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1. Introduction

The problem of counting colored necklaces is a simple yet revealing example in combina-
torics: although at first glance it seems enough to note that there are mn ways to assign
m colors to a necklace with n beads, this number completely ignores the geometric symme-
tries of the object. Two configurations that differ only by a rotation (or reflection, if these
are allowed) represent, from a geometric standpoint, the same necklace. Consequently, the
count mn does not appear to be a very satisfactory answer, since it massively overcounts the
genuinely distinct configurations.

To correct this overcounting we introduce an equivalence relation that identifies symmetric
colorings. Such relations, induced by group actions, allow us to systematically organize the
configurations into classes, each of which captures an essential pattern. Burnside’s Lemma
provides the fundamental bridge between symmetries and the counting of these classes.

Pólya’s Enumeration Theorem extends these ideas by allowing us to simultaneously record
the cycle structure of each permutation and the exact distribution of colors on the necklace.

In Section 2 we review preliminary notions regarding equivalence relations, permutations,
and group actions, restricting ourselves to the minimal framework required. In Section 3 we
present Burnside’s Lemma and its cycle–index version, applying them to enumerate necklaces
under symmetries. Section 4 is devoted to Pólya’s Enumeration Theorem, including explicit
examples.

2. Preliminaries

2.1. Equivalence Relations.

Definition 2.1. A relation R on a set S is a subset of S × S. We say that two elements
a, b ∈ S are related if (a, b) ∈ R, and we denote this by a ∼ b.

Definition 2.2. A relation R on a set S is called an equivalence relation if the following
conditions hold:

• For all x ∈ S, x ∼ x (reflexivity).
• For all x, y ∈ S, if x ∼ y then y ∼ x (symmetry).
• For all x, y, z ∈ S, if x ∼ y and y ∼ z then x ∼ z (transitivity).

Definition 2.3. Given an equivalence relation R on S, the equivalence class of x induced by
R is the set

cl(x) = {y ∈ S : x ∼ y}.
Proposition 2.4. If R is an equivalence relation on S, then every element of S belongs to
exactly one equivalence class.
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Proof. Since R is reflexive, we know that x ∼ x for all x ∈ S, so x ∈ cl(x). Now suppose
there exists some x ∈ S such that x ∈ cl(y) and x ∈ cl(z), where y and z are elements of S.
Since R is symmetric, we have y ∼ x and x ∼ z. Since R is transitive, we obtain y ∼ z, so
cl(y) = cl(z). ■

2.2. Permutations.
Recall that Sn denotes the set of all bijections from [n] to [n]. Since function composition

is closed in Sn, any permutation of [n] can be composed with another, and therefore Sn may
be viewed as the set of all permutations of [n]. We call the elements of Sn permutations.

Definition 2.5. Let π ∈ Sn. For i ∈ [n] we define the sequence

i, π(i), π2(i), . . .

which must eventually return to i since π is a bijection. The set of elements visited in this
process forms a cycle of the permutation π. If a cycle contains the elements a1, a2, . . . , ak,
we write it using the notation

(a1 a2 · · · ak).

These observations lead to the following fact.

Proposition 2.6. Every permutation π ∈ Sn can be written as a product of disjoint cycles,
and this expression is unique up to the order of the cycles.

Definition 2.7. Let π ∈ Sn and suppose that its disjoint-cycle decomposition contains
exactly k cycles. We define this number as cyc(π) = k.

2.3. Group theory.

Definition 2.8. A group is a set G equipped with a binary operation ∗ satisfying:

• For all x, y ∈ G, one has x ∗ y ∈ G.
• For all x, y, z ∈ G, (x ∗ y) ∗ z = x ∗ (y ∗ z).
• There exists an element e ∈ G such that x ∗ e = e ∗ x = x for all x ∈ G.
• For each x ∈ G there exists an element x−1 ∈ G such that x ∗ x−1 = x−1 ∗ x = e.

Definition 2.9. Let G be a group and let H ⊆ G. If H, with the operation ∗ restricted,
forms a group in its own right, we say that H is a subgroup of G.

Definition 2.10. We say that a group G is generated by a set S = {g1, . . . , gn} if every
element of G can be expressed as a product of elements of S. When this happens, we say
that g1, . . . , gn are the generators of G, and we write

G = ⟨g1, . . . , gn⟩.
Definition 2.11. We say that a group G acts on a set X if G is a group of permutations of
X. That is, for every g ∈ G and every x ∈ X we have g(x) ∈ X.

Although this definition is not the usual one, it will serve for our purposes.

Definition 2.12. Let G be a group acting on a set X. For each g ∈ G, we define

Inv(g) = {x ∈ X : g(x) = x},
the set of invariants of g.

Definition 2.13. Let G be a group acting on a set X. For each x ∈ X, we define

st(x) = {g ∈ G : g(x) = x},
the stabilizer of x.
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We now describe two fundamental subgroups of the symmetric group Sn, which model the
symmetries of a necklace with n positions.

Definition 2.14. Let n ≥ 1. We define the permutation

r = (1 2 3 · · · n) ∈ Sn,

which sends i to i+ 1 for 1 ≤ i < n, and sends n to 1. The cyclic group of order n, denoted
Cn, is defined as

Cn = ⟨r⟩ = { rk : 0 ≤ k < n }.
Definition 2.15. Let n ≥ 1. In addition to r as above, we define the permutation s ∈ Sn

by
s(i) = n+ 1− i (1 ≤ i ≤ n),

which corresponds to the reflection that reverses the order of the positions. The dihedral
group of order 2n, denoted Dn, is defined as

Dn = ⟨r, s⟩.
For a broader treatment of abstract algebra, we refer the reader to Fraleigh [1] or Her-

stein [2].

3. Burnside’s Lemma

When a group acts on a set X, each element of X may be transformed into other elements
via the action. We say that x and y are equivalent if there exists g ∈ G such that g(x) = y.
This relation is reflexive, symmetric, and transitive, and therefore induces an equivalence
relation. The resulting classes are exactly the subsets of the form

cl(x) = {g(x) : g ∈ G}.
Theorem 3.1 (Burnside’s Lemma). Let G be a group acting on a finite set X. The number
of equivalence classes induced by the action is

1

|G|
∑
g∈G

|Inv(g)|.

Proof. Let N be the number of pairs (g, x) ∈ G×X such that g(x) = x. We count N in two
ways.

On one hand, for fixed g, the number of x such that g(x) = x is |Inv(g)|, so

N =
∑
g∈G

|Inv(g)|.

On the other hand, we group the pairs (g, x) by equivalence classes. Let x ∈ X and
consider its class cl(x). If y ∈ cl(x), then | st(y)| = | st(x)| because the stabilizers of elements
in the same class have equal size.

We now use the Orbit–Stabilizer Theorem, which states that for every x ∈ X

|G| = |cl(x)| · | st(x)|.
This implies that the number of pairs (g, y) with y ∈ cl(x) and g(y) = y is

|cl(x)| · | st(x)| = |G|.
If there are t equivalence classes, we obtain

N = t · |G|.
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Comparing with the first expression for N , we conclude

t =
1

|G|
∑
g∈G

|Inv(g)|.

■

Definition 3.2. Let S be a finite set and C a set of colors. A coloring is a function

f : S → C.

For a necklace with n positions, there are |C|n possible colorings.

Proposition 3.3. Let π be a permutation of the positions of a necklace. If π has cyc(π)
disjoint cycles, then

|Inv(π)| = |C|cyc(π).

Proof. Each cycle requires that the positions it contains receive the same color in order for
the coloring to be fixed by π. Since the cycles are disjoint, each one may freely choose one
of the |C| colors. Therefore the total number of invariant colorings is |C|cyc(π). ■

Thus, we may reformulate the result as follows.

Theorem 3.4 (Cycle–Index Version of Burnside’s Lemma). Let G act by permutations on
a set of n positions. If there are m available colors, the number of equivalence classes of
colorings under the action of G is

1

|G|
∑
π∈G

mcyc(π).

Example. Count the necklaces with 6 beads and m colors, identifying those obtained by
rotations. Here G = C6 = ⟨r⟩, where

r = (1 2 3 4 5 6).

The elements of C6 are

r0, r1, r2, r3, r4, r5.

We decompose each into cycles:

r0 = (1)(2)(3)(4)(5)(6), cyc(r0) = 6,

r1 = (1 2 3 4 5 6), cyc(r1) = 1,

r2 = (1 3 5)(2 4 6), cyc(r2) = 2,

r3 = (1 4)(2 5)(3 6), cyc(r3) = 3,

r4 = r2, cyc(r4) = 2,

r5 = r1, cyc(r5) = 1.

Applying Burnside:

1

6

(
m6 +m1 +m2 +m3 +m2 +m1

)
=

1

6
(m6 +m3 + 2m2 + 2m).

This is the total number of distinct 6-bead necklaces up to rotation.
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Example. Now count necklaces with 4 beads and m colors, identifying those obtained by
rotations and reflections. Here G = D4 = ⟨r, s⟩, where

r = (1 2 3 4)

and s is a reflection. In 4 positions there are two types of reflections: those that fix two
points and those that exchange two pairs.

The elements of D4 are:

r0, r1, r2, r3, s, sr, sr2, sr3.

Cycle decompositions:

r0 = (1)(2)(3)(4), cyc(r0) = 4,

r1 = (1 2 3 4), cyc(r1) = 1,

r2 = (1 3)(2 4), cyc(r2) = 2,

r3 = (1 4 3 2), cyc(r3) = 1.

For the reflections we take representatives:

s = (2 4), cyc(s) = 3,

sr = (1 2)(3 4), cyc(sr) = 2,

sr2 = s, cyc(sr2) = 3,

sr3 = sr, cyc(sr3) = 2.

Applying the formula:

1

8

(
m4 +m1 +m2 +m1 +m3 +m2 +m3 +m2

)
.

Grouping:
1

8

(
m4 + 2m3 + 3m2 + 2m

)
.

This is the number of distinct 4-bead necklaces under rotations and reflections.

4. Pólya’s Enumeration Theorem

In the final version we present, we wish to count necklaces that use specific quantities
of each color. To do this we must refine the method: rather than merely counting how
many configurations exist, we want to record how the colors are distributed. This is where
Pólya’s Enumeration Theorem enters, converting Burnside’s Lemma into a method capable
of simultaneously recording the cycle structure and the precise assignment of colors.

Recall that a cycle of length i in π requires all its positions to have the same color. Instead
of simply counting how many color choices there are, we introduce variables that represent
the colors and let the cycle structure determine the power with which they appear. We do
this using variables x1, . . . , xn, where xi expresses the “contribution” of a cycle of length i.

Definition 4.1. Let G be a subgroup of Sn. If π ∈ G has exactly ki(π) cycles of length i in
its disjoint-cycle decomposition, its cycle-index monomial is

n∏
i=1

x
ki(π)
i .
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Definition 4.2. The cycle-index polynomial of G is

ZG(x1, . . . , xn) =
1

|G|
∑
π∈G

n∏
i=1

x
ki(π)
i .

This polynomial collects relevant information about the group: for each π, the correspond-
ing monomial encodes how many cycles of each length it contains.

To incorporate colors, we assign to each color c a variable yc. A cycle of length i must
receive a single color, so its contribution is yic.
The total contribution is obtained by substituting

xi =
∑
c∈C

y i
c

into the cycle-index polynomial ZG. The expansion of the result contains all non-equivalent
patterns, and the powers of the variables yc indicate how often each color appears.

Theorem 4.3 (Pólya’s Enumeration Theorem). Let G ≤ Sn act on n positions. Let C be a
set of colors and assign to each color c ∈ C a variable yc. If in the cycle-index polynomial
ZG we perform the substitution

xi =
∑
c∈C

y i
c ,

then the resulting polynomial encodes all distinct colorings under the action of G. In par-
ticular, the coefficient of the monomial ∏

c∈C

y ac
c

is the number of equivalence classes of colorings that use exactly ac positions of color c.

Example. Count necklaces with 5 beads using three colors R,G,B, distinguishing configura-
tions only up to rotation.

The elements of C5 = ⟨r⟩ are
r0, r1, r2, r3, r4

with decompositions:
r0 = (1)(2)(3)(4)(5), cyc(r0) = 5,

r1 = (1 2 3 4 5), cyc(r1) = 1,

and for r2, r3, r4 the same occurs as for r1, since all are cycles of length 5, hence

cyc(r1) = cyc(r2) = cyc(r3) = cyc(r4) = 1.

We write their cycle-index monomials:

r0 7−→ x5
1, rk 7−→ x5 (k = 1, 2, 3, 4).

The cycle-index polynomial is

ZC5(x1, . . . , x5) =
1

5

(
x5
1 + 4x5

)
.

We substitute:
x1 = R +G+B, x5 = R5 +G5 +B5.

We obtain

ZC5(R,G,B) =
1

5

(
(R +G+B)5 + 4(R5 +G5 +B5)

)
.
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Now, if we want to count necklaces with exactly two red beads, one green bead, and two
blue beads, we look for the coefficient of the monomial

R2G1B2.

The expansion of the first term (R+G+B)5 contains all monomials of degree 5; the second
term contributes only monomials of the form R5, G5, B5. Therefore the desired coefficient is

1

5
·
(

5

2, 1, 2

)
.

Thus, the number of necklaces with exactly two red beads, one green bead, and two blue
beads (up to rotation) is 6.
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