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Introduction

Matroid theory is a branch of combinatorics that studies an abstract notion of indepen-
dence, generalizing concepts from linear algebra and graph theory. In linear algebra, we say
a set of vectors is independent if none of them is a linear combination of the others; in graph
theory, a set of edges is independent (an acyclic set) if it contains no cycles (i.e. it forms
a forest). Matroids capture the common essence of these notions. In fact, matroids were
introduced by Hassler Whitney in 1935 as a way to axiomatize the concept of independence
that arises in both graphs and matrices [1]. A matroid can be thought of as the most gen-
eral kind of structure in which ideas like rank, basis, and linear independence make sense,
even outside the usual settings of vector spaces or graph connectivity [6]. This unifying
perspective has made matroid theory a fundamental tool in combinatorics, with applications
in optimization, network theory, geometry, and coding theory [6].

In this expository paper, we introduce the basic theory of matroids, focusing on their
internal structure: the fundamental definitions, core concepts (such as independent sets,
bases, circuits, rank, and duality), and a few key theorems. We will illustrate these ideas with
examples that should be accessible to students familiar with graphs, sets, and introductory
linear algebra. (Applications of matroids will be mentioned only briefly near the end.) Our
goal is to convey both the formal definitions and the intuitive meaning of matroids in an
engaging way. We encourage the reader to keep in mind two running examples while reading:
one from graph theory (forests in a graph) and one from linear algebra (independent sets of
vectors). These will help ground the abstract definitions in familiar terms.

Definitions and Axioms

There are several equivalent ways to define a matroid. We will start with the independent
set definition, which is often the easiest to grasp intuitively. Later, we will discuss alternative
but equivalent descriptions (in terms of bases, circuits, and rank).

Formally, a matroid M is an ordered pair (E, I) where:
• E is a finite set, called the ground set of the matroid. The elements of E can be
thought of as the “building blocks” of the structure (for example, E might be a set
of vectors, or a set of edges in a graph).

• I is a collection of subsets of E, called the independent sets, which satisfies the
following axioms:

(I1) Non-emptiness: The empty set is independent (∅ ∈ I) [6].
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(I2) Hereditary property: Every subset of an independent set is independent. In other
words, if A ∈ I and A′ ⊆ A, then A′ ∈ I [6]. This reflects the idea that removing elements
from an independent set cannot create a dependency.
(I3) Exchange (augmentation) property: If A and B are independent sets and |A| > |B|,
then there exists at least one element x ∈ A\B such that B∪{x} is also independent [6]. In
words, if one independent set A is larger than another independent set B, we can exchange
some element of A into B and still have an independent set. This axiom ensures a kind of
“stepping up” property, reminiscent of how one can extend a smaller linearly independent
set by adding a vector from a larger independent set in linear algebra.

These three axioms are the defining properties of a matroid in terms of independent
sets. Axiom (I1) is usually trivial (it just asserts that I is not empty; note that by (I2) it
then follows that ∅ is independent). Axiom (I2) says that I is downward-closed, meaning
independence is preserved under taking subsets (this is also known as the hereditary property
[6]). Axiom (I3), the exchange property, is the most characteristically matroidal condition:
it captures the idea that all maximal independent sets in a matroid have a certain uniformity,
and one can move from one independent set to another by swaps. Indeed, (I3) implies that
any independent set can be expanded to a maximal one by adding elements, and importantly,
it implies that all maximal independent sets have the same size (we will prove this shortly) [7].

Example (Vector independence). To see these axioms in action, consider E to be a set
of vectors in Rn. We can take I to be the collection of all linearly independent subsets of E.
Then (E, I) is a matroid (often called a vector matroid or representable matroid) [7]. Axioms
(I1)–(I3) correspond to basic facts from linear algebra: (I1) ∅ is independent (vacuously). (I2)
Any subset of a linearly independent set is independent (removing vectors cannot introduce
a linear dependence). (I3) If A and B are two sets of vectors with A larger than B, one of
the vectors in A can be added to B while preserving independence — essentially a version of
the Steinitz exchange lemma from linear algebra. Thus, vector spaces provide a rich source
of matroids (we will formalize this example later).

Example (Acyclic subgraphs). Similarly, let E be the edge set of a graph G. Define I
to be the collection of all subsets of E that contain no cycles (i.e. all forests in G). Then
(E, I) is a matroid, known as the graphic matroid of G [7]. Verifying the axioms: (I1) ∅ (no
edges) is certainly acyclic. (I2) Any subset of an acyclic set of edges is acyclic (removing
edges cannot create a cycle). (I3) If A is a larger acyclic set than B, then A has more edges
than B; to extend B, we can add some edge from A that is not in B – since A has no cycles,
adding any edge from A that is outside B will not create a cycle in B (one can give a more
rigorous graph-theoretic proof of the exchange property, but intuitively it holds because A
being larger means it spans more of the graph without cycles, so we can always add some
edge from A to B without creating a cycle). In fact, the exchange axiom in graphic matroids
is closely related to the fact that all spanning trees of a connected graph have the same
number of edges.

Bases and Rank

A subset of the ground set E is called independent if it belongs to I. By definition,
an independent set that is not contained in any larger independent set is called maximal
independent. In matroid terminology, a maximal independent set is called a basis of the
matroid. Every matroid has at least one basis (by taking any maximal independent set,
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which exists by a simple greedy argument using (I3)). One of the fundamental theorems
of matroid theory is that all bases in a matroid have the same size. This common size is
referred to as the rank of the matroid.

We state this result formally:

Theorem (Basis Exchange). In any matroid M = (E, I), all bases have the same cardi-
nality. Moreover, given any two bases B1 and B2, one can exchange elements between them:
for every b1 ∈ B1 \B2, there exists some b2 ∈ B2 \B1 such that (B1 − {b1}) ∪ {b2} is also a
basis [7].

Sketch of Proof. The second part of this statement (often called the basis exchange property)
is actually another equivalent axiom system for matroids [7]. Assuming (I1)–(I3), one can
prove it as follows: let B1 and B2 be two bases. If B1 = B2 there is nothing to show. If
not, pick any element b1 ∈ B1 \ B2. Since B1 is independent and larger than B2 \ {b1}, by
(I3) there exists some x ∈ B1 \ (B2 \ {b1}) (so either x = b1 or x ∈ B1 \ B2) that can be
added to B2 \ {b1} to form an independent set. Obviously x cannot be b1 itself (removing
b1 and then adding it back does nothing), so x is in B1 \ B2. Thus (B2 \ {b1}) ∪ {x} is an
independent set containing B2 \{b1} plus one extra element x. But B2 was a basis (maximal
independent), so B2 cannot be extended by any element; the only way (B2 \ {b1})∪ {x} can
be independent is if x replaced b1 – that is, x must lie in B2 already. This x is our b2. So for
each b1 ∈ B1 \ B2, we found an element b2 = x ∈ B2 \ B1 that we can swap. By symmetry,
the same holds swapping the roles of B1 and B2. This proves the exchange property (B2).

Setting aside the formal proof, the intuition is: you can “trade” elements between any two
bases and still end up with a basis [7]. Now, to see that all bases must have the same number
of elements, consider applying the exchange property repeatedly: if |B1| > |B2|, then for
each extra element in B1 you can exchange with an element in B2, suggesting B2 can be
enlarged — a contradiction since B2 is maximal independent. Thus |B1| cannot exceed |B2|,
and by symmetry |B2| cannot exceed |B1|. We conclude |B1| = |B2|.
This number is an important invariant of the matroid:

Definition (Rank). The rank of a matroid M , denoted r(M), is the size of any (hence
every) basis of M [7]. More generally, for any subset X ⊆ E, the rank r(X) is defined as
the size of the largest independent subset of X [7]. In other words,

r(X) = max{|I| : I ⊆ X, I ∈ I}.
By this definition, the rank of the entire ground set E (denoted simply r(E)) equals r(M),
the size of a basis.

The rank function r(·) provides a convenient numerical measure of the “independence
capacity” of any subset. It satisfies a few useful properties:

(1) Monotonicity: If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ) (adding more elements cannot
decrease the maximum independent size) [7].

(2) Upper bound: For any X ⊆ E, obviously r(X) ≤ |X|, since an independent subset
of X cannot be larger than X itself.

(3) Submodularity: For any two subsets X, Y ⊆ E, one can show

r(X) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ),

an inequality that says the rank function is submodular. Submodularity is a bit
advanced, but it generalizes the fact that in linear algebra, dim(U) + dim(W ) ≥
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dim(U+W )+dim(U∩W ) for subspaces U,W . We will not prove these properties here,
but they all follow from the matroid axioms (in fact, one could define a matroid as any
set function r : 2E → Z≥0 satisfying certain axioms analogous to these properties [7]).

Example. In the graphic matroid of a graph G, a basis corresponds to a spanning forest
of G (a maximal acyclic set of edges). For a connected graph, a spanning forest is just a
spanning tree. Thus the rank of the graphic matroid is r(M) = |V | − c, where |V | is the
number of vertices in G and c is the number of connected components (since a spanning forest
has |V | − c edges) [7]. More generally, the rank r(X) of a subset of edges X is |V | − κ(X),
where κ(X) is the number of connected components in the subgraph that X spans [7]. This
is analogous to linear algebra: think of |V | as the “dimension” of the ambient space (for
graphs, the number of vertices plays a similar role) and each independent edge reduces the
number of components by 1.

Example. In a vector matroid (where E is a set of vectors in some vector space), a basis
is just a basis of the vector space spanned by E (or by those vectors) in the linear algebra
sense. For instance, if E is a set of column vectors, a basis of the matroid might consist of
some of those columns forming a full-rank submatrix. The rank of the matroid r(M) in this
case equals the dimension of the subspace spanned by all vectors in E, and the rank r(X)
of a subset X is the dimension of the subspace spanned by X [7]. This is exactly the usual
definition of the rank of a set of vectors.

Circuits and Dependence

Just as bases are the maximal independent sets, one can define circuits to be the minimal
dependent sets in a matroid. A dependent set means a subset of E that is not independent
(not in I). A circuit is a dependent set such that every proper subset of it is independent [7].
In other words, a circuit is a minimal configuration of elements that contains a dependence.
If any one element is removed from a circuit, the remainder becomes independent, but the
full set is dependent.

Definition (Circuit). A circuit of a matroid M = (E, I) is a subset C ⊆ E such that
C /∈ I (it is dependent), but every proper subset of C is in I (it is minimal dependent) [7].
The collection of all circuits of M is often denoted C.

Because circuits represent the “primitive” dependent sets, they satisfy their own axioms
dual to (I1)–(I3). For example, one can show:

• There is no circuit that properly contains another (by minimality) [7].
• If C1 and C2 are two distinct circuits and they share an element x, then there is a
circuit contained in (C1∪C2)\{x} [7]. This is known as the circuit elimination axiom
(essentially, two different minimal dependences can be “combined” to form another
dependence after removing the common element).

The circuit elimination property is a bit advanced, but it has a nice interpretation in graphs
and linear algebra. In a graph, circuits correspond to simple cycles [8]. The elimination
axiom for circuits then says: given two distinct cycles in a graph that share an edge, you can
“break” the cycles and find another cycle that lies in the union of those two cycles (indeed,
in graph theory, the union of two cycles that share at least one edge will contain another
cycle once that common edge is removed). In linear algebra, circuits correspond to minimal
linearly dependent sets of vectors (for example, a circuit might be a set of k + 1 vectors in
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Rn that have the unique linear relation a1v1 + · · · + ak+1vk+1 = 0). The elimination axiom
in that context reflects the ability to eliminate one of the vectors in a linear dependence and
still have a dependence among the others.

A useful relationship between circuits and bases is: a set B ⊆ E is a basis if and only if B
has no circuits (i.e. it is maximally independent), and equivalently B has the property that
adding any element e ∈ E \ B to B creates exactly one circuit (a dependent cycle) within
B ∪ {e}. This again parallels graphs (a spanning tree B has no cycles, but adding any new
edge creates exactly one cycle) and linear algebra (a basis has no dependencies, but adding
any new vector creates exactly one dependency relation among the extended set).

Duality of Matroids

One of the most beautiful aspects of matroid theory is the notion of a dual matroid.
Matroid duality generalizes the duality between spanning trees and cuts in graphs, and
the duality between subspaces and quotient spaces (or orthogonal complements) in linear
algebra [10]. Intuitively, the dual matroid M∗ of a matroid M is formed by declaring the
complements of bases of M to be bases of M∗. What was independent in M becomes
“co-dependent” in M∗ and vice versa.

Definition (Dual Matroid). Let M = (E, I) be a matroid on ground set E with collection
of bases B. The dual matroid M∗ = (E, I∗) is defined as follows: a set B ⊆ E is a basis of
M∗ if and only if E \B is a basis of M [7]. Equivalently,

B∗ = {E \B : B ∈ B}.
From this definition, it follows that a set is independent in M∗ (i.e. belongs to I∗) if and only
if its complement in E contains a basis of M . In particular, the empty set is independent
in M∗ if and only if E contains a basis of M (which it does, trivially), so ∅ ∈ I∗ as needed.
One can check that M∗ is indeed a matroid; the base exchange axiom is self-dual, so the
collection of complements of bases will satisfy the exchange property [6].

What does duality mean for rank? If r(X) is the rank of subset X in M , and r∗(X) is the
rank in M∗, one can derive a simple relation:

r∗(X) = |X| − r(E) + r(E \X).

In particular, taking X = E, we get

r∗(E) = |E| − r(E) + r(∅) = |E| − r(M),

since r(∅) = 0 by convention [7]. Thus the rank of the dual matroid M∗ is r(M∗) =
|E|−r(M). This is analogous to linear algebra: if a subspace has dimension r, its orthogonal
complement (in an ambient space of dimension |E|) has dimension |E| − r. Also, if B is a
basis of M (so |B| = r(M)), then its complement E \ B is a basis of M∗ (and |E \ B| =
|E| − r(M) = r(M∗)), consistent with the rank formula [7].

From the definition, one can also describe the circuits of the dual matroid. A cocircuit of
M is defined as a circuit of the dual matroidM∗. It turns out that cocircuits ofM are exactly
the complements of hyperplanes of M (where a hyperplane is a maximal proper subset of E
that is not spanning, or equivalently a subset H with r(H) = r(M)− 1). In more concrete
terms: in a graph, circuits (cycles) of the graphic matroid M(G) correspond to fundamental
cycles, whereas the cocircuits in M(G) correspond to minimal cuts (also called bonds) in the
graph [7]. This matches the duality between cycles and cuts in planar graphs: for a planar
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graph G, the cycle matroid of the dual graph G∗ is the dual matroid of the cycle matroid of
G [7]. In fact, Whitney’s planar graph criterion (1933) states that a graph G is planar if and
only if the dual of its cycle matroid M(G) is graphic (i.e. is itself the cycle matroid of some
graph) [7]. If G is planar, M(G)∗ = M(G∗), where G∗ is the planar dual graph [7]. This is
a beautiful interplay between graph theory and matroid duality.

To summarize: duality provides a way to derive a new matroid from a given matroid by
essentially swapping the roles of independent and dependent sets (more precisely, swapping
bases with complements of bases). The dual of a matroid is unique and involutive, meaning
(M∗)∗ = M . Some matroids are self-dual (isomorphic to their duals), though that is a
special property (analogous to a planar graph being self-dual in graph theory, or a vector
space being isomorphic to its dual space with a pairing).

Examples of Matroids

We have already encountered a few key examples during the definitions. Let us summarize
and add a couple more examples to broaden our perspective:

Graphic Matroids For a graph G = (V,E), the matroid M(G) = (E, I) is defined by
I = {subsets of E that contain no cycle}. We saw that bases of M(G) are spanning forests
(spanning trees if G is connected), and the rank is

r(M(G)) = |V | − (number of components of G).

Circuits in M(G) correspond to simple cycles in G [8]. The dual matroid M(G)∗ has as its
circuits the minimal cuts (bonds) of G [7], and if G is planar, M(G)∗ is itself graphic (in
fact M(G)∗ = M(G∗) as mentioned).

Example: If G is a cycle graph C4 (a 4-cycle), thenM(G) is essentially the uniform matroid
U3,4 (any 3 of the 4 edges can be chosen without creating a cycle, but all 4 together form a
circuit).

Figure: The cycle graph C4 (left) and its graphic matroid represented as a uniform matroid
U3,4 (right). The independent sets are all subsets of edges of size at most 3 (listed as I0
through I14), while the only dependent set of full size 4 is the circuit (the 4-cycle itself).

Linear (Vector) Matroids As discussed, any finite set of vectors E = {v1, . . . , vn} in a
vector space (over a field F) defines a matroid M = (E, I) where I consists of all linearly
independent subsets of E [7]. This matroid is often denoted M [A] if the vectors are taken as
columns of a matrix A. Such a matroid is called representable (or F-representable to specify
the field). Bases in this matroid correspond to bases of the subspace spanned by E. The
rank function r(X) for X ⊆ E is dim(span(X)), the dimension of the subspace spanned by
X [7].

Not every abstract matroid is representable as a vector matroid, but many important ones
are. For instance, all graphic matroids are representable over F2 (the field of two elements) [7]
— essentially because a cycle (mod 2) is a linear relation mod 2 between edges in a graph’s
incidence matrix. An example of a non-representable matroid (over any field) is more difficult
to give in elementary terms; it requires more advanced combinatorial configurations. But one
simpler example of a matroid that is not representable over a particular field is the uniform
matroid U2,4, which cannot be represented over F2 (though it can be over F3) [7].
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UniformMatroids The uniform matroid Uk,n is defined on an n-element set E = {1, 2, . . . , n}
by declaring a subset X ⊆ E to be independent if and only if |X| ≤ k. In other words, any
set of up to k elements is independent, but any set of k+1 or more elements is dependent (so
the circuits are exactly the subsets of size k+1, and there are no other dependences) [7]. This
clearly satisfies the matroid axioms (it basically abstracts the idea of a bound on dimension
or cycle length). The rank of Uk,n is k (since any k-subset is independent but the whole set
of size n is not if n > k). We have seen a special case: U3,4 in the example of C4 above. Un,n

is just the free matroid (no dependencies at all, everything is independent), while U0,n is
the trivial matroid (only the empty set is independent, everything else is dependent). These
are extreme cases. Uniform matroids are very simple in structure, yet they play a role in
examples and counterexamples (and as building blocks for more complicated matroids).

Partition Matroids A partition matroid is a generalization of the uniform matroid. Sup-
pose the ground set E is partitioned into disjoint subsets (blocks) E = E1∪E2∪· · ·∪Et. Fix
some nonnegative integers k1, k2, . . . , kt. A set X ⊆ E is defined to be independent if and
only if |X∩Ei| ≤ ki for each i = 1, 2, . . . , t. In other words, you can take at most ki elements
from block Ei. It is easy to verify that this defines a matroid (the exchange property can
be checked by considering exchanges within each block). Partition matroids are useful to
model certain scheduling or assignment problems, and they too are representable (over a
large enough field, one can create a diagonal block matrix to realize the constraints). The
uniform matroid Uk,n is the special case where the entire ground set is one block (of size n)
with k1 = k.

Transversal Matroids A transversal matroid (also known as a Hall matroid) is constructed
from a bipartite graph or a set system. We mention it for completeness, though it is a bit
more involved than the above examples. Take a bipartite graph with bipartition (X,Y )
where X is our ground set of “left vertices” (as elements of the matroid). Suppose we have
some family of subsets of Y that X can match into. The independent sets of the transversal
matroid are those subsets A ⊆ X that can be matched to distinct neighbors in Y (i.e. A is
contained in the neighborhood of some matching). This matroid captures Hall’s marriage
theorem in its structure. Transversal matroids are a well-studied class; they are precisely
the matroids that are representable as intersections of partition matroids. We will not delve
further into this example, but it is an interesting link between matchings in graphs and
matroid theory [8].

Properties and Theorems

We have already touched on some fundamental properties in the discussion above (like
the basis exchange theorem). There are many important theorems in matroid theory, but
we will highlight just a few that underscore the theory’s elegance, especially those relevant
to an introduction.

Greedy Algorithm Optimality A matroid is exactly the kind of structure on which the
greedy algorithm always produces an optimal solution for selecting a largest (or maximum-
weight) independent set. This is known as the Greedy Algorithm Theorem (or Rado–
Edmonds theorem). In practical terms, if you assign weights to elements of a matroid,
the greedy strategy of iteratively picking the heaviest element that maintains independence
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will find a maximum-weight independent set [9]. The proof of this theorem relies on the
exchange property and is a cornerstone of combinatorial optimization.

As a corollary, many classic problems can be solved greedily because they can be modeled
as matroids. For example, Kruskal’s algorithm for finding a minimum spanning tree in
a graph works because the graphic matroid satisfies the criteria – any greedy choice (like
always adding the next smallest edge that does not create a cycle) yields a spanning tree of
minimum total weight. If one ever finds a problem where greedy fails, it is a hint that the
independence structure of the solution space might not form a matroid.

Duality and Planarity We mentioned Whitney’s planarity criterion earlier: a finite graph
G is planar if and only if the dual of its graphic matroid M(G) is also graphic [7] (specifically,
M(G)∗ = M(G∗), where G∗ is the planar dual graph). This is a deep theorem linking matroid
duality to planar graph duality. In fact, many properties of planar graphs can be elegantly
translated into matroid language. For instance, in a planar graph, the cuts (bonds) and
cycles stand in a dual relationship; this is exactly the relationship of circuits and cocircuits
in the graphic matroid and its dual.

Decomposition and Minors Matroids have a notion of minors analogous to graph minors:
one can delete or contract elements and still have a matroid. Many matroid properties
are hereditary for minors. There are profound structure theorems (such as Tutte’s and
Seymour’s decomposition theorems) describing matroids that can be composed from simpler
ones by operations like direct sums and 2-sums. While these are beyond the scope of this
introduction, it is worth noting that the theory of matroid minors parallels the famous
Robertson–Seymour theorem for graph minors, and there is ongoing research (the Matroid
Minors Project) to classify huge families of matroids in a similar way [6].

Representability and Fields A theorem by Tutte (regular matroid theorem) character-
izes when a matroid is representable over certain fields (e.g. binary matroids are those repre-
sentable over F2, regular matroids are those representable over every field, etc.). One surpris-
ing fact is that some matroids are representable over one field but not another. For example,
the Fano matroid (coming from the Fano plane geometry) is representable over F2 but not
over R; conversely, some matroids are real-representable but not binary-representable [7].
These results illustrate that matroid theory sits at an intersection of algebra and combina-
torics, extending linear algebra in non-obvious ways.

Brief Applications of Matroid Theory

Matroid theory might appear abstract, but it has powerful applications in various domains.
We conclude with a few brief examples:

Greedy Optimization As noted, any optimization problem that can be modeled with a
matroid constraint can be solved by a greedy algorithm. This includes classical problems
like finding a maximum spanning tree in a network, scheduling problems with precedence
constraints that form a matroid, and certain scheduling or resource allocation problems
modeled by partition matroids [8]. Beyond spanning trees, matroid intersection algorithms
(for finding a largest common independent set of two matroids) generalize bipartite graph
matchings and have applications in scheduling and assignment problems [8].
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Network Design and Electrical Engineering The circuits and cocircuits of graphic
matroids correspond to cycles and cuts in electrical networks. Concepts in network flow and
connectivity can be elegantly phrased in matroid terms. For instance, the cut-set space and
cycle space of a graph (over F2) are orthogonal complements, reflecting matroid duality in
network analysis [10]. Designing reliable networks or analyzing redundancy often implicitly
uses matroid theory.

Coding Theory Linear codes in coding theory are essentially subspaces of Fn
q and have

generator and parity-check matrices. The set of coordinates of a code that correspond to
linearly independent columns of a generator matrix form a matroid (called a vector ma-
troid of the matrix). Thus, properties of codes (like redundancy, code length vs. dimension
trade-offs) can be studied with matroid theory. Certain bounds in coding theory (like the
Hamming bound and Johnson bound) have interpretations via matroid invariants. Addi-
tionally, concepts like greedily optimal or perfect codes can be related to matroid greediness.
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