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ABSTRACT. This paper presents an introduction to the combina-
torial and geometric structure of real hyperplane arrangements.
We develop the notions of regions, faces, and sign patterns, and
introduce the intersection poset and characteristic polynomial. Za-
slavsky’s theorem is stated and illustrated through computations
in low dimensions. We then describe the face poset and oriented
sign-vector structure, which together encode the stratification of
space induced by an arrangement. Finally, we connect these ideas
to piecewise-linear functions, specifically a single-layer ReL.U net-
work, which defines a hyperplane arrangement whose regions cor-
respond to the layer’s linear pieces, and whose structure reflects
aspects of expressiveness and fragility.

1. INTRODUCTION

A finite collection of hyperplanes in a real vector space partitions the
space into convex regions, and the way these regions intersect encodes
combinatorial structure. For instance, in R? two nonparallel lines di-
vide the plane into four regions, while three lines in general position
divide it into seven. Understanding why such numbers arise, and how
they change as hyperplanes move or are added, is a central theme in
the study of arrangements.

This perspective forms the basis for tools such as the intersection
poset and the characteristic polynomial. Hyperplane arrangements can
help reduce geometric questions to purely combinatorial ones. For ex-
ample, the number of connected regions determined by an arrangement
depends only on the poset of its intersections, and Zaslavsky’s theorem
expresses this number in terms of the Mobius function of that poset.
Understanding how regions fit together leads naturally to the face poset
and oriented sign structures, which encode adjacency and orientation
information.

These concepts are also relevant in studying piecewise-linear models
in machine learning. A feedforward neural network with ReLLU activa-

tions implements a function that is linear on each region of a hyperplane
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arrangement defined by its activation boundaries. The expressive be-
havior and local sensitivity of such models can be viewed through the
geometry and combinatorics of these arrangements.

2. PRELIMINARIES

First, we recall the basic definitions and examples needed to study
hyperplane arrangements.

Definition 2.1 (Affine hyperplane). An affine hyperplane in R? is a
set of the form

H={rcR":w-z+b=0},

where w € R? is a nonzero vector and b € R. The hyperplane divides
R? into the open half-spaces

HY*={z:w-z+b> 0}, H ={z:w-z+b<0}.

Definition 2.2 (Hyperplane arrangement). A hyperplane arrangement
in R? is a finite collection

A={H,,... ,H,}
of affine hyperplanes. The complement of A is
M(A) =R\ | H,.
i=1

The connected components of M (A) are the regions of the arrange-
ment. We denote by R(A) the set of regions, and by

r(A) = #R(A)
the number of regions.

Definition 2.3 (Sign pattern). Given an arrangement A = {Hy, ..., H,}
with defining forms w; - & + b;, the sign pattern of a point x € R? is the
vector

o(x) = (sign(wy - & + by),...,sign(w, -x +by,)) € {—,0,+}".
Proposition 2.1. Two points x,y € R? lie in the same region of A iff
sign(w; - x + b;) = sign(w; - y + b;) for all 7.

Thus, each region corresponds to a unique sign pattern of the linear
forms {w; - x + b;}. In particular, the sign map o: RT — {— 0, +}" is
locally constant on each region.



HYPERPLANE ARRANGEMENTS AND COMBINATORIAL COMPLEXITY 3

Idea of proof. If two points lie in the same region, then any path be-
tween them avoids all hyperplanes, so none of the values w; - x + b; can
change sign. Conversely, if all signs agree, one can move from z to y
while remaining on the same side of every hyperplane, so no hyperplane
is crossed; hence x and y lie in the same region. 0

Definition 2.4 (Flat and intersection poset). Given a subcollection of
hyperplanes H;,, ..., H;, , their intersection

is called a flat. The set of all nonempty flats, together with RY, ordered
by reverse inclusion

X<Y <<= YCX,
forms the intersection poset of the arrangement.

Definition 2.5 (Face). A face of A is any nonempty set obtained by
choosing, for each hyperplane H;, one of the conditions

wi-x+bi>0, wlx—i-bZ:O, wi-x+bi<0,

whenever the resulting set is nonempty. A region is a top-dimensional
face (all strict inequalities). Lower-dimensional faces lie on the hyper-
planes themselves.

Here are a few examples in low dimensions:

Example 2.1 (Two lines in R?). Two nonparallel lines intersect in one
point and divide the plane into four regions. Each region corresponds
to a distinct sign pattern for the two defining linear forms.

FIGURE 1. Three lines in general position in R? forming
seven regions.

Example 2.2 (Three lines in general position). Three pairwise non-
parallel lines form three intersection points and partition R? into seven
regions; see Figure[I] This illustrates that region counts depend on the
intersections, not just on the number of hyperplanes.
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Example 2.3 (Three planes in R?). Three planes in general position
intersect in a single point and divide space into eight regions, the three-
dimensional analogue of the quadrants in R3.

3. THE CHARACTERISTIC POLYNOMIAL AND ZASLAVSKY’S
THEOREM

In this section we introduce the characteristic polynomial of a hy-
perplane arrangement and state Zaslavsky’s theorem, which expresses
the number of regions of an arrangement in terms of this polynomial.

Definition 3.1 (Mébius function). Let L(A) be the intersection poset
of an arrangement A, ordered by reverse inclusion. The Mobius func-
tion p of L(A) is defined recursively by

p(X, X)=1 for all X € L(A),
and for X <Y,
> uX,z)=0.

X<ZLY

Definition 3.2 (Characteristic polynomial). The characteristic poly-
nomial of the arrangement A is

xalt)= > p(RY X))
XeL(A)

(see [1].)

The characteristic polynomial can be computed directly from the
intersection poset, and its coefficients encode information about the
combinatorics of the arrangement. The appearance of the Mobius func-
tion reflects an inclusion-exclusion principle on the poset: the values
(R4, X) play the role of alternating weights that correct for over-
counting when summing contributions from different hyperplane inter-
sections. In particular, x 4(t) depends only on the structure of L(.A)
and the Mobius function.

Example 3.1. For two nonparallel lines in R?, the poset consists of R?,
the two lines, and their intersection point. Performing the computation
gives

xa(t) =1* =2t + 1.

Evaluating at ¢ = —1 yields x4(—1) = 4, which matches the four
regions determined by the two lines.
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Example 3.2. Three lines in general position in R? have intersection
poset consisting of the plane, the three lines, and the three intersection
points. We find that

xa(t) =t — 3t + 3.

Evaluating at t = —1 gives y4(—1) = 7.
Definition 3.3 (Rank). Let A be an arrangement in R? with hyper-

planes
The rank of A is
rank(A) = dimspan{wy, ..., w,}.

It measures the effective dimension in which the arrangement cuts
space.

Zaslavsky’s theorem expresses the number of regions and bounded
regions of a real arrangement purely in terms of its characteristic poly-
nomial.

Theorem 3.1 (Zaslavsky). Let A be a hyperplane arrangement in R?.
Then the number of regions is

r(A) = (1) x4 (-1).
Moreover, the number of bounded regions is
b(A) = (=1)™ Y x4 (1),

Idea of proof. One proves that the number of regions satisfies a deletion-
restriction recurrence. For a chosen hyperplane H € A, let A\ H be
the arrangement with H removed and let A|y be the restriction of the
arrangement to H. Geometrically, every region of A either lies entirely
on one side of H and already appears in A\ H, or it is cut into two
pieces by H, and these new pieces are in bijection with the regions of
Alg. This shows that

r(A) =r(A\ H) +r(Alg),

and a similar recurrence holds for the number of bounded regions. On
the other hand, the characteristic polynomial satisfies the same recur-
rence, with identical initial conditions. Induction on the number of
hyperplanes then proves the statement. U

This theorem makes region counting a purely combinatorial proce-
dure: determine the intersection poset, compute the Mobius function,
form the characteristic polynomial, and evaluate it at £1.
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4. STRUCTURAL AND GEOMETRIC PERSPECTIVES

In this section we discuss two ways to organize the structure of a
hyperplane arrangement: the face poset and the oriented sign structure.
These perspectives clarify how regions fit together and how they can
be encoded combinatorially.

4.1. The face poset. Recall that faces of an arrangement A are formed
by specifying, for each hyperplane H; with defining form w;-x+b; = 0,
one of the relations w; - x +b; > 0, w; -x +b; =0, or w; - x + b; < 0,
whenever the resulting set is nonempty. Regions are exactly the top-
dimensional faces, where all inequalities are strict.

Definition 4.1 (Face poset). Let A be a hyperplane arrangement in
R?. The face poset of A is the set of all faces, partially ordered by

F<G <+<— FCQG.

Faces come in dimensions 0 through d, and inclusion always increases
dimension.

Proposition 4.1. The maximal elements of the face poset are precisely
the regions of A. Moreover, the face poset is graded by dimension: if
F C G are faces and no face lies strictly between them, then dim(G) =
dim(F) + 1.

Idea of proof. A region is a face that lies in no hyperplane, so it cannot
be contained in a larger face. Conversely, any maximal face must satisfy
only strict inequalities and is therefore a region. The grading follows
because enlarging a face corresponds to releasing exactly one equality
constraint, increasing dimension by one. U

4.2. Sign vectors and oriented structure. The sign patterns intro-
duced earlier can be organized into a combinatorial object that captures
the oriented structure of the arrangement.

Definition 4.2 (Sign vectors). Let A = {Hy,..., H,} be an arrange-
ment in R, with H; defined by w; - © + b; = 0. For any point x € R,
its sign vector is
o(x) = (sign(w1 cx+by),...,sign(w, - x + bn)) e {-,0,+}".
The set of all such sign vectors is
V(A) = {o(x) : 2 € R} C {—,0, +}".

A sign vector with no zero coordinates corresponds to a region, while
those with one or more zeros correspond to lower-dimensional faces
lying on one or more hyperplanes.
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Remark 4.1. The set V(A) satisfies the axioms of an oriented matroid.
Although we won’t use this theory in full generality, it provides a useful
perspective: all of the faces of A can be recovered purely from the
combinatorics of sign vectors, without reference to the coordinates of
the hyperplanes.

From this point of view, passing from one region to an adjacent one
corresponds to changing exactly one sign, passing through a face where
that coordinate becomes zero. This matches the geometric intuition
that crossing a single hyperplane flips the corresponding sign.

Example 4.1. Consider the arrangement in R? given by the two lines
Hli.CE:O, Hgy:O

The four open quadrants are regions. Points in the first quadrant have
sign vector (4, +), while points in the second quadrant have sign vector
(—,+). These two regions are adjacent along the y-axis, and their sign
vectors differ in exactly one coordinate, corresponding to crossing the
hyperplane H;.

4.3. Summary. The face poset describes how faces fit together by
inclusion, while the sign-vector structure records their orientations rel-
ative to the hyperplanes. Together they encode the full stratification
of R? defined by the arrangement.

5. APPLICATIONS TO PIECEWISE-LINEAR MODELS

We conclude by explaining how the combinatorics of hyperplane ar-
rangements provide a geometric framework for understanding the be-
havior of certain machine-learning models. Our focus is on feedfor-
ward neural networks with the ReLLU activation function, whose input-
output maps are piecewise-linear.

5.1. Activation boundaries as hyperplanes. Consider a single ReLLU
neuron with weight vector w € R? and bias b € R. It computes the
function

z +— ReLU(w - x + b) = max{0, w - x + b}.
The expression w - x 4+ b changes sign precisely along the affine hyper-
plane

H={zcR":w-x+b=0}

On w -z + b > 0 the neuron acts as the linear function w - x + b, while
on w-x+b < 0 it acts as the constant function 0. Thus a single ReLLU
unit defines a decomposition of R? into two linear pieces separated by
the hyperplane H.
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For a layer of n ReLLU neurons with weights (w1, by), ..., (wy, b,), the
activation boundaries form the arrangement

A={Hy,...,H,} CR?

On each region R € R(A), all signs sign(w; - « + b;) are fixed, so the
vector of ReLLU outputs is linear on R. In other words, the layer induces
a piecewise-linear function

R¢ — R™

whose linear pieces are in bijection with the regions of A.

5.2. Region counts and expressive complexity. The number of
linear regions determines how many distinct affine behaviors the layer
can express. By Zaslavsky’s theorem,

r(A) = (1) x4 (1),

so the expressive complexity of a ReLLU layer is governed by the char-
acteristic polynomial of its underlying hyperplane arrangement.

Arrangements with many intersecting hyperplanes tend to have many
regions, general-position configurations maximize region counts, and
parallel or coincident hyperplanes reduce the number of regions by col-
lapsing parts of the intersection poset. All of these intuitions translate
to statements about the representational ability of ReLU layers: more
intricate intersection patterns of activation boundaries yield more lin-
ear pieces and richer behavior.

5.3. Activation patterns as sign vectors. For a point # € R?, the
vector

o(r) = (Sign(w1 ~x+by),...,sign(w, -z + bn))

records which neurons are active (4), inactive (—), or exactly on the
boundary (0). The sign vectors V(. A) therefore coincide with the pos-
sible activation patterns of the layer.

Regions of A correspond to sign vectors with no zeros, and thus to
stable activation patterns of the layer. Moving from one region to an
adjacent region corresponds to flipping the state of exactly one neu-
ron, passing through a codimension-one face. The oriented structure
of the arrangement therefore captures the adjacency relations among
activation patterns.
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5.4. Decision boundaries and fragility. In classification settings,
intersections of many activation boundaries correspond to lower-dimensional
faces where small perturbations can change multiple neuron states si-
multaneously. More precisely, if a point lies within a small distance
of several hyperplanes in the arrangement, then a perturbation may
cross multiple boundaries at once, moving the input to a different re-
gion. Adversarial examples are slightly perturbed inputs that a model
misclassifies, despite correctly classifying the original inputs. This be-
havior may emerge when inputs are near the intersection of many ac-
tivation boundaries, making adversarial examples more likely to lie in
such areas.

6. CONCLUSION

The study of hyperplane arrangements, regions, faces, and sign pat-
terns offers a framework for understanding the structure underlying
piecewise-linear functions and the activation structure of ReLLU net-
works. Since neural networks involve compositions of many such layers
and possibly different activation functions, natural extensions include
analyzing how region complexity propagates through layers and how
arrangements relate to robustness and fragility in these models. As
depth increases, the maximal number of linear regions can grow ex-
ponentially in the number of layers [2], although empirical analyses
suggest that trained networks typically realize far fewer regions than
these worst-case bounds [3].
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