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Abstract

g—analogs arise whenever a classical combinatorial or algebraic quantity is deformed by a parameter
g in such a way that setting ¢ = 1 recovers the original object. They appear in the theory of partitions,
basic hypergeometric series, finite geometry, and representation theory. The aim of this paper is to
give a elementary introduction to one of the central families of g—analogs: the g—integers, g—factorials,
and Gaussian binomial coefficients. We develop their basic algebraic properties, prove the g—binomial

theorem, interpret <n ) as the number of k-dimensional subspaces of 'y, and briefly discuss ¢-Catalan

k
numbers and limiting regimes. Throughout, the emphasis is on concrete formulas and combinatorial
interpretations rather than on the general theory of basic hypergeometric series.

1 Introduction and brief history

The simplest way to describe a g—analog is by example. The classical integer n is replaced by the g—integer

n
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which is a polynomial in ¢ that reduces to n when ¢ — 1. Similarly, the usual factorial n! gives way to the
g—factorial

[n]g! = [1g[2]g - [n]q,

and from these we build the Gaussian binomial coefficients
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When ¢ is a prime power, these coefficients count k-dimensional subspaces of the vector space Fy. When
we forget the field structure and set ¢ = 1, we recover the ordinary binomial coefficient (Z), which counts
k—element subsets of an n—element set.

The idea of introducing a deformation parameter ¢ is classical. Euler already worked extensively with
g—series, product expansions, and partition-generating functions. Later, work of Gauss, Jacobi, and others
on theta functions and elliptic functions pushed the subject further. The modern language of basic hyper-
geometric series (sometimes called “g—hypergeometric series”) was systematized in the 19th and early 20th
centuries; a standard reference is the monograph of Gasper and Rahman [2]. Gaussian binomial coefficients
appear explicitly in the work of T. P. James and J. J. Sylvester in connection with counting subspaces of
vector spaces over finite fields.

In combinatorics, g—analogs came to the foreground through the work of Andrews, MacMahon, and many
others on partitions and generating functions (see, for instance, [1, 3]). There, ¢ typically plays the role of
a weight marker: the coefficient of ¢" in a generating series counts objects of size m, so that replacing n by
[n]4 reflects the idea of “counting with a weight.” In finite geometry and coding theory, the same objects
reappear with a different flavor: when ¢ is specialized to a prime power, ¢ measures the size of a finite field,
and the Gaussian binomial coefficients literally count subspaces.



Two complementary viewpoints. There are (at least) two useful ways to think about g—analogs in this

paper:

e Algebraic deformation. One starts with a familiar formula involving integers, factorials, or binomial
coefficients, and replaces each ingredient by its g—version. The guiding principle is that the resulting
identity should reduce to the classical one when ¢ — 1. The g—binomial theorem, for example, deforms

the binomial expansion of (z 4+ y)” into a product with g—dependent factors.

e Weighted counting / finite-field counting. Many g—analogs have natural combinatorial interpre-
tations. In one common pattern, g tracks a statistic on a combinatorial object (such as area under
a path), so that the g-analog is a generating polynomial. In another, when ¢ is a prime power, the
same polynomial counts subspaces of vector spaces over F,. This is the situation for the Gaussian
binomial coefficients, which simultaneously encode a weighted subset-counting picture and an exact

subspace-counting picture.

The basic goal of this paper is to unpack both perspectives for the simplest family of g—analogs, and to

explain how they fit together.

Scope and aim. The literature on g—series is vast and intersects many areas of mathematics. Our aim here
is modest: to give a self-contained exposition of the basic calculus of g—integers, g—factorials, and Gaussian
binomial coeflicients, together with the g—binomial theorem and a few illustrative applications. We avoid the
general theory of basic hypergeometric series and focus instead on a small, concrete collection of identities

that already show the main ideas at work.

2 Basic g—integers and ¢—factorials

We begin by recording some elementary properties of the g-integers and g—factorials. Throughout, ¢ is a

formal variable or a real/complex number with ¢ # 1 unless otherwise specified.

Definition 2.1 (g-integer and g—factorial). For n € N, the g-integer [n], is defined by
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For n > 1, the g—factorial is defined recursively by
[0]4! :=1, n]g! == [n]g - [n—1]! (n>1).

Equivalently,
[nlg! = T ¥
k=1

The geometric series identity immediately gives a recurrence.
Lemma 2.2 (Elementary relations). For alln >0,
[n+1]q = [n]q + 4",

and forn > 1,
[”}q! = [n]q [n — Hq!-

Proof. The first identity follows directly from
m+1,=1+qg+ - +¢"=1+qg+-+¢" ) +q"=[n], +q"
The second identity is just the recursive definition of [n],!.

A basic consistency check is that these quantities really deform the classical ones.



Lemma 2.3 (Limits as ¢ — 1). For each fized n € N,
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Proof. Using [n], = (1 —¢™)/(1 — ¢), we apply L’Hépital’s Rule:
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For the factorial, we simply note that the pointwise limit of each factor is k:
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On the other extreme, as ¢ — 0, all the geometric series collapse to 1:

Remark 2.4 (Limits as ¢ — 0). For each n > 1,

. _ . L
limfn]; =1, limfnl,!=1.

This corresponds to keeping only the “lowest” contribution in the geometric series 1 + ¢ + - -+ 4+ ¢" 1.

3 Gaussian binomial coefficients and finite vector spaces

With g—integers and g—factorials in hand, we can introduce the main combinatorial objects of the paper.

Definition 3.1 (Gaussian binomial coefficient). For integers 0 < k < n, the Gaussian binomial coefficient
(or g-binomial coefficient) is

If k<0ork>n, we set (Z) = 0.

q

Just as for the usual binomial coefficients, one can derive a product formula.

Lemma 3.2 (Product formula). For 0 < k < n,
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Proof sketch. Starting from the definition,

< n ) B [1-115]q
k o k . n—ky - ’
o (M50 (TI=E 1)
Use [j]q = 14’ 4 rewrite each factor. The (1 — q) factors cancel in numerator and denominator, leaving
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Finally, factor out (—1) from each (1 — ¢™) and cancel (—1)* from numerator and denominator to obtain
the stated formula. ]



When g is a prime power, this formula acquires a clean geometric meaning.

Theorem 3.3 (Subspace interpretation). Let g be a prime power and let V =T, . Then

(®),

is the number of k—dimensional linear subspaces of V.

Proof outline. We count k—dimensional subspaces in two steps.
Step 1: Count ordered bases. Fix k with 0 < k < n. To choose an ordered k—tuple (vy,...,vg) of
linearly independent vectors in Fy, we may proceed inductively:

e v; can be any nonzero vector, so there are ¢" — 1 choices.
e vy can be any vector not in the span of vy, which has ¢ elements. Thus there are ¢"* — ¢ choices.

e In general, after choosing v1,...,v;—1, their span has ¢~ elements, so v; can be any vector outside
this span, giving ¢ — ¢! choices.

Multiplying, we find that the number of ordered k—tuples of linearly independent vectors is

(@ =D —q) (" — ")

Step 2: Divide by the number of ordered bases of a fixed subspace. Each k-dimensional
subspace W C V has ¢* elements, so the number of ordered bases of W is

(" =" —q)- - (¢" = ¢"") = |GL(k, q)|.

Every ordered k—tuple of independent vectors spans a unique k—dimensional subspace, and different ordered
bases of the same subspace are counted here. Thus the total number of k—dimensional subspaces is

(qn _ 1)(qn _ q) . (qn _ qk—l)
(* =1)(¢* —q)---(¢* — 1)’

which matches the product in Lemma 3.2 after factoring ¢ 7*! out of each numerator term and ¢’ out of
each denominator term. O

n
k
polynomial. This is the finite-field counterpart to the classical interpretation of (Z) as counting k—element
subsets of an n—element set.

Remark 3.4. Theorem 3.3 exhibits ( ) as a genuine count when ¢ is a prime power, not just a formal
q

4 The g—binomial theorem

The classical binomial theorem states that
n __ & n n—k, k
()" =) (, )" "
k=0

There are many g—analogues of this statement, depending on how one deforms the product on the left. In
this paper we use the multiplicative notation

n—1

(z+y)y = H (z + q'y),

which can be viewed as introducing a “g-twist” at each step in the product.



Theorem 4.1 (¢—binomial theorem). For each n > 0,
n . n k n—
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Proof outline by induction. We proceed by induction on n. For n = 0, both sides are equal to 1 by convention.
Now assume the identity holds for some n and consider n + 1.
On the one hand,
(@ +y)y™ = (@ +y)y - (@+q"y).

Using the induction hypothesis,

(z+y)g™ = ( 3 (Z)qq(§>x"‘kyk> (z + q"y).

Distributing, we obtain two sums:

n
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In the second sum, change the index k +— k — 1 to line up powers of y:

n+1 n (h 1)
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Now both sums are of the form Y, (---)z"T1=*y*. The coefficient of 2" 1 =Fy* is
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(which we prove separately in Section 6) now shows that this coefficient is exactly (n ;cr ) q(2). This gives
q

One checks that

so the coefficient becomes

The g—Pascal identity

the desired expansion for n + 1. O

There are other proofs of Theorem 4.1, for example by expressing both sides in terms of the g~Pochhammer
symbol and comparing coefficients in a formal power series expansion. For the purposes of this paper, the
inductive proof emphasizes the parallel with the classical binomial theorem.

5 g¢—Pochhammer symbols and compact notation

Many g-identities become cleaner when expressed with the g-Pochhammer symbol.



Definition 5.1 (¢—Pochhammer symbol). For a parameter a and integer n > 0, define

n—1

(a;9)n = H(l —aq"),

i=0
with the convention (a;q)o = 1.
With this notation,
(@@ =1 -1~ (1—q"),
and we have the identities
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These formulas are often taken as the definition of Gaussian binomial coefficients in the context of basic

hypergeometric series. They also make it clear that n) is a polynomial in ¢ (not just a rational function):

k

the denominator divides the numerator as a product of factors of the form (1 — ¢™).

6 ¢—Pascal identities and ¢—Catalan numbers

The Gaussian binomial coefficients satisfy g—analogues of many familiar identities for (Z)

g—Pascal and symmetry

The simplest are the symmetry and g—Pascal relations:

(1,7 ("),
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These can be proved algebraically from the product formula, but they also admit clean combinatorial proofs
using Theorem 3.3: one counts k-dimensional subspaces of Fy that either contain a fixed vector or lie inside
a fixed hyperplane. For instance, the relation

n\ _ r({n-—1 n n—1
k) Tk k—1
a q a
arises by partitioning the k—dimensional subspaces according to whether they contain the last basis vector e,

or not. If W does not contain e,, then W is a k—dimensional subspace of the (n — 1)-dimensional subspace

spanned by eq,...,e,_1, which gives the term (n ; 1> , weighted by a factor accounting for how many
q
extensions to e, exist. If W does contain e,,, then W is generated by e, and a (k — 1)—dimensional subspace

of the (n — 1)-dimensional hyperplane, yielding the second term.

g—Catalan numbers

Another classical family of combinatorial numbers that admits a g—analog is the Catalan numbers. The
standard ¢g—Catalan numbers are defined by

o= (W),



At g = 1, one recovers the usual Catalan number

Cn(l):nil(?)'

The polynomials C),(q) admit interpretations as generating functions of Dyck paths by area or other statistics;
more precisely, one can show that

Cn(Q) — Z qarea(P)7
Dyck paths P

where the sum runs over Dyck paths of semilength n and area(P) is a certain natural statistic counting the
number of lattice squares between the path and the diagonal. While we will not give a full proof of this fact
here, it serves as a model example for how g—analogs often refine classical counts by recording additional
information.

7 Limiting regimes

Finally, we briefly discuss how the various limiting behaviors of Gaussian binomial coefficients reflect the
underlying combinatorial picture. We have already seen that

im (7)) = ("), 1m (7)) =1
q—>1/€q k q—>0kq

Using the ¢—Pochhammer notation, both limits can be understood as follows: as ¢ — 1, the factors (1 —¢™)
behave like (1 — g)m, and the overall powers of (1 — ¢) cancel in such a way that only the classical binomial
coefficient remains. As ¢ — 0, each factor (1 — ¢™) tends to 1, so every term in the product formula tends
to 1, giving a trivial limit.

In the finite-field interpretation, sending ¢ — 1 is not literally meaningful (since there is no field of size 1),
but it can be thought of as a heuristic transition from vector spaces to sets: the subspace picture degenerates
to the subset picture. In the weighted counting interpretation, ¢ — 0 can be viewed as keeping only the most
“economical” configurations (those with minimal weight), whereas ¢ — 1 forgets the weighting entirely.

Summary. To summarize, this paper develops the basic theory of

n
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establishes their core identities and combinatorial interpretations, and highlights the unifying theme that
g—analogs interpolate between classical combinatorics and finite-field geometry.
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