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Abstract. We discuss the basics of q-analogues. We discuss the q-integers, q-factorials,
and q-binomials, their connections to integer partitions, permutation statistics and finite
fields. We then cover the basics of q-calculus.

1. introduction

A q-analogue is a deformation of a familiar mathematical object that depends on a pa-
rameter q and returns to its classical form when q = 1. Many constructions admit such a
refinement. Numerical quantities such as factorials and binomial coefficients become poly-
nomials or power series that record additional combinatorial structure, and algebraic or
analytic identities acquire parallel q-versions with similar behavior.

The purpose of this paper is to outline several basic examples and to describe the relation-
ships between them. Section 2 introduces q-integers, q-factorials, and q-binomial coefficients,
and develops the identities that lead to the q-binomial theorem and the Jacobi Triple Prod-
uct. Section 3 presents combinatorial interpretations in terms of permutation statistics as
well as linear algebra over finite fields. Section 4 discusses the q-derivative, the q-Taylor
expansion, and the two standard q-exponential functions, and relates these constructions to
the product formulas of Section 2.

These examples illustrate the breadth and coherence of the subject and the way q-
analogues unify ideas that arise in many areas of mathematics.

2. The q-binomial

The most important q-analogues are the q-binomial, q-factorials, and q-integers. There are
numerous ways of defining these but I think the easiest is to begin by finding a q-analogue
of the natural numbers. Natural numbers are almost always defined via recurrence, namely
n = 1+ n− 1, since we are trying to find a polynomial in q it would not be unreasonable to
deform this recurrence to [n]q = 1 + q[n− 1]q. Given the pretty reasonable initial condition
[1]q = 1 we get the following definition.

Definition 2.1. For any complex number q and any natural number n the n-th q-integer
denoted [n]q is defined by:

[n]q =
n−1∑
k=0

qk =
1− qn

1− q

Notably this final equality here allows us to define [n]q not just for natural numbers but for
any complex number n.

This in turn allows us to define the q-factorial

Definition 2.2. For any natural number n define the q-factorial of n to be

[n]q! = [n]q[n− 1]1 · · · [2]q[1]q
1
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Which then allows us to define the q-binomial coefficients

Definition 2.3. For any natural numbers n, k define(
n

k

)
q

=
[n]q!

[k]q![n− k]q!

This has a couple of obvious equivalent forms, in particular

[n]q!

[k]q![n− k]q!
=

∏k−1
m=0[n−m]q∏k

m=1[m]q

=

∏k−1
m=0

1−qn−m

1−q∏k
m=1

1−qm

1−q

=

∏k−1
m=0(1− qn−m)∏k
m=1(1− qm)

=
k∏

m=1

(1− qn−m+1)

1− qm
=

k∏
m=1

(qn−m+1 − 1)

qm − 1

Famously, the binomial coefficients are given by the recurrence
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
.

Given that we defined [n]q via deforming the recurrence on the natural numbers one could
reasonably ask why we didn’t define

(
n
k

)
q
by deforming its recurrence in a similar way.

Luckily, we needn’t worry, our definition of the q-binomial coefficients fulfills an analogue of
the recurrence.

Lemma 2.4. For any integers n, k and any q ∈ C we have(
n

k

)
q

= qk
(
n− 1

k

)
q

+

(
n− 1

k − 1

)
q

and (
n

k

)
q

=

(
n− 1

k

)
q

+ qn−k

(
n− 1

k − 1

)
q

Proof. First note that

1− qn

1− qn−k

(
n− 1

k

)
q

=
1− qn

1− qn−k

k∏
m=1

(1− qn−m)

1− qm
=

k∏
m=1

(1− qn−m+1)

1− qm
=

(
n

k

)
q

And

1− qn

1− qk

(
n− 1

k − 1

)
q

=
1− qn

1− qk

k−1∏
m=1

(1− qn−m)

1− qm
=

k∏
m=1

(1− qn−m+1)

1− qm
=

(
n

k

)
q

And so in particular
1− qk

1− qn−k

(
n− 1

k

)
q

=

(
n− 1

k − 1

)
q

As well as (
n− 1

k

)
q

=
1− qn−k

1− qk

(
n− 1

k − 1

)
q
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Because 1−qn

1−qn−k = qk + 1−qk

1−qn−k and 1−qn

1−qk
= qn−k + 1−qn−k

1−qk
we thus have(

n

k

)
q

= (qk +
1− qk

1− qn−k
)

(
n− 1

k

)
q

= qk
(
n− 1

k

)
q

+

(
n− 1

k − 1

)
As well as (

n

k

)
q

= (qn−k +
1− qn−k

1− qk
)

(
n− 1

k − 1

)
q

=

(
n− 1

k

)
q

+ qn−k

(
n− 1

k − 1

)
■

Another way one might instead define a q-analogue to the q-binomial coefficients is by
deforming the binomial theorem in some way. In particular, the binomial coefficients are
given as the coefficients for polynomials of the form (1+x)n, and well we don’t have something
perfectly analogous for the q-binomial coefficients we do get something pretty close.

Theorem 2.5. We have the following

n−1∏
k=0

(1 + qkx) =
n∑

k=0

q(
k
2)
(
n

k

)
q

xk

Proof. Write P (x) =
∏n−1

k=0(1+ qkx), then P (x) =
∑n

k=0 akx
k for some coefficients ak, clearly

a1 = 1. Note that

(1 + x)P (qx) = (1 + x)
n∏

k=1

(1 + qkx) =
n∏

k=0

(1 + qkx) = (1 + qnx)P (x)

So because P (x) =
∑n

k=0 akx
k it follows that

akq
k + ak−1q

k−1 = ak + qnak−1

equivalently

ak =
qn − qk−1

(qk − 1)
ak−1

Now note that
(
n
1

)
q
q(

1
2) = 1 and

qn − qk−1

(qk − 1)

(
n

k − 1

)
q

q(
k−1
2 ) =

qn−k+1 − 1

(qk − 1)
qk−1+(k−1

2 )
k−1∏
m=1

(1− qn−m+1)

1− qm
= q(

k
2)

k∏
m=1

(1− qn−m+1)

1− qm

So the sequence
(
n
k

)
q
q(

k
2) fulfills the same base case and recurrence as the coefficients ak.

Thus ak =
(
n
k

)
q
q(

k
2) and thus

n−1∏
k=0

(1 + qkx) =
n∑

k=0

q(
k
2)
(
n

k

)
q

xk

■

Corollary 2.6.
n−1∏
k=0

1

1− qkx
=

∞∑
k=0

(
n+ k − 1

k

)
q

xk
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Proof. Note that
∞∑
k=0

(
n+ k − 1

k

)
q

xk + qnx
∞∑
k=0

(
n+ k

k

)
q

xk

=
∞∑
k=0

((
n+ k − 1

k

)
q

+ qn
(
n+ k − 1

k − 1

)
q

)
xk

=
∞∑
k=0

((
n+ k − 1

k

)
q

+ qn+k−1−(k−1)

(
n+ k − 1

k − 1

)
q

)
xk

=
∞∑
k=0

(
n+ k

k

)
q

xk

and so
1

1− qn

∞∑
k=0

(
n+ k − 1

k

)
q

xk =
∞∑
k=0

(
n+ k

k

)
q

xk

. Thus
∑∞

k=0

(
n+k−1

k

)
q
xk fulfills the same recurrence as

∏n−1
k=0

1
1−qkx

so they are equal. ■

You may have noticed that if we set x = q and take n → ∞ the functions

n−1∏
k=0

1

1− qkx

and
n−1∏
k=0

1 + qkx

go to the generating functions for partitions and distinct partitions. So if the limits

lim
n→∞

∞∑
k=0

(
n+ k − 1

k

)
q

qk

and

lim
n→∞

n∑
k=0

q(
k
2)
(
n

k

)
q

qk

exist, then we should get interesting formulae for these generating functions. Luckily if
|q| < 1 we have

lim
n→∞

(
n

k

)
q

= lim
n→∞

k∏
m=1

(1− qn−m+1)

1− qm
=

k∏
m=1

1

1− qm
=

1

[k]q!(1− q)k

. Thus we have
∞∏
k=1

1

1− qk
=

∞∑
k=0

qk

[k]q!(1− q)k

and
∞∏
k=1

1 + qk =
∞∑
k=0

q(
k
2)qk

[k]q!(1− q)k
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Or more generally

(2.1)
∞∏
k=0

1

1− xqk
=

∞∑
k=0

xk

[k]q!(1− q)k

and

(2.2)
∞∏
k=0

1 + xqk =
∞∑
k=0

q(
k
2)xk

[k]q!(1− q)k

We shall now use these formulae to prove a very powerful theorem. The proof is lengthy but
really just amounts to a few substitutions.

Theorem 2.7 (The Jacobi Triple Product). If |q| < 1 then

∞∑
n=−∞

qn
2

zn =
∞∏
n=1

(1− q2n)(1 + zq2n−1)(1 + q2n−1z−1)

Proof. From (2.2) we have

∞∏
k=0

1 + xqk =
∞∑
k=0

q(
k
2)xk

[k]q!(1− q)k
=

∞∑
k=0

qk(k−1)/2xk∏k
j=1(1− qj)

Now substitute q → q2 and x → qz to obtain

(2.3)
∞∏
n=1

(1 + q2n−1z) =
∞∏
n=0

(1 + q2n+1z) =
∞∑
k=0

qk
2
xk∏k

j=1(1− q2j)

Multiplying both sides by
∏∞

n=1 1 − q2n as to eliminate the denominator of the right hand
side, we obtain

(2.4)
∞∏
n=1

(1 + q2n−1z)(1− q2n) =
∞∑

k=−∞

(qk
2

zk
∞∏
n=0

(1− q2(n+k+1))

Now substitute q → q2 and x → −q2(k+1) in equation (2.2) to obtain

∞∏
n=0

1− q2(n+k+1) =
∞∑
j=0

(−1)jqj
2+2kj+j∏j

i=1(1− q2i)

Plug this into (2.4) to find

∞∏
n=1

(1 + q2n−1z)(1− q2n) =
∞∑

k=−∞

(qk
2

zk
∞∑
j=0

(−1)jqj
2+2kj+j∏j

i=1(1− q2i)
)(2.5)

=
∞∑

k=−∞

∞∑
j=0

qk
2
zk(−qz−1)j∏j
i=1(1− q2i)

(2.6)

= (
∞∑
j=0

(−qz−1)j∏j
i=1(1− q2i)

)
∞∑

k=−∞

qk
2

zk(2.7)



6

The second to last equality comes from shifting the k index to k − j. Now from (2.1) we
have

∞∏
k=0

1

1− xqk
=

∞∑
k=0

xk

[k]q!(1− q)k
=

∞∑
k=0

xk∏k
i=1(1− qi)

Now substitute q → q2 and x → (−qz−1)

∞∏
n=0

1

1 + q2n−1z−1
=

∞∑
k=0

(−qz−1)k∏k
i=1(1− q2i)

Substitute this into (2.7) and find

∞∏
n=1

(1 + q2n−1z)(1− q2n) =
∞∏
n=0

1

1 + q2n−1z−1

∞∑
k=−∞

qk
2

zk

multiply both sides by
∏∞

n=0 1 + q2n−1z−1 to finally obtain

∞∑
n=−∞

qn
2

zn =
∞∏
n=1

(1− q2n)(1 + zq2n−1)(1 + q2n−1z−1)

■

The Jacobi triple product is extremely powerful, it can be used to discover many strange
and astonishing facts.

Example. Let us try to find the number of purely integer coordinate points on the k sphere
of radius r. The number of such points is then given by |{(x1, x2, . . . xk) ∈ Zk :

∑
x2
i = r2}|

which is the coefficient of qr
2
in the power series

(
∑
n∈Z

qn
2

)k

substituting z → 1 in the jacobi triple product we find that this is the qr
2
coefficient of

∞∏
n=1

(1− q2n)k(1 + q2n−1)2k

which is signifaicantly easier to calculate.

Corollary 2.8. The pentagonal number theorem

∞∏
n=1

(1− qn) =
∞∑

n=−∞

(−1)nq
3n2−n

2 = 1 +
∞∑
n=1

(−1)n(q
3n2−n

2 + q
3n2+n

2 )

Proof. Substitute q → q3/2 and z → −q−1/2 in the jacobi triple product to obtain

1+
∞∑
n=1

(−1)n(q
3n2−n

2 +q
3n2+n

2 ) =
∞∑

n=−∞

(−1)nq
3n2−n

2 =
∞∏
n=1

(1−q3n)(1−q3n−2)(1−q3n−1) =
∞∏
n=1

(1−qn)

■

We can use this to obtain a recurrence for the integer partition function p(n).
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Corollary 2.9.

p(n) =
∞∑
k=1

(−1)n+1(p(n− 3k2 − k

2
) + p(n− 3k2 + k

2
)

Proof. Note that
∏∞

n=1(1− qn)−1 =
∑∞

n=0 p(n)q
n and so

1 =

(
∞∏
n=1

(1− qn)

)(
∞∑
n=0

p(n)qn

)
=

(
1 +

∞∑
n=1

(−1)n(q
3n2−n

2 + q
3n2+n

2 )

)(
∞∑
n=0

p(n)qn

)
and so

∞∑
n=0

p(n)xn = 1 +
∞∑
n=0

p(n)qn
∞∑
n=1

(−1)n+1q
3n2−n

2 +
∞∑
n=0

p(n)qn
∞∑
n=1

(−1)n+1q
3n2+n

2

Expanding out the left hand side and equating coefficients we find

p(n) =
∞∑
k=1

(−1)n+1(p(n− 3k2 − k

2
) + p(n− 3k2 + k

2
)

■

3. Combinatorial interpretations

3.1. Permutation statistics. So far we have discussed various ways one might go about
defining q-analogs via various numerical descriptions, but many combinatorial objects are
described via what they count. The factorial, for example, gives the number of permutations
of the integers 1− n. However we could refine this count with a generating function giving
a q-analog.

Definition 3.1. Given a permutation σ, an inversion of σ is a pair i < j such that σ(i) >
σ(j). The inversion count of σ is the total number of inversions of σ, so

Invσ =
∑

i<j,σ(i)>σ(j)

1

. The inversion polynomial is then Invn(q) =
∑

σ∈Sn
qInv σ.

The inversion polynomial seems like a perfectly valid q-analog to the factorial, after all
Invn(1) =

∑
σ∈Sn

1Inv σ =
∑

σ∈Sn
1 = n!. In fact it seems much more motivated then our

current definition of the q-factorial, so why don’t we use it. As it turns out it is exactly the
same as the q-factorial.

Lemma 3.2. Invn(q) = [n]q!

Proof. For any σ ∈ Sn−1 Let kσ ∈ Sn be the permutation obtained by inserting n between
the k − 1th and kth spots. So if σ = 123 then 2σ = 1423. Now note that because this
construction leaves the relative order of all but the kth element the only new inversions
added are k < i, kσ(i) < n for all k < i. Thus Invk σ = Inv σ+ n− k. Clearly every element
of Sn can be obtained as kσ for some k and some σ ∈ Sn−1 so

Invn(q) =
∑
σ∈Sn

qInv σ =
∑

σ∈Sn−1

n∑
k=1

qInv σ+n−k = (1+q1+· · ·+qn−1)
∑

σ∈Sn−1

qInv σ = [n]q Invn−1(q)
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Since Inv1 = 1, [n]q! and Invn(q) fulfill the same recurrence and base case and thus are
equal. ■

3.2. Linear algebra over finite fields. When q is a prime power there is a unique field
Fq with exactly q elements. Linear algebra over these fields is fairly similar to linear algebra
over any other field with one exception, we can count things. When trying to count things in
these fields q-analogs become highly relevant. If we want to understand linear algebra over
finite fields combinatorially a reasonable place to start would asking how many k-dimensional
subspaces of Fn

q are there. The answer turns out to be very familiar

Theorem 3.3. The number of k dimensional subspaces of Fn
q is

(
n
k

)
q

Proof. First note that the number of elements of a k dimensional subspace is exactly qk.
To find the number of k dimensional subspaces we shall first find the number of sets S of
k linearly independent and then divide out by the number of different linearly independent
sets that give the same subspace. To pick a linearly independent subset of size k we first
pick any non-zero vector v1, we have qn − 1 options. Then we pick any vector v2 not in the
span of v1, because there are q vectors in the span of v1 we have q

n− q options. For v3 there
are q2 vectors in the span of v1 and v2 so qn − q2 options for v3. So on and so forth until
we get to vk. We have imposed an order here so the total number of linearly independent

sets of size k is
∏k−1

m=0 q
n−qm

k!
. To find the total number of linearly independent sets of size k

that span a particular k dimensional subspace, note that this is the same as asking what
the total number of linearly independent sets of size k is in Fk

q . We have just found this for

any n and k, setting n = k we find that this is just
∏k−1

m=0 q
k−qm

k!
. Thus the total number of k

dimensional subspaces of Fn
k is∏k−1

m=0 q
n − qm∏k−1

m=0 q
k − qm

=

∏k−1
m=0(q

n−m − 1)∏k−1
m=0(q

k−m − 1)
=

∏k−1
m=0(1− qn−m)∏k
m=1(1− qm)

=

(
n

k

)
q

■

Corollary 3.4. The order of the general linear group GLn(Fq) is given by [n]q!(q− 1)nq(
n
2).

In the course of the above proof we showed that the number of length k ordered lists of
linearly independent vectors in Fn

q is
∏k−1

m=0(q
k − qm). Since an element of GLn(Fq) is just a

length n ordered list of linearly independent vectors in Fn
q it follows that

|GLn(Fq)| =
n−1∏
m=0

(qn−qm) =
n−1∏
m=0

qm×
n−1∏
m=0

(qn−m−1) = (q−1)nq(
n
2)

n∏
m=1

(qm − 1)

q − 1
= [n]q!(q−1)nq(

n
2)

Interestingly the q factorial also counts a different, less well known, linear algebraic structure,
called flags.

Definition 3.5. Let V be a vector space, a flag of length k in V is a sequence

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vk = V

. A complete flag is a flag of length dimV .

Theorem 3.6. The number of complete flags in Fn
q is equal to [n]k!.
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Proof. To obtain a complete flag we first pick a vector v1 which spans V1, we have qn − 1
options but every 1 dimensional subspace has q − 1 vectors which span it, so we really have
qn−1
q−1

. For V2 we pick a vector v2 not in V1, the span of v1, v2 will be V2, there are qn − q

options but for any choice of v2 there are q
2 − q options that will give the same subspace, so

we really only qn−q
q2−q

. We continue on like this until we have picked n subspaces, so the total

number of complete flags is

n−1∏
k=0

qn − qk

qk(q − 1)
=

n−1∏
k=0

qn−k − 1

q − 1
=

n∏
k=1

qk − 1

q − 1
= [n]q!

■

Remark 3.7. (This remark is not necessary for the rest of the paper.) The counting formulas
above are sometimes viewed as part more general phenomenon: many combinatorial struc-
tures behave as though they arise as the “q → 1” specializations of linear algebra over a
hypothetical object called the field with one element, denoted F1. The idea is that certain
constructions over finite fields Fq have well-defined limits as q → 1, and these limiting objects
frequently turn out to be purely combinatorial. For example, the formulas for the number of
subspaces of Fn

q and the number of complete flags both reduce to n! when q → 1, matching
the interpretation of n! as counting permutations.

This heuristic “q → 1” principle is one motivation behind attempts to develop algebraic
geometry over F1. We will not pursue this perspective further here, but it helps explain why
so many q-analogues simultaneously generalize finite field phenomena and classical combi-
natorics.

4. q-calculus

Consider the limit

lim
q→1

f(qx)− f(x)

qx− x

Clearly this is the derivative. However if we instead fix q we get an interesting analog to the
derivative.

Definition 4.1. For any function f , define

(Dqf)(x) =
f(qx)− f(x)

x(q − 1)

Example. Many functions have easily computable q-derivatives. For example

Dq
1

1− x
=

1
1−qx

− 1
1−x

qx− x
=

(q − 1)x

x(q − 1)(1− qx)(1− x)
=

1

(1− x)(1− qx)

This fulfills many properties similar to the typical derivative

Lemma 4.2. (i) Dq is linear
(ii) (The q product rule) Dq(fg)(x) = f(qx)Dqg(x) + (Dqf(x))g(x)
(iii) (The q power rule) Dq(x

n) = [n]qx
n−1

(iiii) (The q quotient rules) Dq(
f(x)
g(x)

) = g(x)Dqf(x)−f(x)Dqg(x)

g(qx)g(x)
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Proof. (i) Let f, g be any functions and a, b be constants, then

Dq(af + bg)(x) =
af(qx) + bg(qx)− af(x)− bg(x)

qx− x
= aDqf(x) + bDqg(x)

(ii)

Dq(fg)(x) =
f(qx)g(qx)− f(x)g(x)

x(q − 1)

=
f(qx)g(qx)− f(qx)g(x) + f(qx)g(x)− f(x)g(x)

x(q − 1)

= f(qx)Dqg(x) + (Dqf(x))g(x)

(iii)

Dq(x
n) =

qnxn − xn

x(q − 1)
= xn−1 q

n − 1

(q − 1)
= [n]qx

n−1

(iiii) Differentiate both sides of g(x)f(x)
g(x)

= f(x) and apply the product rule to obtain

g(qx)Dq(
f(x)

g(x)
) +

f(x)

g(x)
Dqg(x) = Dqf(x)

Simplify to find

Dq(
f(x)

g(x)
) =

g(x)Dqf(x)− f(x)Dqg(x)

g(qx)g(x)
■

Now I’m sure you’re wondering where the chain rule is. Unfortunately, the sad truth is
that there is no chain rule in q-calculus. Because of this, we can’t be sure that Dq(x− a)n =
[n]q(x−a)n even though it is true when a = 0, in fact, this is almost never the case, generally
we have

Dq(x− a)n =
(qx− a)n − (x− a)n

x(q − 1)
which doesn’t simplify to anything nice. Nonetheless we definitely still want some ability to
”shift” xn that is coherent with the q-derivative.

Definition 4.3. For any a define (x−a)nq =
∏n

k=1(x− qk−1a) when n ≥ 1 and (x−a)0q := 1.
(Often you will see the specific case (1 − a)nq notated (a; q)n and called the q-pochhammer
symbol)

These do behave nicely with the q-derivative.

Proposition 4.4. Dq(x− a)nq = [n]q(x− a)n−1
q

Proof. We induct on n, when n = 1 the claim is trivial so assume n > 1 and the claim holds
for all k < n. Then by the power rule we have

Dq(x− a)nq = Dq(x− aqn−1)(x− a)n−1
q

= (x− a)n−1
q + (qx− aqn−1)Dq(x− a)n−1

q

= (x− a)n−1
q + q[n− 1]q(x− a)n−2

q (x− aqn−2)

= (1 + q[n− 1]q)(x− a)n−1
q

= [n]q(x− a)n−1
q
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So the claim holds by induction. ■

This tells us, for example that

Dq(x− a)(x− qa) = [2]q(x− a)

This may not seem like that big of a deal, but because

• (a− a)nq = 0 for all n but 0.
• deg(x− a)nq = n

• Dq(x− a)nq = [n]q(x− a)n−1
q

We have the ability to write any polynomial in a ” q-derivative friendly way “ this is essentially
a q-taylor series.

Theorem 4.5. Let f(x) be a polynomial, then
∑∞

k=0(D
n
q f)(a)

(x−a)nq
[n]q !

Proof. Note first that Dk
q
(x−a)nq
[n]q !

=
(x−a)n−k

q

[k]q !
when k < n and is 0 otherwise. Now suppose f

has degree k, let Vk be the k+1-dimensional vector space of polynomials of degree ≤ k. Then
the set {(x − a)0q, (x − a)1q, . . . , (x − a)kq} forms a basis for Vk (Each (x − a)jq have different
degree and there are k + 1 of them). Now write

f(x) =
k∑

j=0

bj
(x− a)jq
[j]q!

Then

Dn
q f(a) =

k∑
j=0

bjD
n
q

(a− a)jq
[j]q!

=
k∑

j=n

bj
(a− a)j−n

q

[j − n]q!
=

k−n∑
j=0

bj+n

(a− a)jq
[j]q!

= bn

So
∞∑
k=0

(Dn
q f)(a)

(x− a)nq
[n]q!

■

Example. For a simple example, let’s examine the polynomial x2 + x. Then, its first q-
derivative is [2]qx+ 1 and its second q-derivative is just [2]q. Thus for any a we have

x2 + x = a2 + a+ ((1 + q)a+ 1)(x− a) + (x− a)(x− qa)

We can extend this to formal power series convergent about 0 in a fairly obvious way.

Corollary 4.6. Let f(x) =
∑∞

k=0 fkx
k be a formal power series convergent about 0, then∑∞

k=0(D
n
q f)(0)

xn

[n]q !

Proof. Write f(x) =
∑∞

k=0[k]q!fk
xk

[k]q !
, then clearly

Dn
q f(0) =

∞∑
k=0

[k]q!fk(D
n
q

xk

[k]q!
)(0) =

∞∑
k=0

[k]q!fk
0k−n

[k − n]q!
= [n]q!fn

So

f(x) =
∞∑
k=0

(Dn
q f)(0)

xk

[k]q!

■
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Example. Suprisingly, this actually gives us quite a bit of knowledge about the q-derivatives
of a particular function. For example, using the typical power series expansion we know that

1

1− x
=

∞∑
n=0

xn

But we also know now that
1

1− x
=

∞∑
n=0

Dn
q

1
1−x

(0)

[n]q!
xn

So in particular we know that

Dn
q (

1

1− x
)(0) = [n]q!

Definition 4.7. We can now properly define the q-exponential. The issue is, that there are
two different ways we could go about defining a q exponential, and for once they do not
agree. The first way is to define

exq :=
∞∑
n=0

xn

[n]q!

in which case Dqe
x
q = exq . The second way is to deform the differential equation d

dx
exp(x) =

exp(x) into Dq expq(x) = expq(qx). In this case we get the function

expq(x) :=
∞∑
n=0

q(
n
2) xn

[n]q!

Recall the formulae we found in section one
n−1∏
k=0

1

1− qkx
=

∞∑
k=0

(
n+ k − 1

k

)
q

xk

and
n−1∏
k=0

(1 + qkx) =
n∑

k=0

q(
k
2)
(
n

k

)
q

xk

Note that
n−1∏
k=0

1

1− xqk
=

1

(1− x)nq

and
n−1∏
k=0

1 + xqk = (1 + x)nq

Then these formulae amount to the statement that
∑∞

k=0

(
n+k−1

k

)
q
xk is the taylor expansion

of 1
(1−x)nq

and
∑n

k=0 q
(k2)
(
n
k

)
q
xk is the taylor expansion of (1 + x)nq . In particular, because we

can extend these formulae to n → ∞ this means we can define

(4.1)
1

(1− x)∞q
=

∞∏
k=0

1

1− xqk
=

∞∑
k=0

xk

[k]q!(1− q)k
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and

(4.2) (1 + x)∞q =
∞∏
k=0

1 + xqk =
∞∑
k=0

q(
k
2)xk

[k]q!(1− q)k

So we can express 1
(1−x)∞q

in terms of exq

1

(1− x)∞q
=

∞∑
k=0

xk

[k]q!(1− q)k
=

∞∑
k=0

( x
1−q

)k

[k]q!
= e

x
1−q
q

and (1 + x)∞q in terms of expq

(1 + x)∞q =
∞∑
k=0

q(
k
2)xk

[k]q!(1− q)k
=

∞∑
k=0

q(
k
2)( x

1−q
)k

[k]q!
= expq(

x

1− q
)

In addition we have

expq(
x

1− q
) = (1 + x)∞q =

∞∏
k=1

(1 + qkx) =
1∏∞

k=1
1

1+xqk

=
1
1

(1−(−x))∞q

=
1

e
−x
1−q
q

And so
e−x
q expq(x) = exq expq(−x) = 1

In particular this means that
n∑

k=0

q(
k
2)(−1)k

[k]q![n− k]q!
=

{
0 : n ≥ 1

1 : n = 0

5. Conclusion

The theory of q-analogues provides a unified framework in which classical combinatorial
quantities, finite field enumeration, and deformations of algebraic formulas all appear as
different manifestations of the same underlying structures. Beginning from q-integers and
q-binomial coefficients, we saw how their algebraic properties lead naturally to product
identities, generating functions, and ultimately the Jacobi Triple Product. Interpreting these
objects combinatorially connects them to permutation statistics, while interpreting them
over finite fields recovers the enumeration of subspaces, flags, and linear groups. Finally,
q-calculus shows that many familiar analytic identities persist in deformed form and that
the q-exponential functions are closely tied to the infinite products introduced earlier.

q-analogues sit at a crossroads: simple enough to admit explicit computation, flexible
enough to encode deep phenomena, and rich enough to unify disparate areas. Even the
elementary examples here hint at broader connections to partitions, basic hypergeometric
series, representation theory, and the geometry of F1. The ubiquity of these constructions is
ultimately what makes q-analogues so powerful: they reveal the hidden “q-structure” already
present in classical mathematics.
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