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1 Introduction

The Catalan are a useful sequence in combinatorics, appearing in many ways
such as Dyck paths, polygon triangulations, and noncrossing partitions. A
classical Catalan number is

Cat(n) = ni 1 <2:>

Fuss—Catalan numbers generalize this. For a positive integer m, one defines

Cat™ (n) = —— ((m + 1)n> |

mn + 1 n

which count, among other things, m-divisible noncrossing partitions and (m-+
2)-angulations of convex polygons.
The rational Catalan number is

1 [fa+b 1 [fa+b
t(a,b) = _
Cat(a, ) a—i—b(a,b) a+b( a )’

which connects to lattice path models (rational Dyck paths). Another version
incorporates a g-parameter, giving a polynomial with non-negative integer
coefficients:
(a+b)
a/q

la+0b],

Before turning to the rational setting, we first review the classical and
Fuss—Catalan numbers. After moving to rational Catalan numbers and their
g-analogue, we then discuss the lattice-point interpretation.

Caty(a,b) =

1



2 Classical and Fuss—Catalan Numbers

We begin with the ordinary Catalan numbers, whose interpretations illustrate
the branching and path-avoidance ideas.

2.1 Classical Catalan Numbers

Definition 2.1. The nth Catalan number is

Cat(n) = ni 1 (2:>

Three frequently used equivalent models that are enumerated by the
Cataln numbers are

e Dyck paths: lattice paths from (0,0) to (2n,0) with steps U = (1,1)
and D = (1, —1) that never go below the z-axis

e Plane (rooted ordered) trees: rooted trees in which the children of each
vertex are linearly ordered, with n edges

e Polygon triangulations: ways to divide a convex (n + 2)-gon into n
triangles by noncrossing diagonals.

These models are connected by bijections. A preorder traversal of a rooted
ordered tree produces a Dyck path (visit down-edge — U, return-edge — D),
and taking the dual of a triangulation gives a rooted ordered tree. The
common idea behind all these models is the “binary” decomposition, where
a Catalan object is either empty or consists of a root together with an ordered
pair of smaller Catalan objects. With this, we have the functional equation
for the ordinary generating function C'(x) = )", ., Cat(n)z":

C(x) =14z C(z)*.

Solving this quadratic equation gives

1

and taking coefficients by the binomial series, we have Cat(n) = ——] (*").
n



A walks-on-trees view: Another interpretation views Catalan numbers
as weighted counts of closed walks on (ordinary) unlabeled trees. For each
unlabeled tree 7" on n + 1 vertices and each vertex v € T one counts closed
tours that traverse each edge twice (once away from v and once back), then
sums these numbers over all vertices and divides by the order of the tree
automorphism group. We write this as

Cat(n) = Z Z

TeTn4+1 veT

ar(v)

()]

where ap(v) counts such tours and 7,1 is the set of unlabeled trees on n+ 1
vertices. Edges of size k naturally produce (k—1)-ary branching in associated
expansion trees, and counting constrained tours on the associated bipartite
graphs gives Fuss—Catalan-type numbers.

Now, increasing the branching factor from binary to (r 4+ 1)-ary leads to
the Fuss—Catalan numbers.

2.2 Fuss—Catalan Numbers

Definition 2.2. For integers » > 1 and n > 0, the Fuss—Catalan number is

Cat®)(n) = — (” + 1)”) .

rn + 1 n

These numbers generalize Catalan numbers (which correspond to r = 1)
and enumerate combinatorial families with (r 4+ 1)-fold branching. Some
equivalent models are

(1) (r 4 1)-ary trees: rooted plane trees where each internal node has r + 1
ordered children. Equivalently, (incomplete) (r + 1)-ary trees with n
internal nodes are counted by Cat(™ (n).

(2) r-Dyck paths: lattice paths from (0,0) to ((r + 1)n,0) with up-steps
U = (1,1) and down-steps D = (1, —r) that never cross below the
T-axis.

(3) Polygon (r + 2)-angulations: dissections of a convex (rn + 2)-gon into
(r 4+ 2)-gons by noncrossing diagonals.

(4) r-ballot sequences: sequences with rn entries equal to 1 and n entries
equal to —r whose partial sums are nonnegative.



All these models share the same decomposition where an (r + 1)-ary tree
T is either empty or consists of a root together with an ordered (r + 1)-tuple
of (r + 1)-ary trees. If F(z) =, ., Cat”(n)2" is the ordinary generating
function, the decomposition gives

F(x)=1+zF(z)""

Applying Lagrange inversion gives the formula

Cat®) (n) — 1 <(r—|—1)n)l

m+1 n

Proof via Lagrange inversion: Set F(z) = 1+ zG(x) so that G(x) =
F(x)—1. The equation becomes 1+zG(z) = 1+z(1+2G(x)) ", equivalently

G(z) = z(1 + G(z))" ™.

Lagrange inversion states that for G(z) = x¢(G(z)) with ¢ analytic and

¢(0) # 0,
[2"]G () = —[t" o (0)".
Here ¢(t) = (1 +¢)"™!, hence

G (z) = l<n(7‘ + 1)) ;((r + 1)n>’

n\ n—1 :rn—l—l n

and this is the formula for Cat™ (n).

Examples and small values

Here are the first few sequences (the » = 1 row is the classical Catalan
sequence):

rin=012 3 4 5

1)1 12 5 14 42

2 1 1 3 12 55 273

31 1 1 4 22 140 969



These numbers appear in many different ways. For instance Cat(Z)(?)) =12
counts ternary trees with 3 internal nodes, triangulations of a certain 8-gon
into pentagons, and 2-Dyck paths of semilength 3.

Unlike the classical and Fuss—Catalan numbers, the rational Catalan in-
stead encode objects whose structure is governed by the slope a/b, which we
will now cover.

2.3 Rational Catalan Numbers
Let (a,b) be a pair of positive coprime integers, 0 < a < b.

Definition 2.3. The rational Catalan number Cat(a,b) is

1 [fa+b
Cat(a,b) = a—i—b(a b)'

As Armstrong observes, if one writes x = ;- then there is a symmetry
Cat(a,b) = Cat(b — a,b)

, called rational duality. This duality generalizes the fact that in the classical
case (n,n + 1) one recovers the ordinary Catalan numbers.

There is also a symmetry under exchanging a and b: Cat(a,b) = Cat(b, a).
This implies the identity

Cat(l, £ — 1) _ Cat(m, 1)

(where x = a/(b — a)).

The combinatorial definitions of rational Catalan numbers explain their
symmetry, but they do not immediately show why the g-analogues should
have nonnegative coefficients. Armstrong’s interpretation resolves this by
having Cat,(a, b) be a lattice-point generating function inside a region defined
by the Weyl group of type A.

3 (Geometric Interpretation via Lattice Points

3.1 Weight Lattice of Type A,
Fix a positive integer a. The type-A,_1 weight lattice is
A= {(z1,...,2,) €Z° : &1+ +2,=0} = ZJZ(1,...,1).
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Points of A are often represented by integer vectors modulo translation by the
all-ones vector. The Weyl group W = S, acts on A by permuting coordinates,
and the affine Weyl group

W = S, X aZ* !

acts on A ® R by permuting and translating coordinates. The reflecting hy-
perplanes of W cut space into open simplices called alcoves. The fundamental
alcove is

A={zeR: sy <1< - <xe <x1+1}.

All other alcoves are obtained from A by the action of w.
For each coprime pair (a,b), Armstrong identifies a polyhedral region

R(a,b) € AQR,

cut out by affine-linear inequalities (involving the “slope” b/a), such that the

lattice points of R(a,b) encode the combinatorics of rational Dyck paths.
Importantly, the height statistic on lattice points in R(a,b) is a natural

geometric definition of the area statistic on rational Dyck paths. So,

Cat,(a,b) = Z M@,

z€R(a,b)NA

3.2 Germs and the Residue Class of b Modulo a

Armstrong argues that the geometry of R(a, b) depends mostly on the residue
class b (mod a). For a fixed a, he constructs a finite family of polynomials

Gar(q) (r=0,1,...,a—1),

called the ¢-Catalan germs. Each germ G, ,(q) is defined as the generating
function of lattice points in a certain canonical region of the weight lattice
associated to residue class r. These regions are simpler than R(a,b) and
depend only on r and a.

A theorem is that for any coprime pair (a,b),

a—1

Catq(a, b) = Z e Gar(q),

r=0



where each ¢, is a nonnegative integer determined by the integer quotient
and remainder of b modulo a.

Thus Cat,(a, b) is written as a nonnegative integer combination of a small,
fixed “basis” of lattice-point polynomials. This immediately implies that
the coeflicients of Cat,(a,b) are nonnegative if each germ has nonnegative
coefficients.
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