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Abstract

Roth’s Theorem states that any subset of the natural numbers with
positive density contains a three term progression. We introduce the
method Fourier analysis on finite groups, and use it to prove a quantita-
tive versions of Roth’s theorem in Fn

p and ZN , using the density increment
method.

1 Introduction

Additive combinatorics is the subfield of combinatorics that asks questions about
the additive properties of numbers, instead of their multiplicative properties,
such as factoring. An example theorem in additive combinatorics is Van Der
Waerden’s Theorem.

Theorem 1. Let A1, . . . , Ar be subsets of N with A1 ∪ · · · ∪Ar = N. Then for
any value of k, there exists an Ai that has a length k arithmetic progression.

A length k arithmetic progression is also known as a k-AP. Equivalently, the
partition into A1, . . . , Ar can be viewed as coloring the integers with r colors.
Van der Waerden’s Theorem was strengthened into Szemeredi’s Theorem.

Definition 1. The density of A ⊆ N is

lim
N→∞

A ∩ [N ]

N
(1)

if it exists.

Theorem 2 (Szemeredi’s Theorem). Let A ∈ N have positive density. Then
for any k ∈ N, A has an arithmetic progression of length N.

Notice that any coloring the integers with r colors must have one color with
positive density. Szemeredi’s theorem remained as a conjecture for a long time,
before Szemeredi proved it using graph theory in 1975. Klaus Roth proved the
k = 3 case of this theorem in 1956 using Fourier analysis. It is this theorem we
will be focusing on.
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Theorem 3 (Roth’s Theorem). Let A ∈ Z have positive density. Then A has
a 3-AP.

Actually, Roth found a quantitative bound.

Theorem 4 (Roth’s Theorem, quantitative version). Let A ∈ [N ] be 3-AP free.
Then the maximal size of |A| is O(N/ log logN).

We will prove this version of his Roth’s theorem, as well as an analogue in
Fn
p with a simpler proof and a bound of O(pn/n).

2 Fourier analysis on Fn
p

In R, Fourier series allow us to write periodic functions f : R/Z → C as sums
of multiples of the ”frequencies” e2πinx. We can do a similar thing for functions

f : Fn
p → C. Define ω = e

2πi
p .

Definition 2. The Fourier transform of f : Fn
p → C is the function f̂ : Fn

p → C
defined by

f̂(r) =
1

pn

∑
x∈Fn

p

f(x)γ−r(x). (2)

Notice that f̂(0) = 1
pn

∑
x∈Fn

p
f(x) is the average of f(x). This coefficient

will often be distinguished from the others. The reason anyone cares about
Fourier transforms is

Theorem 5 (Fourier inversion). Let f : Fn
p → C. Then

f(x) =
∑
r∈Fn

p

f̂(r)γr(x). (3)

Notice that ∑
x∈Fn

p

γr(x) =

{
1 if r = 0

0 if r ̸= 0
. (4)

This allows us to prove Fourier inversion by just plugging in the definition of a
Fourier transform into the formula.

We can get a much more conceptual explanation by viewing the set of all
functions f : Fn

p → C as a pn-dimensional vector space. We can define an inner
product on this vector space as

⟨f, g⟩ = 1

pn

∑
x∈Fn

p

f(x)g(x), (5)

and a norm
||f ||2 = ⟨f, f⟩1/2. (6)
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It is simple to check that ⟨·, ·⟩ is an inner product. Then

⟨γr, γs⟩ =
1

pn

∑
x∈Fn

p

γs−r(x) =

{
1 if r = s

0 if r ̸= s
(7)

so the characters γr are mutually orthogonal unit vectors. Since there are pn

different characters, and the vector space is pn-dimensional, the characters form
an orthonormal basis. We call this basis the fourier basis. Thus, for any f :
Fn
p → C, we can write

f(x) =
∑
r∈Fn

p

⟨γr, f⟩γr. (8)

Since ⟨γr, f⟩ = f̂(r), we have proven Theorem 5.
Next, we will prove Parseval’s identity, which for Fn

p , basically converts the
inner product for functions f(x) in ”physical space” into an inner product for

their Fourier transforms f̂(r) in ”frequency space”. This new inner product
isn’t all that different.

Definition 3. Let the inner product ⟨·, ·⟩ℓ2 be defined as

⟨f̂ , ĝ⟩ℓ2 =
∑
r∈F⋉

p

f̂(r)ĝ(r). (9)

and the norm be ||f ||ℓ2 = ⟨f, f⟩1/2ℓ2 .

It is clear that ⟨·, ·⟩ℓ2 is an inner product.

Theorem 6 (Parseval’s identity). For any f, g : Fn
p → C,⟨f, g⟩ = ⟨f̂ , ĝ⟩ℓ2 , or

1

pn

∑
x∈Fn

p

f(x)g(x) =
∑
r∈Fn

p

f̂(r)ĝ(r). (10)

Specifically, in the case f = g, we have that ||f ||2 = ||f̂ ||ℓ2 , or

1

pn

∑
x∈Fn

p

|f(x)|2 =
∑
r∈Fn

p

|f̂(r)|2. (11)

Proof. By the linearity of the inner product and the orthogonality of the Fourier
basis, we have

⟨f, g⟩ =
∑
r∈Fn

p

f̂(r)⟨γr, g⟩ =
∑
r∈Fn

p

∑
s∈Fn

p

f̂(r)g(r)⟨γr, γs⟩ =
∑
r∈Fn

p

f̂(r)g(r). (12)

Now we define the convolution operation.

3



Definition 4. Let f, g : Fn
p → C. Then the convolution f ∗ g : Fn

p → C is
defined as

(f ∗ g)(x) = 1

pn

∑
y∈Fn

p

f(y)g(x− y). (13)

That is, f ∗ g is the average of f(y)g(z) over y, z such that x = y + z.
The reason we care about convolutions is that the Fourier transform turns

convolutions into multiplication.

Theorem 7. For any f, g : Fn
p → C,

f̂ ∗ g(r) = f̂(r)ĝ(r). (14)

Proof. Expanding, we get

f̂ ∗ g(r) = 1

pn

∑
x∈Fn

p

(f ∗ g)(x)ω−r·x =
1

pn

∑
x∈Fn

p

1

pn

∑
y∈Fn

p

f(y)g(x− y)ω−r·x =

1

p2n

∑
x∈Fn

p

∑
y∈Fn

p

f(y)g(x− y)ω−r·x. (15)

Swapping the order of summation and substituting in x = z + y, we have

1

p2n

∑
y∈Fn

p

∑
z∈Fn

p

f(y)g(z)ω−r·(y+z) =

 1

pn

∑
y∈Fn

p

f(y)ω−r·y

 1

pn

∑
z∈Fn

p

f(z)ω−r·z

 = f̂(r)ĝ(r). (16)

Thus f̂ ∗ g(r) = f̂(r)ĝ(r).

3 Roth’s Theorem for Fn
p

We now define a functional that helps us count the number of 3-APs in a subset
A ⊆ Fn

p .

Definition 5. For any f, g, hf : Fn
p → C, we define

Λ(f, g, h) =
1

p2n

∑
x,y∈Fn

p

f(x)g(x+ y)h(x+ 2y). (17)

and
Λ3(f) = Λ(f, f, f). (18)
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Notice that if f is an indicator function 1A(x) =

{
1 if x ∈ A

0 if x /∈ A
, then Λ3(1A)

is the probability that a randomly chosen(possibly trivial) 3-AP is in A.
Our proof of Roths Theorem has three steps.

1. Prove that if A does not contain a nontrivial 3-AP, then 1A has a large
Fourier coefficient 1̂A(r).

2. If 1A has a large Fourier coefficient 1̂A(r), then there exists a hyperplane
P ∈ Fn

p such that the density of A in P is large.

3. Repeat the density increment.

To begin, we express Λ3 in terms of f̂ .

Lemma 1. Let f : Fn
p → C. Then

Λ(f, g, h) =
∑
r∈Fn

p

f̂(r)ĝ(−2r)ĥ(r). (19)

Proof. Let a = x, b = x+ y, c = x+ 2y and g1(b) = g(−b/2). Applying Fourier
inversion and the convolution identity to Λ, we get

Λ(x, y, z) =
∑

x,y∈Fn
p

f(x)g(x+ y)h(x+ 2y)

=
∑

a−2b+c=0

f(a)g(b)h(b)

=
∑

a+b+c=0

f(a)g1(b)h(b)

= f ∗ g1 ∗ h(0)

=
∑
r∈Fn

p

̂f ∗ g1 ∗ h(r)

=
∑
r∈Fn

p

f̂(r)ĝ1(r)ĥ(r)

=
∑
r∈Fn

p

f̂(r)ĝ(−2r)ĥ(r). (20)

In particular, we have Λ3(f) =
∑

r∈Fn
p
f̂(r)2f̂(−2r).

The following lemma formalizes our intuition that a subset of A with small
Fourier coefficients should have about as many 3-APs as a random set.

Lemma 2. Let A ∈ Fn
p and α = |A|/pn. Then

|Λ3(1A)− α3| ≤ max
r ̸=0

|1̂A(r)|||f ||22. (21)
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Proof. By Lemma 1, we get that

Λ3(1A) =
∑
r

1̂A(r)
21̂A(−2r) = 1̂A(0)

3 +
∑
r ̸=0

1̂A(r)
21̂A(−2r). (22)

Since 1̂A(0) = α,

|Λ3(1A)−α3| ≤
∑
r ̸=0

|1̂A(r)|2|1̂A(−2r)| ≤ max
r ̸=0

|1̂A(r)|
∑
r ̸=0

|1̂A(r)|2 = max
r ̸=0

|1A|∥1A∥22.

Now we can complete the first step.

Lemma 3. Let A ∈ Fn
p and α = |A|/pn. Then if A is 3-AP-free and α2 ≥ 2

pn ,

there exists r ̸= 0 such that |1̂A(r)| ≥ α2/2.

Proof. Since A is 3-AP-free, all 3-APs are trivial, so Λ3(1A) =
α3

pn . By Lemma
2

α3 − α

pn
≤ max

r ̸=0
|1̂A(r)|∥1̂A∥ = max

r ̸=0
|1̂A(r)|α. (23)

Since α2 ≥ 2
pn , we get that α3 − α

pn ≥ α3

2 . So maxr ̸=0|1̂A(r)| ≥ α2/2.

Now we prove that a large Fourier coefficient implies a density increment.

Lemma 4. Let A ∈ Fn
p and α = |A|/pn. If there exists r ∈ Fn

p such that

|1̂A(r)| ≥ δ, then A has density at least α+ δ/2 in some hyperplane.

Proof. Let r⊥ be the set of vectors in Fn
p orthogonal to r. Viewing r⊥ as a

subspace of Fn
p , r

⊥ has cosets R0 = r⊥, R1, . . . , Rp−1. For any coset Ri, v · r
is constant for all v ∈ Ri. So we will assume that v · r = i for all v ∈ Ri. Let
αi = |A ∩Ri|/pn−1 be the density of A in Ri. Then we have

1̂A(r) =
1

pn

∑
x∈Fn

p

1A(x)ω
−r·x =

1

p

p−1∑
i=0

αiω
i. (24)

The last equality follows by grouping the xs by coset. Notice that pα =
∑

i αi.
By the triangle inequality,

pδ ≤

∣∣∣∣∣
p−1∑
i=0

αiω
i

∣∣∣∣∣ =
∣∣∣∣∣
p−1∑
i=0

(αi − α)ωi

∣∣∣∣∣ ≤
p−1∑
i=0

|(αi − α)| =
p−1∑
i=0

(|(αi − α)|+ αi − α).

So there exists some j such that |(αj − α)|+ αj − α ≥ δ. This is equivalent to
αj − α ≥ δ/2.

Combining the previous two lemmas, we get
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Lemma 5 (Density Increment). Let A ∈ Fn
p and α = |A|/pn. If A is 3-AP-free

and α2 > 2/pn, then A has density at least α+ α2/4 in some hyperplane.

By repeating this, we prove Roth’s Theorem for Fn
p .

Proof of Roth’s Theorem in Fn
p . Repeatedly apply Lemma 5 to a 3-AP-free A ∈

Fn
p . Say we can do this m times. Then we get a chain of subspaces Fn

p = V0 ⊇
V1 ⊇ · · · ⊇ Vm−1, where Vi has dimension n − i. Let the strictly increasing
sequence αi = |A ∩ Vi|/pn−i be the density of A in Vi. Then for 0 ≤ i < m,
2α−2

i ≤ |Vi|, by the conditions of Lemma 5. And since we can only apply
Lemma 5 m times, we have that 2α−2

m ≥ |Vi|. Each round, the density increases
by at most α2/4. So it takes at most ⌈4/α⌉ turns for αi to double. Then it
takes ⌈1/α⌉ turns for αi to double again. Since αi ≤ 1, the total number of
rounds m is bounded by a geometric sequence, meaning m = O(1/α). But
|Vm−1| = pn−m ≤ 2α−2

m ≤ 2α−2. Taking logs, we get that α = O(1/n), which is
exactly what we wanted.

We have gotten a bound of O(pn/n) on cap sets. Improving this bound is
an interesting problem.

4 Fourier analysis in ZN

Now we will modify our proof to count arithmetic progressions in Z. The quan-
titative version of Roth’s Theorem we will prove is

Theorem 8. Let A ∈ [N ] be 3-AP free. Then the maximal size of A is
O(N/ log logn).

We will use Fourier analysis on Zn = Z/NZ. This is a variation of Roth’s
original proof, which used Fourier analysis over Z. Fourier analysis over ZN is
basically analogous to Fourier analysis over Fn

p .

Definition 6. Let f : ZN → C. Then the Fourier transform of f is

f̂(r) =
1

N

∑
x∈ZN

f(x)γ−r(x), (25)

where γr(x) = e2πirx/N .

All the theorems proven about Fourier transforms in Fn
p also hold for Fourier

transforms over ZN , but with pn replaced by 1/N . More generally, this type of
Fourier analysis works for all finite abelian groups.

5 Roth’s Theorem over Z
From now on, we will assume N is odd, so that 2 has an inverse in Z/NZ. Our
proof of Roth’s Theorem for Z will have the same density increment as the proof
for Fn

p . Recall that the function Λ helps count the number of 3-APs in A.
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Definition 7. Let f, g, h : Z/NZ → C. Define

Λ(f, g, h) =
1

N2

∑
x,y∈Z/NZ

f(x)g(x+ y)h(x+ 2y). (26)

Although Λ(1A, 1A, 1A) counts 3-AP density in ZN , these are not exactly
the same as 3-APs in Z because we can ”cycle back”. So we need to be a bit
more clever. Let B = A ∩ [N/3, 2N/3]. Notice that if x, y, z are a 3-AP with
x + z − 2y = 0 in ZN , then x, y, z is also an 3-AP in Z if x, y ∈ B. Thus the
number of Z 3-AP’s in A is at least Λ(1B , 1B , 1A).

We now prove an analogue to Lemma 2 for Λ(1b, 1A, 1A).

Lemma 6. Let A ∈ [N ], B = A ∩ [N3 ,
2N
3 ] and define α = |A|/N, β = |B|/N .

Then
|Λ(1B , 1B , 1A)− α2β| ≤ max

r ̸=0
|1̂A(r)|β. (27)

Proof. By Lemma 1, we have Λ(1B , 1B , 1A) =
∑

r 1̂B(r)
21̂A(r) = α2β+

∑
r ̸=0 1̂B(r)

21̂A(r).
Thus,

|Λ(1B , 1B , 1A)− α2β| =

∣∣∣∣∣∣
∑
r ̸=0

1̂B(r)
21̂A(r)

∣∣∣∣∣∣
≤

∑
r ̸=0

|1̂B(r)21̂A(r)| ≤ max
r ̸=0

|1̂A(r)|
∑
r ̸=0

1̂B(r)
2

= max
r ̸=0

|1̂A(r)|∥1B∥22 = max
r ̸=0

|1̂A(r)|βN.

We conclude that a a 3-AP-free set must have a large Fourier coefficient.

Lemma 7. Let A ∈ [N ], B = (A ∩ [N3 ,
2N
3 ]) and α = |A|/N, β = |B|/N . If

A is Z 3-AP-free and N ≥ 32α−2, then either 1̂A(k) ≥ α2

8 for some k ̸= 0, or
β ≤ α/4.

Proof. If A is 3-AP-free, then Λ(1̂B , 1̂B , 1̂A) = β/N . Now assume that 1̂A(k) <
α2

8 for all k ̸= 0 and β > α/4.
Then, by the previous lemma, we get

Λ(1̂B , 1̂B , 1̂A) ≥ αβ2 − α2

8
β. (28)

The bounds turn this into

Λ(1̂B , 1̂B , 1̂A) ≥
α3

32
.

But N ≥ 32α−2 and β ≤ α/4, so this contradicts Λ(1̂B , 1̂B , 1̂A) = β/N .
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Now we try to find a density increment. In Fn
p , we found a subspace A had

higher density in. But Z doesn’t have subspaces, so we need to use another
kind of substructure. It turns out to be appropriate to restrict to arithmetic
subprogressions.

To construct the arithmetic progression we want, we need to use the pigeon-
hole principle.

Lemma 8. Let l = N/⌊
√
N⌋. Then for any r, there exists d ≤ l such that

rd ≤ l (mod N). (29)

Proof. Divide the equivalence classes modulo N into ⌊N⌋ intervals of size l each.
Then by the pigeonhole principle, there exist p, q such that pr−qr ≤ l (mod N).
Then d = p− q works.

Now we can prove the density increment.

Lemma 9. Say that A ∈ [N ] is such that 1̂A(r) ≥ δ for some r ̸= 0. Then
there exists some subprogression B in ZN with length at least

√
N/8 such that

A has density at least α+ δ/8 in B.

Proof. Let d and l be as in the previous lemma. Let B0 be the arithmetic
progression in ZN of length

√
N/2π given by

−2d,−d, 0, d, 2d, 3d, . . . (30)

Notice that B0 is the union of two arithmetic progressions of [N ]. Let β0 =
|B0|/N . Then we calculate that

∣∣∣1̂B0
(r)− β0

∣∣∣ = ∣∣∣∣∣ ∑
x∈ZN

1B0
(x)

(
e−

2πi
N rx − 1

)∣∣∣∣∣
=

∣∣∣∑ e−
2πi
N rdx − 1

∣∣∣ ≤ ∑∣∣∣e− 2πi
N rdx − 1

∣∣∣
≤ 2

∑ 2π

N
rdx ≤ 4πl

N

∑
x ≤ β0

2
.

This implies that
∣∣∣1̂B0(r)

∣∣∣ ≥ β0

2 . The desired subprogression will be Bc = B0+c

for some c ∈ ZN .
Now define the balanced indicator of A to be fA = 1A − α. fa is called

balanced because its mean is 0. Notice that for any B ⊆ ZN , we have that

N−1∑
x=0

fA(x)1B(x) =
∑
x∈B

fA(x) = (1−α)|A∩B|−α(|B|−|A∩B|) = |A∩B|−α|B|,

so

N−1∑
x=0

fA(x)1B(x) ≥ γ|B|
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is equivalent to |A ∩ B| ≥ |α + γ||B|. So we need to prove that there exists c
such that

G(c) =

N−1∑
x=0

fA(x)1Bc(x) =

N−1∑
x=0

fA(x)1B0(x− c) ≥ 1

4
γ|B0|.

We calculate the Fourier transform of G(c) to be Ĝ(r) = Nf̂A(r)1̂B0
(r). Since∑

|G(c)| ≥ |Ĝ(r)| ≥ 1

2
γN |B0|

and ∑
G(c) = 0,

we get that there exists c such that |G(c)| + G(c) ≥ 1
2γ|B0|, or G(c) ≥ 1

4γ|B0|
as desired. Since Bc is the union of two arithmetic progressions ZN , there is a
arithmetic progression in ZN where A has density α+ δ

8 .

Finally, we have the density increment by combining the previous three
lemmas.

Lemma 10. If A ∈ [N ] does not have a 3-AP, and N ≥ 32α−2, there exists a
subprogression of size O(

√
N) such that the density of N on the subprogression

is at least α+ α2/64.

Repeatedly applying this lemma to A and analyzing the doubling time gives
us the bound O(N/ log logN).

Proof of Roth’s Theorem for Z. As in the proof for Fn
p , we find that there are

at most O(1/a) density increments by looking at the doubling time. Say the
process ends after m steps and density αm. The final subprogression has size
O(N1/2m) and this is less α−2, up to a constant factor. Taking logarithms twice
gives that α = O(1/ log logN).
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