole principle.

Lemma 8. Let I = N/|\/N|. Then for any r, there exists d < | such that
rd <l (mod N). (29)

Proof. Divide the equivalence classes modulo N into |V | intervals of size [ each.
Then by the pigeonhole principle, there exist p, g such that pr—gr <1 (mod N).
Then d = p — g works. O

Now we can prove the density increment.

Lemma 9. Say that A € [N] is such that 14(r) > & for some v # 0. Then
there exists some subprogression B in Zy with length at least \/N/S such that
A has density at least a4+ 0/8 in B.

Proof. Let d and [ be as in the previous lemma. Let By be the arithmetic
progression in Zy of length v N /2w given by

—2d,—d,0,d,2d,3d, . .. (30)

Notice that By is the union of two arithmetic progressions of [N]. Let 5y =
|Bo|/N. Then we calculate that

3 1p,(2) (e*%’&" ro _ 1)

TELN

= ‘Ze_%rdac _ 1’ < Z ‘e—%yrdm . 1‘

NGRS

This implies that ‘1/3\0(7“)‘ > %0 The desired subprogression will be B, = By+c¢

for some ¢ € Zy.
Now define the balanced indicator of A to be fq4 = 14 — a. f, is called
balanced because its mean is 0. Notice that for any B C Zy, we have that

N-1

Y fal@)ip(@) =) falz) = (1-a)|ANB|-a(|B|-|ANB]|) = [ANB|-a|B],

=0 x€B

7| B
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is equivalent to |A N B| > |a + 7||B|. So we need to prove that there exists ¢
such that

N-1 N-1 1
Gle) =Y fa@)p.(x) = > fa(@)lp,(z—c) > 171 Bol-
x=0 =0

We calculate the Fourier transform of G(c) to be G(r) = Nﬁ(r)l/;o(r). Since

S 1G] > [G()] > 5NIBo

and
> G(e)=0,

we get that there exists ¢ such that |G(c)| 4+ G(c) > 17|Bol, or G(c) > 1v|Bo|
as desired. Since B, is the union of two arithmetic progressions Zy, there is a
arithmetic progression in Zy where A has density a + g. O

Finally, we have the density increment by combining the previous three
lemmas.

Lemma 10. If A € [N] does not have a 3-AP, and N > 32a~2, there exists a
subprogression of size O(\/N) such that the density of N on the subprogression
is at least o+ o% /64.

Repeatedly applying this lemma to A and analyzing the doubling time gives
us the bound O(N/loglog N).
Proof of Roth’s Theorem for Z. As in the proof for F, we find that there are
at most O(1/a) density increments by looking at the doubling time. Say the
process ends after m steps and density «,,. The final subprogression has size
O(NY/ 2™ and this is less @2, up to a constant factor. Taking logarithms twice
gives that a = O(1/loglog N). O
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