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ABSTRACT. This paper discusses matroids, a generalization of the properties of linear inde-
pendence of vectors, algebraic independence of field extensions and cycles in graphs. Hassler
Whitney first developed matroids in his paper On the abstract properties of linear depen-
dence [Whi35]. We examine these examples and a few properties of matroids, then we look
at how matroids relate to greedy algorithms in combinatorial optimization.

1. MOTIVATION
We start by examining independence in linear algebra.

Definition 1.1. Given a vector space V over a field F, a linearly independent set S C 'V is
a set of vectors such that
>

veV
where each a, € F implies a, = 0 for all v € S.

Definition 1.2. The span of a set of vectors S C V, is the set containing all linear combi-
nations of elements of S.
That is,

veV

span(S) = {Z%U |ves, a, E]F}.

If A C span(S), we say S spans A.

Example. Given a linearly independent set of vectors, S, no proper subset, T' C S spans S,
otherwise u € S/T can be written as ), ., a,v = u, so u— )  a,w = 0, and if we set
a, = 0 for all other v € S, we get a contradiction; we have shown that S is dependent.

Definition 1.3. A basis of a vector space V is a set of vectors B C V that is linearly
independent, and span(B) = V.
Note that this implies B is a linearly independent set of vectors with maximum cardinality.

Definition 1.4. Given a matrix A, the rank of A is the dimension of the span of the column
vectors of A.

Now, we look into some field theory.

Definition 1.5. Let F be a subfield of K, an element k£ € K is algebraic over F if k is
a root of some nonzero polynomial in F[z]. If k is not algebraic over F, we say that k is
transcendental over F. If k is algebraic over I for all £ € K, then K is an algebraic extension

of F, and if there is some transcendental £ € K over F, then K is a trancendental extension
of F.
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Definition 1.6. Let {k;,ko,...,k,} be a subset of K. Then F(ky, ko, ..., k,) consists of all

elements of the form %, where p, q € Flxy, 29, ..., x,], that is p and g are polynomials
over IF of n variables. We call an element x € K algebraically dependent on {kq, ko, ... kn}

over I if s is algebraic over F(ky, ko, ..., k,). A finite subset T" of K is algebraically dependent
over F if there exists some ¢ € T" such that ¢ is algebraically dependent on T\{t}. If T"is not
algebraically dependent over F, it is algebraically independent over F.

Given a subfield F of K, we call a maximal algebraically independent subset B C K over
F a transcendence basis of K. Note that F(B) = K, and if we remove an element from B to
get B', F(B’) C K, which resembles the idea of span in linear algebra.

Also, graph theory has a similar notion of independence:

Definition 1.7. A cycle of a graph G is a finite sequence of edges, (vg, v1), (v1,v2), . . ., (Un, Vo),
where vy, vy, ..., v, are distinct elements of G.
A set of edges of G is independent if it does not contain any cycles.

Definition 1.8. A spanning tree of a connected graph G with n vertices is a connected
subgraph of G with n — 1 edges and n vertices.

A spanning tree cannot contain any cycles, since n — 1 edges is the minimum number of
edges that can connect n vertices, and in a cycle, (vo, vy1), (v1,v2),. .., (Un, Vo), We can delete
(vn, vg) and we still connect all the vertices in the cycle.

2. MATROID DEFINITION AND EXAMPLES
We generalize these ideas with the notion of a matroid:

Definition 2.1. A matroid M consists of a set E(M), called the ground set, paired with a
set of some subsets of F, Z, called the set of independent sets, which satisfies the following
properties:

[-1 The empty set is independent.

[-2 (hereditary property) If A € Z, then B C A implies B € 7.

-3 (independence augmentation property) If A, B € Z, and |B| > |A|, then there exists
b € B\A such that AU {b} € Z.

We often consider a matroid to be the ordered pair M = (E,Z), where E and Z are the
ground set and set of independent sets, respectively.

A subset of E that is not independent is called a dependent set.

We start by constructing matroids from our examples of independence in linear alglebra,
field theory and graph theory.

Theorem 2.2. Given a matriz A over a field F, we let E be the set of columns vectors of
A, and T be the the set of subsets of E that are linearly independent, (E,Z) is a matroid.
We call matroids of this form vector matroids, and denote them by M[A].

Proof. We simply check the matroid properties: the empty set of column vectors is linearly
independent, and given a set of linearly independent vectors, we know that any subset is
also linearly independent, so M[A] satisfies I-1 and I-2.

Now, we check I-3: let X and Y be linearly independent subset of E where | X| = Y|+ 1,
and let V' be the vector space spanned by X UY. Then dimV > | X|. If Y U {a} is linearly
dependent for all @ € X\Y, then V is a subset of the span of Y, so dimV < |Y|. This
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implies | X| < dimV < |Y|, so |X| < |Y| but |X| = |Y|+ 1, which is a contradiction. Thus,
there must be some a € X\Y where y U {z} is linearly independent. Thus M[A] satisfies
[-3 and is a matroid.

We also will construct matroids from graphs, with the notion of independence we described
above: a set of edges of a graph G is independent if it does not contain any cycles.

Theorem 2.3. Let G = (V, E) be a graph, and let T be the the set of sets of edges that do
not contain any cycles. Then M(G) = (E,Z) is a matroid, called a cycle matroid.

Proof. We start by constructing the vertez-edge incidence matriz over Fy, Ag of G: to do
this, we label each vertex and edge in GG, then create a matrix with a row for each vertex
and a column for each edge, label the rows and columns with their corresponding vertex
and edge labels. If an edge e connects a vertex to itself (we say e is a loop), then column
corresponding to e is the zero vector, and otherwise a;; = 1 if the vertex 7 is contained in
the edge j and 0 if ¢ is not contained in j.

Now, we can show that a set X of columns of Ag is linearly dependant if and only if X
contains the set of edges of a cycle of G, as this would imply that M[A¢] has all subsets of £
that do not contain the edges of a cycle as its independent sets, meaning M[Ag] = M(G),
so M(G) must be a matroid. Assume that X contains a cycle C of G, if C'is a loop, (making
it a single edge) then its corresponding column is the zero vector, so X is linearly dependent.
If C' is not a loop, then each vertex in C' is contained by exactly 2 edges in €', so the sum of
the columns of C' taken modulo 2 is the zero vector, making X lienarly dependent.

Now, assume X is a linearly dependent set of columns. Let D C X be a minimal linearly
dependent set (D is linearly dependent, but removing any element from D makes it linearly
independent) that does not contain the zero column vector. The sum of the columns of D
must be the zero vector modulo 2, so all verticies that is contained in an edge of D must be
contained in at least two edges of D. Let d; be an edge of D, and let vy and v; be verticies
contained in d;. v; must be contiained by another edge, ds of D, and we call the other vertex
contained by ds vo. We can use this process create a sequence dy,ds, ... of edges in D and
a sequence vy, v1, . .. of vertices, and since G is finite, eventaully one of the vertices v in the
sequence will repeat. Once this happens, we have found a cycle in D starting at v, so D

contains the edges of a cycle in GG, completing the proof.
Similarly, the notion of algebraic independence has a corresponding matroid:

Theorem 2.4. Let K be a field and F be a subfield. Let E be a finite subet of K, and T
be the collection of subsets of E that are algebraically independent over F, then (E,T) is a
matroid.

We leave the proof to [OxI11] section 6.7.
If a matroid M is isomorphic to some (£, 7) as described in the above theorem, then we
call M an algebraic matroid.

3. BAsis AND RANK

Now, we generalize the idea of a basis to matroids, and define them to match the definitions
of vector space bases, spanning trees and transcendence bases.

Definition 3.1. A basis B of a matroid M is an independent set with maximal cardinality,
that is, B U {z} is dependent for all x € F(M)\B.



Since all bases of a vector space and all spanning trees of a graph have the same cardinality,
we want to see if this applies to matroids more generally as well.

Proposition 3.2. All bases of a matroid M have the same cardinality, which we call the
rank of M and write as r(M).

Proof. Seeking a contradiction, we let By and By be bases such that |Bs| > |By|. By I-3,
there exists * € By\B; such that By U z is independent, but Bj is a basis, so this is a

contradiction. &

Corollary 3.3. Given a field F and an extension K all finite transcendence bases have the
same cardinality, called the transcendence degree of the extension (this is true in the infinite
case as well, but involves infinite matroids)

Proof. Given any two transcendence bases, Bi, Bs, we let £ = By U By, and consider the
algebraic matroid M over F with E as its ground set. Since B; and B; are maximal
algebraically independent sets, they must be bases of M, so they have the same cardinality.
We can compare any two finite transcendence bases in this way, so they all must have the
same cardinality. 2

Definition 3.4. The rank function r : Z(E) — N of a matroid M = (E,Z) is defined so
that r(X) is the cardinality of the largest independent set contained in A, where A C E

We have a generalized rank-nullity theorem for matroids:
Theorem 3.5. Let X,Y C E, then
r(XUY)+r(XNY) <rX)+rY).

Proof. Let Bn be a basis of X NY and let B, be a basis of X UY, so B, C By. Since
B,NX C By, ByN X is independent, and r(B, N X) = |By, N X|. Since B, N X C X,
r(BuNX) <r(X), and similarly |B,NY| < 7(Y). Thus,
r(X)+rY)>|BuNnX|+|B,NY]|

=[(BunX)u(BuNY)|+ [(BunX)N(BuNY)|

=|BuN(XUY)|+|Bun(XNY)]

= |Bul + | B

=r(XUY)+rXnNnY)

which completes our proof. &

4. GREEDY ALGORITHMS

Suppose we give the elements of the ground set of a matroid M an arbitrary (non-negative)
weight, w(z) : E — N. The matroid optimization problem is to find a basis with maximum
total weight.

Definition 4.1. The Greedy algorithm for the matroid optimization problem is defined as
follows:

Set Bg = @ While Bg is not a basis, choose an element = € E such that B U {z} € Z
with maximum weight.
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Proof. We prove this by contradiction: let Bg = {g1,92,...,9n} be the basis returned by
the greedy algorithm (it must be a basis, otherwise the algorithm would continue adding
elements), where Bg is indexed by decreasing weight.

We assume there exists some basis A = {a1, as, . ..a,} (also indexed by decreasing weight)
such that
d g<D a
geB acA

Let i be the smallest index such that w(g;) < w(a;), and consider the independent sets

Bi—lz{917927"'agi—l} and Ai:{alaa%"'aai}
By I-3, there exists some a; € A; such that B;_; U {a;} is an independent set. Since

w(a;) > w(a;) > w(g;), the greedy algorithm must choose the lighter element g; over the
heavier a;, which is a contradiction, and completes the proof.
.3

We remark that Kruskal’s algorithm is a special case of this greedy algorithm. It turns
out that matroids are the only subset systems (a finite collection of sets that satisfies I-)
where the greedy algorithm is optimal; we can define matroids as subset systems where the
greedy algorithm is optimal, which appears almost entirly unrelated to our first definition
based on linear independence.

Theorem 4.2. For all subset systems S that ar not matroids, there exists a weight function
w where the greedy algorithm does not return a mazimum-weight set in S.

Proof. Let A, B € S violate I — 3: |A| > |B| but for all « € A\B, AU{a} ¢ S. We define
the weight function w(z) such that if x € B, w(x) = |B|+ 2, if 2 € A\B, w(z) = |Y|+1
and w(z) = 0 otherwise.

The greedy algorithm will start by adding every element of Y to B¢, but since B U {a}
is not in S for all @ € A\ B, the greedy algorithm cannot select any elements from A, so all
remaining elements have weight zero.

This gives a total weight of | B|(|B|+2) = | B|*+2|B|, while the total weight of X must be
at least (|B|+1)? = |B|*> 4+ 2|B| + 1, so the greedy algorithm does not return the maximum

weight set in S, which completes the proof. &
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