

# MATROIDS

RAYHAAN PATEL

ABSTRACT. This paper discusses matroids, a generalization of the properties of linear independence of vectors, algebraic independence of field extensions and cycles in graphs. Hassler Whitney first developed matroids in his paper *On the abstract properties of linear dependence* [Whi35]. We examine these examples and a few properties of matroids, then we look at how matroids relate to greedy algorithms in combinatorial optimization.

## 1. MOTIVATION

We start by examining independence in linear algebra.

**Definition 1.1.** Given a vector space  $V$  over a field  $\mathbb{F}$ , a *linearly independent set*  $S \subseteq V$  is a set of vectors such that

$$\sum_{v \in S} a_v v$$

where each  $a_v \in \mathbb{F}$  implies  $a_v = 0$  for all  $v \in S$ .

**Definition 1.2.** The *span* of a set of vectors  $S \subseteq V$ , is the set containing all linear combinations of elements of  $S$ .

That is,

$$\text{span}(S) = \left\{ \sum_{v \in S} a_v v \mid v \in S, a_v \in \mathbb{F} \right\}.$$

If  $A \subseteq \text{span}(S)$ , we say  $S$  *spans*  $A$ .

*Example.* Given a linearly independent set of vectors,  $S$ , no proper subset,  $T \subset S$  spans  $S$ , otherwise  $u \in S/T$  can be written as  $\sum_{v \in T} a_v v = u$ , so  $u - \sum_{v \in T} a_v v = 0$ , and if we set  $a_v = 0$  for all other  $v \in S$ , we get a contradiction; we have shown that  $S$  is dependent.

**Definition 1.3.** A *basis* of a vector space  $V$  is a set of vectors  $B \subseteq V$  that is linearly independent, and  $\text{span}(B) = V$ .

Note that this implies  $B$  is a linearly independent set of vectors with maximum cardinality.

**Definition 1.4.** Given a matrix  $A$ , the rank of  $A$  is the dimension of the span of the column vectors of  $A$ .

Now, we look into some field theory.

**Definition 1.5.** Let  $\mathbb{F}$  be a subfield of  $\mathbb{K}$ , an element  $k \in \mathbb{K}$  is *algebraic* over  $\mathbb{F}$  if  $k$  is a root of some nonzero polynomial in  $\mathbb{F}[x]$ . If  $k$  is not algebraic over  $\mathbb{F}$ , we say that  $k$  is *transcendental* over  $\mathbb{F}$ . If  $k$  is algebraic over  $\mathbb{F}$  for all  $k \in \mathbb{K}$ , then  $\mathbb{K}$  is an algebraic extension of  $\mathbb{F}$ , and if there is some transcendental  $k \in \mathbb{K}$  over  $\mathbb{F}$ , then  $\mathbb{K}$  is a transcendental extension of  $\mathbb{F}$ .

---

*Date:* November 2025.

**Definition 1.6.** Let  $\{k_1, k_2, \dots, k_n\}$  be a subset of  $\mathbb{K}$ . Then  $\mathbb{F}(k_1, k_2, \dots, k_n)$  consists of all elements of the form  $\frac{p(k_1, k_2, \dots, k_n)}{q(k_1, k_2, \dots, k_n)}$ , where  $p, q \in \mathbb{F}[x_1, x_2, \dots, x_n]$ , that is  $p$  and  $q$  are polynomials over  $\mathbb{F}$  of  $n$  variables. We call an element  $x \in \mathbb{K}$  *algebraically dependent* on  $\{k_1, k_2, \dots, k_n\}$  over  $\mathbb{F}$  if  $x$  is algebraic over  $\mathbb{F}(k_1, k_2, \dots, k_n)$ . A finite subset  $T$  of  $\mathbb{K}$  is algebraically dependent over  $\mathbb{F}$  if there exists some  $t \in T$  such that  $t$  is algebraically dependent on  $T \setminus \{t\}$ . If  $T$  is not algebraically dependent over  $\mathbb{F}$ , it is *algebraically independent* over  $\mathbb{F}$ .

Given a subfield  $\mathbb{F}$  of  $\mathbb{K}$ , we call a maximal algebraically independent subset  $B \subseteq \mathbb{K}$  over  $\mathbb{F}$  a *transcendence basis* of  $\mathbb{K}$ . Note that  $\mathbb{F}(B) = \mathbb{K}$ , and if we remove an element from  $B$  to get  $B'$ ,  $\mathbb{F}(B') \subset \mathbb{K}$ , which resembles the idea of span in linear algebra.

Also, graph theory has a similar notion of independence:

**Definition 1.7.** A *cycle* of a graph  $G$  is a finite sequence of edges,  $(v_0, v_1), (v_1, v_2), \dots, (v_n, v_0)$ , where  $v_0, v_1, \dots, v_n$  are distinct elements of  $G$ .

A set of edges of  $G$  is independent if it does not contain any cycles.

**Definition 1.8.** A *spanning tree* of a connected graph  $G$  with  $n$  vertices is a connected subgraph of  $G$  with  $n - 1$  edges and  $n$  vertices.

A spanning tree cannot contain any cycles, since  $n - 1$  edges is the minimum number of edges that can connect  $n$  vertices, and in a cycle,  $(v_0, v_1), (v_1, v_2), \dots, (v_n, v_0)$ , we can delete  $(v_n, v_0)$  and we still connect all the vertices in the cycle.

## 2. MATROID DEFINITION AND EXAMPLES

We generalize these ideas with the notion of a matroid:

**Definition 2.1.** A *matroid*  $\mathcal{M}$  consists of a set  $E(\mathcal{M})$ , called the *ground set*, paired with a set of some subsets of  $E$ ,  $\mathcal{I}$ , called the set of *independent* sets, which satisfies the following properties:

I-1 The empty set is independent.

I-2 (*hereditary property*) If  $A \in \mathcal{I}$ , then  $B \subseteq A$  implies  $B \in \mathcal{I}$ .

I-3 (*independence augmentation property*) If  $A, B \in \mathcal{I}$ , and  $|B| > |A|$ , then there exists  $b \in B \setminus A$  such that  $A \cup \{b\} \in \mathcal{I}$ .

We often consider a matroid to be the ordered pair  $\mathcal{M} = (E, \mathcal{I})$ , where  $E$  and  $\mathcal{I}$  are the ground set and set of independent sets, respectively.

A subset of  $E$  that is not independent is called a *dependent set*.

We start by constructing matroids from our examples of independence in linear algebra, field theory and graph theory.

**Theorem 2.2.** Given a matrix  $A$  over a field  $\mathbb{F}$ , we let  $E$  be the set of column vectors of  $A$ , and  $\mathcal{I}$  be the set of subsets of  $E$  that are linearly independent,  $(E, \mathcal{I})$  is a matroid. We call matroids of this form vector matroids, and denote them by  $\mathcal{M}[A]$ .

*Proof.* We simply check the matroid properties: the empty set of column vectors is linearly independent, and given a set of linearly independent vectors, we know that any subset is also linearly independent, so  $\mathcal{M}[A]$  satisfies I-1 and I-2.

Now, we check I-3: let  $X$  and  $Y$  be linearly independent subset of  $E$  where  $|X| = |Y| + 1$ , and let  $V$  be the vector space spanned by  $X \cup Y$ . Then  $\dim V \geq |X|$ . If  $Y \cup \{a\}$  is linearly dependent for all  $a \in X \setminus Y$ , then  $V$  is a subset of the span of  $Y$ , so  $\dim V \leq |Y|$ . This

implies  $|X| \leq \dim V \leq |Y|$ , so  $|X| \leq |Y|$  but  $|X| = |Y| + 1$ , which is a contradiction. Thus, there must be some  $a \in X \setminus Y$  where  $y \cup \{x\}$  is linearly independent. Thus  $\mathcal{M}[A]$  satisfies I-3 and is a matroid. 

We also will construct matroids from graphs, with the notion of independence we described above: a set of edges of a graph  $G$  is independent if it does not contain any cycles.

**Theorem 2.3.** *Let  $G = (V, E)$  be a graph, and let  $\mathcal{I}$  be the set of sets of edges that do not contain any cycles. Then  $\mathcal{M}(G) = (E, \mathcal{I})$  is a matroid, called a cycle matroid.*

*Proof.* We start by constructing the *vertex-edge incidence matrix* over  $\mathbb{F}_2$ ,  $A_G$  of  $G$ : to do this, we label each vertex and edge in  $G$ , then create a matrix with a row for each vertex and a column for each edge, label the rows and columns with their corresponding vertex and edge labels. If an edge  $e$  connects a vertex to itself (we say  $e$  is a *loop*), then column corresponding to  $e$  is the zero vector, and otherwise  $a_{ij} = 1$  if the vertex  $i$  is contained in the edge  $j$  and 0 if  $i$  is not contained in  $j$ .

Now, we can show that a set  $X$  of columns of  $A_G$  is linearly dependant if and only if  $X$  contains the set of edges of a cycle of  $G$ , as this would imply that  $\mathcal{M}[A_G]$  has all subsets of  $E$  that do not contain the edges of a cycle as its independent sets, meaning  $\mathcal{M}[A_G] = \mathcal{M}(G)$ , so  $\mathcal{M}(G)$  must be a matroid. Assume that  $X$  contains a cycle  $C$  of  $G$ , if  $C$  is a loop, (making it a single edge) then its corresponding column is the zero vector, so  $X$  is linearly dependent. If  $C$  is not a loop, then each vertex in  $C$  is contained by exactly 2 edges in  $C$ , so the sum of the columns of  $C$  taken modulo 2 is the zero vector, making  $X$  linearly dependent.

Now, assume  $X$  is a linearly dependent set of columns. Let  $D \subseteq X$  be a minimal linearly dependent set ( $D$  is linearly dependent, but removing any element from  $D$  makes it linearly independent) that does not contain the zero column vector. The sum of the columns of  $D$  must be the zero vector modulo 2, so all vertices that is contained in an edge of  $D$  must be contained in at least two edges of  $D$ . Let  $d_1$  be an edge of  $D$ , and let  $v_0$  and  $v_1$  be vertices contained in  $d_1$ .  $v_1$  must be contained by another edge,  $d_2$  of  $D$ , and we call the other vertex contained by  $d_2$   $v_2$ . We can use this process create a sequence  $d_1, d_2, \dots$  of edges in  $D$  and a sequence  $v_0, v_1, \dots$  of vertices, and since  $G$  is finite, eventually one of the vertices  $v$  in the sequence will repeat. Once this happens, we have found a cycle in  $D$  starting at  $v$ , so  $D$  contains the edges of a cycle in  $G$ , completing the proof. 

Similarly, the notion of algebraic independence has a corresponding matroid:

**Theorem 2.4.** *Let  $\mathbb{K}$  be a field and  $\mathbb{F}$  be a subfield. Let  $E$  be a finite subset of  $\mathbb{K}$ , and  $\mathcal{I}$  be the collection of subsets of  $E$  that are algebraically independent over  $\mathbb{F}$ , then  $(E, \mathcal{I})$  is a matroid.*

We leave the proof to [Oxl11] section 6.7.

If a matroid  $\mathcal{M}$  is isomorphic to some  $(E, \mathcal{I})$  as described in the above theorem, then we call  $\mathcal{M}$  an *algebraic matroid*.

### 3. BASIS AND RANK

Now, we generalize the idea of a basis to matroids, and define them to match the definitions of vector space bases, spanning trees and transcendence bases.

**Definition 3.1.** A *basis*  $B$  of a matroid  $\mathcal{M}$  is an independent set with maximal cardinality, that is,  $B \cup \{x\}$  is dependent for all  $x \in E(\mathcal{M}) \setminus B$ .

Since all bases of a vector space and all spanning trees of a graph have the same cardinality, we want to see if this applies to matroids more generally as well.

**Proposition 3.2.** *All bases of a matroid  $\mathcal{M}$  have the same cardinality, which we call the rank of  $\mathcal{M}$  and write as  $r(\mathcal{M})$ .*

*Proof.* Seeking a contradiction, we let  $B_1$  and  $B_2$  be bases such that  $|B_2| > |B_1|$ . By I-3, there exists  $x \in B_2 \setminus B_1$  such that  $B_1 \cup x$  is independent, but  $B_1$  is a basis, so this is a contradiction. 

**Corollary 3.3.** *Given a field  $\mathbb{F}$  and an extension  $\mathbb{K}$  all finite transcendence bases have the same cardinality, called the transcendence degree of the extension (this is true in the infinite case as well, but involves infinite matroids)*

*Proof.* Given any two transcendence bases,  $B_1, B_2$ , we let  $E = B_1 \cup B_2$ , and consider the algebraic matroid  $\mathcal{M}$  over  $\mathbb{F}$  with  $E$  as its ground set. Since  $B_1$  and  $B_2$  are maximal algebraically independent sets, they must be bases of  $\mathcal{M}$ , so they have the same cardinality. We can compare any two finite transcendence bases in this way, so they all must have the same cardinality. 

**Definition 3.4.** The rank function  $r : \mathcal{P}(E) \rightarrow \mathbb{N}$  of a matroid  $\mathcal{M} = (E, \mathcal{I})$  is defined so that  $r(A)$  is the cardinality of the largest independent set contained in  $A$ , where  $A \subseteq E$

We have a generalized rank-nullity theorem for matroids:

**Theorem 3.5.** *Let  $X, Y \subseteq E$ , then*

$$r(X \cup Y) + r(X \cap Y) \leq r(X) + r(Y).$$

*Proof.* Let  $B_{\cap}$  be a basis of  $X \cap Y$  and let  $B_{\cup}$  be a basis of  $X \cup Y$ , so  $B_{\cap} \subseteq B_{\cup}$ . Since  $B_{\cup} \cap X \subseteq B_{\cup}$ ,  $B_{\cup} \cap X$  is independent, and  $r(B_{\cup} \cap X) = |B_{\cup} \cap X|$ . Since  $B_{\cup} \cap X \subseteq X$ ,  $r(B_{\cup} \cap X) \leq r(X)$ , and similarly  $|B_{\cup} \cap Y| \leq r(Y)$ . Thus,

$$\begin{aligned} r(X) + r(Y) &\geq |B_{\cup} \cap X| + |B_{\cup} \cap Y| \\ &= |(B_{\cup} \cap X) \cup (B_{\cup} \cap Y)| + |(B_{\cup} \cap X) \cap (B_{\cup} \cap Y)| \\ &= |B_{\cup} \cap (X \cup Y)| + |B_{\cup} \cap (X \cap Y)| \\ &= |B_{\cup}| + |B_{\cap}| \\ &= r(X \cup Y) + r(X \cap Y) \end{aligned}$$

which completes our proof. 

#### 4. GREEDY ALGORITHMS

Suppose we give the elements of the ground set of a matroid  $\mathcal{M}$  an arbitrary (non-negative) weight,  $w(x) : E \rightarrow \mathbb{N}$ . The matroid optimization problem is to find a basis with maximum total weight.

**Definition 4.1.** The *Greedy algorithm* for the matroid optimization problem is defined as follows:

Set  $B_G = \emptyset$ . While  $B_G$  is not a basis, choose an element  $x \in E$  such that  $B_G \cup \{x\} \in \mathcal{I}$  with maximum weight.

*Proof.* We prove this by contradiction: let  $B_G = \{g_1, g_2, \dots, g_n\}$  be the basis returned by the greedy algorithm (it must be a basis, otherwise the algorithm would continue adding elements), where  $B_G$  is indexed by decreasing weight.

We assume there exists some basis  $A = \{a_1, a_2, \dots, a_n\}$  (also indexed by decreasing weight) such that

$$\sum_{g \in B} g < \sum_{a \in A} a.$$

Let  $i$  be the smallest index such that  $w(g_i) < w(a_i)$ , and consider the independent sets

$$B_{i-1} = \{g_1, g_2, \dots, g_{i-1}\} \quad \text{and} \quad A_i = \{a_1, a_2, \dots, a_i\}$$

By I-3, there exists some  $a_j \in A_i$  such that  $B_{i-1} \cup \{a_j\}$  is an independent set. Since  $w(a_j) \geq w(a_i) > w(g_i)$ , the greedy algorithm must choose the lighter element  $g_i$  over the heavier  $a_j$ , which is a contradiction, and completes the proof. 

We remark that Kruskal's algorithm is a special case of this greedy algorithm. It turns out that matroids are the *only* subset systems (a finite collection of sets that satisfies I-) where the greedy algorithm is optimal; we can define matroids as subset systems where the greedy algorithm is optimal, which appears almost entirely unrelated to our first definition based on linear independence.

**Theorem 4.2.** *For all subset systems  $S$  that are not matroids, there exists a weight function  $w$  where the greedy algorithm does not return a maximum-weight set in  $S$ .*

*Proof.* Let  $A, B \in S$  violate I-3:  $|A| > |B|$  but for all  $a \in A \setminus B$ ,  $A \cup \{a\} \notin S$ . We define the weight function  $w(x)$  such that if  $x \in B$ ,  $w(x) = |B| + 2$ , if  $x \in A \setminus B$ ,  $w(x) = |Y| + 1$  and  $w(x) = 0$  otherwise.

The greedy algorithm will start by adding every element of  $Y$  to  $B_G$ , but since  $B \cup \{a\}$  is not in  $S$  for all  $a \in A \setminus B$ , the greedy algorithm cannot select any elements from  $A$ , so all remaining elements have weight zero.

This gives a total weight of  $|B|(|B| + 2) = |B|^2 + 2|B|$ , while the total weight of  $X$  must be at least  $(|B| + 1)^2 = |B|^2 + 2|B| + 1$ , so the greedy algorithm does not return the maximum weight set in  $S$ , which completes the proof. 

#### ACKNOWLEDGMENTS

I would like to thank Dr. Simon Rubinstein-Salzedo and Freya Edholm for guidance in writing this paper.

#### REFERENCES

- [Oxl11] James G. Oxley. *Matroid theory*, volume 21 of *Oxf. Grad. Texts Math.* Oxford: Oxford University Press, 2nd ed. edition, 2011.
- [Whi35] Hassler Whitney. On the abstract properties of linear dependence. *Am. J. Math.*, 57:509–533, 1935.