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1 Introduction

The Catalan are a useful sequence in combinatorics, appearing in many ways
such as Dyck paths, polygon triangulations, and noncrossing partitions. A
classical Catalan number is

Cat(n) =
1

n+ 1

(
2n

n

)
.

Fuss–Catalan numbers generalize this. For a positive integer m, one defines

Cat(m)(n) =
1

mn+ 1

(
(m+ 1)n

n

)
,

which count, among other things,m-divisible noncrossing partitions and (m+
2)-angulations of convex polygons.

The rational Catalan number is

Cat(a, b) =
1

a+ b

(
a+ b

a, b

)
=

1

a+ b

(
a+ b

a

)
,

which connects to lattice path models (rational Dyck paths). Another version
incorporates a q-parameter, giving a polynomial with non-negative integer
coefficients:

Catq(a, b) =

(
a+b
a

)
q

[a+ b]q
.

Before turning to the rational setting, we first review the classical and
Fuss–Catalan numbers. After moving to rational Catalan numbers and their
q-analogue, we then discuss the lattice-point interpretation.
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2 Classical and Fuss–Catalan Numbers

We begin with the ordinary Catalan numbers, whose interpretations illustrate
the branching and path-avoidance ideas.

2.1 Classical Catalan Numbers

Definition 2.1. The nth Catalan number is

Cat(n) =
1

n+ 1

(
2n

n

)
.

Three frequently used equivalent models that are enumerated by the
Cataln numbers are

• Dyck paths: lattice paths from (0, 0) to (2n, 0) with steps U = (1, 1)
and D = (1,−1) that never go below the x-axis

• Plane (rooted ordered) trees: rooted trees in which the children of each
vertex are linearly ordered, with n edges

• Polygon triangulations: ways to divide a convex (n + 2)-gon into n
triangles by noncrossing diagonals.

These models are connected by bijections. A preorder traversal of a rooted
ordered tree produces a Dyck path (visit down-edge 7→ U , return-edge 7→ D),
and taking the dual of a triangulation gives a rooted ordered tree. The
common idea behind all these models is the “binary” decomposition, where
a Catalan object is either empty or consists of a root together with an ordered
pair of smaller Catalan objects. With this, we have the functional equation
for the ordinary generating function C(x) =

∑
n≥0Cat(n)x

n:

C(x) = 1 + xC(x)2.

Solving this quadratic equation gives

C(x) =
1−

√
1− 4x

2
,

and taking coefficients by the binomial series, we have Cat(n) =
1

n+ 1

(
2n
n

)
.
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A walks-on-trees view: Another interpretation views Catalan numbers
as weighted counts of closed walks on (ordinary) unlabeled trees. For each
unlabeled tree T on n + 1 vertices and each vertex v ∈ T one counts closed
tours that traverse each edge twice (once away from v and once back), then
sums these numbers over all vertices and divides by the order of the tree
automorphism group. We write this as

Cat(n) =
∑

T∈Tn+1

∑
v∈T

aT (v)

|Γ(T )|
,

where aT (v) counts such tours and Tn+1 is the set of unlabeled trees on n+1
vertices. Edges of size k naturally produce (k−1)-ary branching in associated
expansion trees, and counting constrained tours on the associated bipartite
graphs gives Fuss–Catalan-type numbers.

Now, increasing the branching factor from binary to (r + 1)-ary leads to
the Fuss–Catalan numbers.

2.2 Fuss–Catalan Numbers

Definition 2.2. For integers r ≥ 1 and n ≥ 0, the Fuss–Catalan number is

Cat(r)(n) =
1

rn+ 1

(
(r + 1)n

n

)
.

These numbers generalize Catalan numbers (which correspond to r = 1)
and enumerate combinatorial families with (r + 1)-fold branching. Some
equivalent models are

(1) (r + 1)-ary trees: rooted plane trees where each internal node has r+1
ordered children. Equivalently, (incomplete) (r + 1)-ary trees with n
internal nodes are counted by Cat(r)(n).

(2) r-Dyck paths: lattice paths from (0, 0) to ((r + 1)n, 0) with up-steps
U = (1, 1) and down-steps D = (1,−r) that never cross below the
x-axis.

(3) Polygon (r + 2)-angulations: dissections of a convex (rn + 2)-gon into
(r + 2)-gons by noncrossing diagonals.

(4) r-ballot sequences: sequences with rn entries equal to 1 and n entries
equal to −r whose partial sums are nonnegative.
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All these models share the same decomposition where an (r+1)-ary tree
T is either empty or consists of a root together with an ordered (r+1)-tuple
of (r + 1)-ary trees. If F (x) =

∑
n≥0Cat

(r)(n)xn is the ordinary generating
function, the decomposition gives

F (x) = 1 + xF (x) r+1.

Applying Lagrange inversion gives the formula

Cat(r)(n) =
1

rn+ 1

(
(r + 1)n

n

)
.

Proof via Lagrange inversion: Set F (x) = 1 + xG(x) so that G(x) =
F (x)−1. The equation becomes 1+xG(x) = 1+x(1+xG(x))r+1, equivalently

G(x) = x(1 +G(x))r+1.

Lagrange inversion states that for G(x) = xϕ(G(x)) with ϕ analytic and
ϕ(0) ̸= 0,

[xn]G(x) =
1

n
[tn−1]ϕ(t)n.

Here ϕ(t) = (1 + t)r+1, hence

[xn]G(x) =
1

n

(
n(r + 1)

n− 1

)
=

1

rn+ 1

(
(r + 1)n

n

)
,

and this is the formula for Cat(r)(n).

Examples and small values

Here are the first few sequences (the r = 1 row is the classical Catalan
sequence):

r n = 0 1 2 3 4 5
1 1 1 2 5 14 42
2 1 1 3 12 55 273
3 1 1 4 22 140 969
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These numbers appear in many different ways. For instance Cat(2)(3) = 12
counts ternary trees with 3 internal nodes, triangulations of a certain 8-gon
into pentagons, and 2-Dyck paths of semilength 3.

Unlike the classical and Fuss–Catalan numbers, the rational Catalan in-
stead encode objects whose structure is governed by the slope a/b, which we
will now cover.

2.3 Rational Catalan Numbers

Let (a, b) be a pair of positive coprime integers, 0 < a < b.

Definition 2.3. The rational Catalan number Cat(a, b) is

Cat(a, b) =
1

a+ b

(
a+ b

a, b

)
.

As Armstrong observes, if one writes x = a
b−a

then there is a symmetry

Cat(a, b) = Cat(b− a, b)

, called rational duality. This duality generalizes the fact that in the classical
case (n, n+ 1) one recovers the ordinary Catalan numbers.

There is also a symmetry under exchanging a and b: Cat(a, b) = Cat(b, a).
This implies the identity

Cat
(
1, x− 1

)
= Cat

(
x, 1

)
(where x = a/(b− a)).

The combinatorial definitions of rational Catalan numbers explain their
symmetry, but they do not immediately show why the q-analogues should
have nonnegative coefficients. Armstrong’s interpretation resolves this by
having Catq(a, b) be a lattice-point generating function inside a region defined
by the Weyl group of type A.

3 Geometric Interpretation via Lattice Points

3.1 Weight Lattice of Type Aa−1

Fix a positive integer a. The type-Aa−1 weight lattice is

Λ = {(x1, . . . , xa) ∈ Za : x1 + · · ·+ xa = 0} ∼= Za/Z(1, . . . , 1).
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Points of Λ are often represented by integer vectors modulo translation by the
all-ones vector. The Weyl groupW = Sa acts on Λ by permuting coordinates,
and the affine Weyl group

W̃ = Sa ⋉ aZa−1

acts on Λ⊗ R by permuting and translating coordinates. The reflecting hy-
perplanes of W̃ cut space into open simplices called alcoves. The fundamental
alcove is

A = {x ∈ Ra : x1 < x2 < · · · < xa < x1 + 1} .

All other alcoves are obtained from A by the action of W̃ .
For each coprime pair (a, b), Armstrong identifies a polyhedral region

R(a, b) ⊂ Λ⊗ R,

cut out by affine-linear inequalities (involving the “slope” b/a), such that the
lattice points of R(a, b) encode the combinatorics of rational Dyck paths.

Importantly, the height statistic on lattice points in R(a, b) is a natural
geometric definition of the area statistic on rational Dyck paths. So,

Catq(a, b) =
∑

x∈R(a,b)∩Λ

qht(x).

3.2 Germs and the Residue Class of b Modulo a

Armstrong argues that the geometry ofR(a, b) depends mostly on the residue
class b (mod a). For a fixed a, he constructs a finite family of polynomials

Ga,r(q) (r = 0, 1, . . . , a− 1),

called the q-Catalan germs. Each germ Ga,r(q) is defined as the generating
function of lattice points in a certain canonical region of the weight lattice
associated to residue class r. These regions are simpler than R(a, b) and
depend only on r and a.

A theorem is that for any coprime pair (a, b),

Catq(a, b) =
a−1∑
r=0

cr Ga,r(q),
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where each cr is a nonnegative integer determined by the integer quotient
and remainder of b modulo a.

Thus Catq(a, b) is written as a nonnegative integer combination of a small,
fixed “basis” of lattice-point polynomials. This immediately implies that
the coefficients of Catq(a, b) are nonnegative if each germ has nonnegative
coefficients.
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